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Abstract

Recently, Chu, Funderlic and Golub [ STAM J. Matrix Anal. Appl., 18:1082 1092,
1997] presented a variational formulation for the quotient singular value decomposition
(QSVD) of two matrices A € R™*™ C € RP*™ which is a generalization of that one
for the ordinary singular value decomposition (OSVD) and characterizes the role of two
orthogonal matrices in QSVD. In this paper, we give an alternative derivation of this
variational formulation and extend it to establish an analogous variational formulation for
the Restricted Singular Value Decomposition (RSVD) of Matrix Triplets A € R"*™ B €
R"*! C € RP*™ which provides new understanding of the orthogonal matrices appearing
in this decomposition.
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1 Introduction

The ordinary singular value decomposition (OSVD) of a given matrix A € R"*™ is

T M —7Tg

T Ta » 0
AV = 1
vt AV n—"Tq [ 0 0 ] ’ (1)
with
e M —Tq Tq M —Tg
v=nlotn U ], V=m [ W |
Y = diag{o1, -,00,}s o1 >09> >0, >0, ro = rank(A),
where U,V are orthogonal matrices. The oy, ---,0,, are the non-trivial singular values of A,
and the columns of U; and Vj are, respectively, the non-trivial left and right singular vectors
of A. In this paper, ||| denotes the 2—norm of a vector. The following theorem is well-known
[4]:
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Theorem 1 Given A € R™ "™ with OSVD (1).
(a) Consider the optimization problem

Iyl o)

X -_—.
y=Az, y70 ||z||

Then the non-trivial singular values oy, -, 0., of A are precisely the stationary values, i.e.,
the functional evaluations at the stationary points, of (2). And, let the stationary points in

(2) corresponding to the stationary values oy,---,0,, be [ f/] ] R [ Z;T“ ], then
g1 Yr,
_ 1 Trg
vi=| e |
Moreover, if n =m = ry, then
_ Y1 . Yra
v = e |-

(b) Consider the dual optimization problem

Iy 5

yT=2T A, y#0 W

Then the non-trivial singular values o1,---,0,., of A are precisely the stationary values of
(8). And, let the stationary points in (3) corresponding to the stationary values oy, -, 0,

be | 1 S Tra , then
y] yra

a

_ Zr L, Trg
U = [ Toall Tor] }
Moreover, if n =m = rq, then
_ Y1 . Yra
Vi= [ Tor] Tyre] }

Recently, in Chu, Funderlic and Golub [1] Theorem 1 has been generalized to the Quotient
Singular Value Decomposition (QSVD) [3, 5, 6, 7, 8, 9, 10, 11, 13, 14] of two matrices A €
R™ ™ C' € RP*™ based on the relationship between QSVD of two matrix A,C and the
eigendecomposition of the matrix pencil (AT A, CTC).

The purposes of this paper are twofold. Firstly, we present an alternative derivation of
the variational formulation in [1] directly based on the QSVD of two matrices A, C. Then
we extend this result to the Restricted Singular Value Decomposition (RSVD)[8, 9, 10, 11,
15, 16] of matrix triplets and obtain a analogous variational formulation which provides new
understanding of the orthogonal matrices appearing in this decomposition.

In order to prove our main results, we will establish two condensed forms based on orthog-
onal matrix transformations. The QSVD of two matrices and the RSVD of matrix triplets
can be obtained and the variational formulation for QSVD and RSVD can be proved directly
based on these two condensed forms.

In this paper, we use the following notation:

e So(M) denotes a matrix with orthogonal columns spanning the right nullspace of a
matrix M;
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e Too(M) denotes a matrix with orthogonal columns spanning the right nullspace of a
matrix M7,

e M~ denotes the orthogonal complement of the space spanned by the columns of M;

e Unless noted, we do not distinguish between a matrix with orthogonal columns and the
space spanned by its columns.

We also use the following notation for any given matrices A, B, C' with compatible sizes:
denote

ro = rank(A), 7, =rank(B), r.=rank(C),
_ A A B
rep = rank [ A B ] ,  Tge = rank [ C ] ,  Tape = rank [ c ] ,

ki = rape =T —7Te, ko =Ty +1c— Tabe,

k3 = Tac+Th—Tabe, ki =T+ Tabe — Tab — Tac-

2 A Variational Formulation for QSVD

Nowadays, several generalizations of the OSVD have been proposed and analysed. One that
is well-known is the generalized SVD as introduced by Paige and Saunders in [5], which was
proposed by De Moor and Golub [11] to rename as the QSVD. Another one is the RSVD,
introduced in its explicit form by Zha [16] and further developed and discussed by De Moor
and Golub [8].

