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Abstract

The product singular value decomposition (PSVD) of two matrices is revisited in this pa-
per. The nonuniqueness of the factorization factors in the PSVD is characterized in a way
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1. Introduction

The product singular value decomposition (PSVD) is a generalization for two
matrices of the (ordinary) singular value decomposition (SVD) for one matrix. The
explicit formulation of the PSVD was given for the first time by Fernando and
Hammarling [7], who called it the5SVD. In this paper, unless noted, we always
denote

ra = rank(A), rb = rank(B), rab = rank
(
ABT)

, X−T = (X−1)T

for any given matricesA,B of appropriate dimensions and nonsingular matrixX.
Let us first state the following:

Theorem 1(The PSVD Theorem).Given matricesA ∈ Rm×n andB ∈ Rp×n. Then
there exist orthogonal matricesU ∈ Rm×m, V ∈ Rp×p and a nonsingular matrix
X ∈ Rn×n such that

UAX=



rab ra − rab rb − rab n + rab − ra − rb

rab S 0 0 0
ra − rab 0 I 0 0
m − ra 0 0 0 0


,

(1)

V BX−T =



rab ra − rab rb − rab n + rab − ra − rb

rab S 0 0 0
rb − rab 0 0 I 0
p − rb 0 0 0 0


,

where

S = diag{σ1Ii1, σ2Ii2, . . . , σkIik }, σ1 > σ2 > · · · > σk > 0,

k∑
j=1

ij = rab.

Observe that

U
(
ABT)

V T =



rab rb − rab p − rb

rab SST 0 0
ra − rab 0 0 0
m − ra 0 0 0


,

hence,SST contains the singular values ofABT.
Algorithmic ideas to implement the PSVD in a numerically reliable way can be

found in [2,7]. Applications include the orthogonal Procrustes problem [1], com-
puting balancing transformations for state space systems [7,9], and computing the
Kalman decomposition of a linear system [8]. The PSVD could also be applied in
the computation of approximate intersections between subspaces in the stochastic
realization problem [6], as an alternative to canonical correlation analysis.
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The structure and geomety of the PSVD have been studied in [4]. In particular, the
nonuniqueness of the factorization factors in the PSVD has been analyzed in detail.
In this paper, we revisit the PSVD. Our purpose is to characterize the nonuniqueness
of the factors in the PSVD in a way different from that in [4].

2. Main result

Before we state our main result, we need a technical lemma.

Lemma 2. GivenA ∈ Rm×n, B ∈ Rp×n. Then there exist orthogonal matricesUa ∈
Rm×m, Vb ∈ Rp×p andQab ∈ Rn×n such that

UaAQab =



rab ra − rab rb − rab n + rab − ra − rb

rab A11 A12 0 0
ra − rab 0 A22 0 0
m − ra 0 0 0 0


,

(2)

VbBQab =



rab ra − rab rb − rab n + rab − ra − rb

rab B11 0 B13 B14
rb − rab 0 0 B23 0
p − rb 0 0 0 0


,

whereA11, A22, B11, B23 are nonsingular.

Proof. See Appendix A. �

Based on Lemma 2, we can prove Theorem 1. In fact, we have:

Corollary 3. GivenA ∈ Rm×n andB ∈ Rp×n. Let orthogonal matricesUa, Vb and
Qab be defined as in Lemma2. Assume that the SVD ofA11B

T
11 is

U11A11B
T
11V

T
11 = S2, (3)

whereU11, V11 are orthogonal and S is defined as in Theorem1. Define

U =
[
U11

Im−rab

]
Ua, V =

[
V11

Ip−rab

]
Vb,

X = Qab




A−1
11 UT

11S −A−1
11 A12A

−1
22 0 0

0 A−1
22 0 0

BT
13V

T
11S

−1 0 BT
23 0

BT
14V

T
11S

−1 0 0 I


 .
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ThenUAX andV BX−T are in the form(1).

Corollary 3 provides an alternative and very simple way to characterize the PSVD,
which is different from the derivation in [4,5,7]. We are now in the position to present
our main result.

Theorem 4 (Main Result).GivenA ∈ Rm×n andB ∈ Rp×n. Let orthogonal matri-
cesUa, Vb, Qab, U11 andV11 be defined as in Lemma2 and Corollary3. Assume
thatU ∈ Rm×m andV ∈ Rp×p are orthogonal andX ∈ Rn×n is nonsingular. Then
UAX andV BX−T are in the form(1) if and only if

U =



rab ra − rab m − ra

rab P11U11
ra − rab P22
m − ra P33


Ua,

V =



rab rb − rab p − rb

rab P11V11
rb − rab W22
p − rb W33


Vb, (4)

X=Qab




A−1
11 UT

11SP T
11 −A−1

11 A12A
−1
22 P T

22 0 0

0 A−1
22 P T

22 0 0

BT
13V

T
11S

−1P T
11 X32 BT

23W
T
22 X34

BT
14V

T
11S

−1P T
11 X42 0 X44




,

whereP11, P22, P33, W22 and W33 are arbitrary orthogonal matrices, P11 the
block-diagonal:

P11 =




i1 i2 · · · ik

i1 P
(1)
11

i2 P
(2)
11

...
. . .

ik P
(k)
11


, (5)

X32, X34 and X42 the real and arbitrary, and X44 is arbitrary real nonsingular
matrix.