In this section we will give an alternative proof for the variational formulation for the
QSVD of [1] based directly on QSVD itself. Firstly we present a condensed form to derive
QSVD of two matrices.

Lemma 2 Given matrices A € R"™™ C € RP*™. Then there exist three orthogonal matrices
U, € R"”*" W € R™™ V., € RP*P such that

Tac —Tc Ta+Te¢ —Tac Tac—Ta ™M —Tac

Tac — Te A A1 0 0
UTAW = ro47e— Tae 0 Asy 0 0 ,
n—7Tg 0 0 0 0

Tac —Tc Ta+tTe—Tac Tac—Ta ™M —Tac

p—re [ 0 0 0 0 W
VICW = r4+7e— Tae 0 Cyo 0 0 ,
Tac — Ta Cs: Cs2 Css 0 J

where Aq1, Aga, Coo and Cs3 are nonsingular.

Proof. See Appendix A. O
Let the OSVD of AC5;' be

UQEAQQCQJ'QIVQQ :diag{(fl,---,(fs} = SA, S=17Tq+7Tc— Tae, (5)
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where Uso, Vo9 are orthogonal matrices, o1 > 09 > --- > g5 > 0. Define

U := Ua diag{lfacirca U227 Inlra}a (6)
V = ‘/C diag{IPch’ ‘/22’ Ifaclra } (7)
I 0 0 0 A AL ARCH Ve 000
X 0 I 0 0 0 Cay Vo 0 0 ®)
T 050 050 O30 0 0 I 01’
[ 0 0 0 IH 0 0 0 IJ

Then, as a direct consequence of the condensed form (4), we have the following well-known
QSVD theorem.

Theorem 3 (QSVD Theorem) Let A € R"*™ C € RP*™ there exist orthogonal matrices
U e R"™™ V € RP*P and nonsingular matriz X such that

Tac —Tc Ta+tTe¢ —Tac Tac—Ta ™M —Tac

Tae — Te 1 0 0 0
UTAX = ro+7e— Tac 0 S 0 0o |,
n—7Tg 0 0 0 0
Tac —T¢ Ta+tTe—Tac Tac—Ta ™M — Tqc
p—re 0 0 0 0 }
VICX = ro47e— o 0 I 0 0 , (9)
Tae — Ta 0 0 1 0

where S 4 is of the form (5), and U,V and X can be chosen to be given by (6), (7) and (8),
respectively. o;,1 = 1,---,s are defined to be the non-trivial generalized singular values of two
matrices A, C.

According to the uniqueness theorem in [16], we only need to characterize matrices U,V
given by (6) and (7) in order to characterize the role of orthogonal matrices in QSVD. Let
U,V be given by (6) and (7) and partition these two orthogonal matrices by

Tac —Tc Ta+Tc—Tac M —Tq

vo= | U Uy Us |, (10)
P—7Tc Ta+Te—Tac Tac—Ta

V = [ Vi Vo V3 } (11)

(12

Then, from Lemma 2 we have

Us = TolA), Up=TL(ASx(0)), (13)
Vi = To(C), Vi=T(CSx(A)). (14)

Hence, in order to characterize the role of orthogonal matrices U,V in QSVD, it should only
characterize the role of Uy, V4 in QSVD.

The following variational formulation has been established in [1] to characterize Uy and
Va.
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Theorem 4 Given A € R™™™ C € RP*™. Consider the optimization problem

Iyl

max . (15)
o o ]
TL(A) 0 [ ’ ] o0

0 TL(O)
Then the non-trivial generalized singular values o1, -, 05 of two matrices A,C are precisely
the stationary values for the problem (15). Furthermore, let [ Tyl ] R [ T; ] be sta-

— Y1 —Is
tionary points of the problem (15) with corresponding stationary values o1,---, 05, then
R (R Zs — Y1 . Ys
U= 7 ] = mh e |-

Proof. We prove Theorem 4 by the following three arguments.

e Argument 1 Firstly, we characterize orthogonal matrices Uy, Va9 in (5). Consider the

optimization problem
2]

: (16)
x3 Ago =y Cha, T2F#0 22|

Since Ago, Cyg are both nonsingular, by Theorem 1 the oy, - - -, g4, i.e., the singular values

of the matrix AQQCQJ_QI are precisely the stationary values of the problem (16), and, if
1 s

l ;1 ] S l ;S ] are the stationary points of the problem (16) with corresponding
—Y2 —Y

stationary values o1, ---, 0, then
Un=[ o ] Ve[ ]
= [E] a5l |° V22 llys |l w3l

e Argument 2 Secondly, let

Tae — Te 0
F = {[ z ] weR",y e R, U g = "0 T e Tac | T2
— n—rq

0

p—Tc 0
chTy:Ta‘i"rc*Tac Y2 : xTA:yTC,$7é0}.
Tac — Tq
0
Consider the optimization problem
max M (17)
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Obviously, we have that [ ] is a stationary point of the problem (17) with stationary

value o if and only if x; is a stationary point of the problem (16) with the same
2

stationary point ¢ and furthermore

Tac — Te 0 p—Te 0
T  Ta+Te—Tae | T2 T Ta+Te—Tace | Y2
U, = , Viy="_
n—"Tq Tac — Ta
0 0

e Argument 3 Finally, for any z € R",y € RP, partition

Tae — Tc 1A b —Tec Y1
T Ta+Te—Tae | X2 T _ TatTe—Tac | Y2
U,z = , Viy="_
) n—"rg i Tac — Ta
T3 Y3
Since
Tac — Te 0 pP—Te I
T = T =
U, TOO(A):Ta+Tc_Tac o, V. Too(c)zra'*'rc_rac 0],

n—7rg 1 Tac — Ta 0

it is easy to know that [ ] € F if and only if

AT cT
TEA) 0 [_T]—o z#0
0 T7I(C) Y
Note that
Tac — Te 0 p—re 0
U(TUQ =71y +7c—Tac | U s ‘/(;TVQ =74+ T7c—Tac | Voo s
n— 1T, 0 Tac — Ta 0

thus, Theorem 4 follows directly from the above Arguments 1, 2 and 3. D

3 A Variational Formulation for RSVD

In Section 2 we have derived the QSVD of two matrices A, C' based on the condensed form
(4). Now we will establish the RSVD of a matrix triplet (A, B, C) via an analogous condensed
form.
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Lemma 5 Given A € R"*™ B ¢ R"*! C € RP*"™.
PeR™™ Qe R™™ U, € R* V., € RP*P such that

k1
ko
k3
k4

Tab — Ta

PAQ =

N —Tap

k1
ko
k3
k4

Tab — Ta

PBU, =

N —Tap

D—Tc
ks
k4

Tac — Ta

vic =

ki ka ks kg Tac—Ta
[ A]] A] 2 0 0 0
0 Aoy 0 0 0
Az Aszp Azz Ay 0
Ay A 0 Ay 0
0 0 0 0 0
0 0 0 0 0
L—ry ks kg r1ap—Ta
0 0 0 B ]
0 0 0 By
0 Bss  Bss Bsy
0 0 Bz By ’
0 0 0 Bsy
0 0 0 0
ki ky ks kg Tae—Ta
0 0 0 0 0
0 Coo 0 0 0
C31 Oz 0 Oz 0
Cnn Cpp Cpi3 Cy Cis

Then there exist orthogonal matrices

m — Tace

o O O oo

m — Tae

0

0
0
0

where Aq1, Agg, Asz, Ass, B3, Baz, Bs4, Ca2, C34 and Cys are nonsingular.

Proof. See Appendix B. O

Let the OSVD of B! A44C3!

ULBE1A44C§IW4 = diag{m,- s 70'194} = SA,

be

where Uyq, Viq are orthogonal matrices, oy > 09 > --- > oy, > 0. Define

I,

Uy

Ifac Lre a

Similarly to Theorem 3, from Lemma 5 directly, we have

(18)

(21)

Theorem 6 (RSVD Theorem) Given A € R"*™ B € R" ! C € RP*™. Then there exist
nonsingular matrices X € R™™ Y € R™™ and orthogonal matrices U € RV € RP*P



D. Chu, B. De Moor 8

such that

ki ky k3 ki Tae—Tq M —Tgc
k1 ( 1
ko 0
ks 0
ks 0
Tab —Ta | O
N —Tap L 0

k

o |
k3
k4

Tab — Ta
N — Tab L

o O O

xTAy =

OO OO ~NO
O O O ~NOO
o O O o o
o O O o O

o O

ky Tapy —rTa

oyl
w

l—mry

XT'BUu = (22)

O oo oo o
OO O ~NO O
OO NODO OO

O N O O O

ki ke ks ki Tac—Ta M —Tac
p—Te 0
ko 0
k4 0

0

Tec — Ta

vicy =

0
0
0 )
0

o O O O
O N O O
~N O O O

I
0
0
where S 4 is of the form (19), and U,V can be chosen to be given by (20) and (21), respectively,
01, ,0p, are defined to be the non-trivial restricted singular values of matriz triplets A, B, C.

From the uniqueness theorem in [16], we only need to consider matrices U,V given by
(20) and (21) in order to characterize the role of orthogonal matrices in RSVD. Let U,V be
defined by (20) and (21), respectively and partition

I—ry ks ki 7T —Ta

v=[u U U
p—rc ko ki Tee—ra
V= | wWn W
We have
Ui = Suo(B), Uj=SL(TL(A)B),

Furthermore, if we define

\I’Q = ASOO



D. Chu, B. De Moor 9

then,

p—rc 0 0 0 0
_ ko 0 0 0 0
W= Vex 0 Cyu 0O 0o |
Tac — Ta C'43 Cu 045 0
k3 ks  Tae—Ta mM—Tqc
k1 ( 0 0 0 0 1
ko 0 0 0 0
k A A 0 0
_ T 3 33 34
Vo= P 0 Ay 0 o |
Tab — Ta 0 0 0 0
n— T L 0 0 0 0 |
I—ry k3 ki 1op—rq
ky { 0 0 0 By -I
ko 0 0 0 Bsy
Uy = ky 0 0 Bas3s By |U. (23)
Tab — Ta 0 0 0 Bs,
n— Tgb 0 0 0 0

Hence, from (23) we have

[0 Us | = Su(wy).

Thus, in order to characterize the role of orthogonal matrices U,V in RSVD we only need to
characterize the role of Us, V3 of U,V in RSVD. This can be done by the following variational
formulation.

Theorem 7 Given matrices A € R™™ B € R"*!,C € RP*™, Consider the optimization
problem

) max ) lyl . (24)
A B |C]|
A
ST 0
OO([ ¢ ]) ‘ 0, 270
=0, =
St (AcTc 0 -
0 SL(B)
I 0 Tot(BS5(3))B |
Then the stationary values for the problem (24) are precisely the non-trivial generalized singu-
lar values o1, - - -, 0k, of the matriz triplet A, B,C. Moreover, if [ T; ] BRI [ m;“ ] are
— Y1 —Yky
the stationary point of the problem (24) corresponding to the stationary values oy, -, 0p,,
respectively, then
o Yk
Us = | T e |-

Proof. Same as the proof of Theorem 4, we prove part (a) by the following three arguments.
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e Argument 1 Firstly, we characterize Uyq in (19). Consider the optimization problem

lys]l

. 25
Assra=Bazys, y3#0 |‘C347;4|| ( )

Since Ayq, Bys, C34 are nonsingular, so by Theorem 1, the stationary values of the prob-

lem (25) are precisely oq,---,0y,, i.e., the singular values of the matrix Bé] A44C3L41,
1 k4
and, if let the corresponding stationary points be l x;] ] e l '764/,€4 ], then
—yl _
1 kq
Uiy = Y3 ... Y } ]
" [ T3] Il
e Argument 2 Secondly, define
k1 ( 07
[ — Ty 0 kQ 0
x k3 0 T ks x3
F = zeR™yeR Uy = : T = :
{l -y ] | Y vV gy Y3 @ k4 T4
Tab — Tq 0 Tac —Ta | T5
m — Tac L 0 ]
Cuzz3 + Caazy + Cysz5 = 0, Az = By, y # 0}.
Consider the optimization problem
max ly] . (26)
N Cal
€F
-y

Since Asz, A4q, B4z and Cy5 are nonsingular, so a simple calculation yields that the
problem (26) are equivalent to the problem (25) in the sense that the stationary values of
the problem (26) are precisely the stationary values of the problem (25), i.e., 01, -, 0,

and, [

stationary point of the problem (25) with same stationary value.

is the stationary point of the problem (26) if and only if [ .7;; ] is the
—Y3

e Argument 3 Thirdly, for any =z € R™,y € R', denote

k] _LE] -‘
[ =y (1 ks T2
ULy — ]]:3 vl o, = 7]:3 x3
/4 Y3 4 T4
Tab —Ta | Y4 Tec —Ta | %5
m —Tgc LT6 ]
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Since
Sé([é])x—O = xg = 0;
Ax = By == 1 =0, 23 =0, y4 = 0;
Sg; (A)CTC’I' = <~ Cu111 + Choxo + Cuz3x3 + Caazxg + Cysx5 = 0;
SL(By=0 — y1 = 0.

From (23), we also know

TL(BSL(U)By =0 <= y,=0.

Therefore, we have that l ] € F if and only if

( A B i
st 4D 0
C z _0 20
SL(A)crc 0 ]
0 ST (B)
0 TI(BSL(Ws)B |
Note that
l—mrp 0
ks 0
Ulus =" ,
b YT gy U

Tab — Ta 0

so, Theorem 7 follows directly from the above Arguments 1, 2 and 3. O

Similarily, we also have the dual result of Theorem 7 which characterizes the non-trivial
generalized singular values oy, ---, 0k, and the matrix V3 in (21). For the sake of simplicity,
we omit it here.

4 Conclusion

In this paper, we have studied generalized singular value decompositions. We have given
an alternative proof of the variational formulation for the QSVD in [1] and established an
analogous variational formulation for the RSVD which provides new understanding of the
orthogonal matrices appearing in this decomposition.
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Appendix A
In this appendix we prove Lemma 2 constructively.
Proof. We prove Lemma 2 by 4 steps as follows:

Step 1: Perform simulaneous row and column compression:

Ta Tae —Taq M — Tqc

T Ta A 0 0
A =
Ui AW, n—rqe | 0 0 0 ’
Ta Tae — Ta M — Tae
pP—Te 0 0 0
VIrCW, =: ro+re—Tae | Co 0 0
Tac — Ta C31 C33 0

with Aqq, C33 nonsingular and Cy; full row rank.
Step 2: Perform a column compression:

Tae = Te Ta+7Te— Tac

021W2 — [ 0 022 }
with C99 nonsingular. Set
Tae —Tc¢ Ta+7Tc— Tac Tae —Tc¢ Ta+Tc— Tac
A Wy =: Aqy Ay ], C31Wa =: [ C31 Cso

Step 3: Perform a row compression:

Ta + Te — Tace 0

Ug‘AH _. Tac — Te [AII]

with Ay nonsingular. Set

Ta +Te — Tac

Ug‘A]2 _. Tac — Te [AIQ].

Step 4: Set
U,,,:zUllU?’ I], W::W1[W2 I], V.= V.

Then orthogonal matrices Uy, V, and W satisfy (4).
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Appendix B

Now we prove Lemma 5 constructively.

Proof. We prove Lemma 5 by 5 steps as follows:
Step 1: Compute orthogonal matrices P;, ()1 and U; based on the dual result of Lemma 2
such that

Tab —Th Ta+7Th—Tap ™M —Tq

Tab — Th O 0 0
Ta+Th — Tap ©21 2 0
PA = ¢ a
1AGQ Tab — Ta 0 0 0o |’
n — Tap 0 0 0
I—mp Ta+Th—Tab Tab —Ta
Tab — Th 0 0 @]4
Ta + T — Tab 0 D9 Dy
PB = @
U= 0 0 By
n — Tap 0 0 0

with @]1,@22, @32 and B54 nonsingular. Set

Tab —Th Ta+Th—Tap ™M —Tq

CQi= | O Cy Cy .
Step 2: Compute orthogonal matrices P, ()2 and V5 based on Lemma 2 such that

k3 k4 Tge —Tq ™M — Tqc

k3 | Aszz Ay 0 0
P2[®22 O}QQ =: k4[0 Au 0 0 ;
kS k4 Tac — Ta M — Tqe
p—ky —Toe —Tq 0 0 0 0
VQ [ CQ 03 ]QQ = k4 0 034 0 0
Tac — Ta Ciz Cus Cus 0

with Ass, Agq and Csyq, Cy5 nonsingular. Set

P—ks—Tee —Ta Cii
VoCy =: ky C31
Tac — Ta Cn

Step 3: Perform a simultaneous row and column compression:

ki ko

—r. | 0 0
V3C11Q3 3222 " [0 022]

with C99 nonsingular. Set

ki ko

C31 Q5 = k4 C31 Cz
Cui T e —1a |Cnn Cao |
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Step 4: Perform a row compression and a column compression:

k)l kQ k"i k4
Py01,Q3 =: Z; [AOH i;z], Py®33Uy =: Z: [BSQ g:;]a

where Aq1, Ayg and Bsg, Byz are nonsingular. Set

ki ko ki | By
o k3 | A3 Az Py®14 | kg | Boy
P2021Q0 = k4 [Azu Ay |V Py®3y | k3 | Baa
ks | Baa
Step 5: Set
I, 1
. Py Tab-+Tb . I Q3
P T [ I] P2 I Pla Q_QI[ QQ][ I )
nlr,
Iy,
b V-
U, = U Uy , VCT::[ 3 I]VQ.
IrabJ—ra

Then, the orthogonal matrices P, Q), U, and V, satisfy the condensed form (18).

14
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