Obviously, Theorem 4 gives a complete characterization of the nonuniqueness
property of the factorization factors in the PSVD.
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3. The proof of Theorem 4

In order to prove Theorem 4, we need two preliminary lemmas, in which the
first one is well known and the second one is a direct consequence of QR and QL
factorizations.

Lemma 5. The SVD ofABT is given by([
U11

Im−rab

]
Ua

)
ABT

([
V11

Ip−rab

]
Vb

)T

=
[
S2 0
0 0

]
.

Furthermore, if orthogonal matricesU andV satisfy

UABTV T =
[
S2 0
0 0

]
,

then

U =



rab ra − rab m − ra

rab P11U11
ra − rab P22 P23
m − ra P32 P33


Ua,

(6)

V =



rab rb − rab p − rb

rab P11V11
rb − rab W22 W23
p − rb W32 W33


Vb,

where

P11,

[
P22 P23
P32 P33

]
and

[
W22 W23
W32 W33

]
are orthogonal, andP11 is of the block-diagonal form(5).

Proof. The proof is trivial. �

Lemma 6. LetX ∈ Rn×n be nonsingular. Then there exists an orthogonal matrix Q
such that

QTX =




rab ra − rab rb − rab n + rab − ra − rb

rab L11 L12 0 0
ra − rab 0 L22 0 0
rb − rab L31 L32 L33 L34
n + rab − ra − rb L41 L42 L43 L44


,

(7)

where
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L11, L22 and

[
L33 L34
L43 L44

]
are nonsingular.

Proof. We partitionX to be

X = [ rab ra − rab rb − rab n + rab − ra − rb

n X1 X2 X3 X4
]
.

Let Q̃ be such that

Q̃T [
X3 X4

] =




rb − rab n + rab − ra − rb

rab 0 0
ra − rab 0 0
rb − rab L33 L34
n + rab − ra − rb L43 L44


,

and denote

Q̃T [
X1 X2

] =




rab ra − rab

rab L̃11 L̃12
ra − rab L̃21 L̃22
rb − rab L31 L32
n + rab − ra − rb L41 L42


.

Now, there exists an orthogonal matrix̂Q satisfying

Q̂T
[
L̃11 L̃12

L̃21 L̃22

]
=

[ rab ra − rab

rab L11 L12
ra − rab 0 L22

]
.

Set

Q = Q̃

[
Q̂

I

]
.

ThenQ is such that (7) holds. �

Now we prove Theorem 4.

Proof of Theorem 4. First we prove the sufficiency, then prove the necessity.
Sufficiency: Assume thatU ∈ Rm×m andV ∈ Rp×p are orthogonal,X ∈ Rn×n is

nonsingular, andUAX andV BX−T are in the form (1). ThenUABTV T is the SVD
of ABT, and hence, by Lemma 5,U andV are of the form (6). Note that[

0 P32 P33
]
UaAX = 0,

[
0 W32 W33

]
VbBX−T = 0.

This implies that[
0 P32 P33

]
UaAQab = 0,

[
0 W32 W33

]
VbBQab = 0.
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So,

P32 = 0, W32 = 0. (8)

Consider that[
P22 P23
P32 P33

]
and

[
W22 W23
W32 W33

]
are orthogonal. Hence, we also have

P23 = 0, W23 = 0. (9)

By (8) and (9), we have thatU andV are in the form (7).
According to Lemma 6, there exists an orthogonal matrixQ such thatQTX is of

the form (7). Set

Q = [
Q1 Q2 Q3 Q4

]
.

Then

A
[
Q3 Q4

] = 0. (10)

But, let us partitionQab in Lemma 2 into

Qab = [ rab ra − rab rb − rab n + rab − ra − rb

Qab1 Qab2 Qab3 Qab4
]
.

Then we know

A
[
Qab3 Qab4

] = 0.

Hence,

[
Q3 Q4

]=[
Qab3 Qab4

] [
Q̃33 Q̃34

Q̃43 Q̃44

]
,

[
Q1 Q2

]=[
Qab1 Qab2

] [
Q̃11 Q̃12

Q̃21 Q̃22

]

with [
Q̃11 Q̃12

Q̃21 Q̃22

]
and

[
Q̃33 Q̃34

Q̃43 Q̃44

]

orthogonal. Since we also have

BQ2 = 0, BQab2 = 0,

so,

Q̃21 = 0, Q̃12 = 0.

Hence, we have
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Q = Qab ×




rab ra − rab rb − rab n + rab − ra − rb

rab Q̃11
ra − rab Q̃22
rb − rab Q̃33 Q̃34

n + rab − ra − rb Q̃43 Q̃44




with

Q̃11, Q̃22 and

[
Q̃33 Q̃34

Q̃43 Q̃44

]

orthogonal. We can writeX to be

X=Qab




Q̃11

Q̃22

Q̃33 Q̃34

Q̃43 Q̃44







L11 L12 0 0
0 L22 0 0

L31 L32 L33 L34
L41 L42 L43 L44




=Qab ×




rab ra − rab rb − rab n + rab − ra − rb

rab X11 X12 0 0
ra − rab 0 X22 0 0
rb − rab X31 X32 X33 X34
n + rab − ra − rb X41 X42 X43 X44


.

Obviously,

X11, X22 and

[
X33 X34
X43 X44

]

are nonsingular. Now we have


P11U11

P22
P33





A11 A12 0 0

0 A22 0 0
0 0 0 0







X11 X12 0 0
0 X22 0 0

X31 X32 X33 X34
X41 X42 X43 X44




=

S 0 0 0

0 I 0 0
0 0 0 0


 (11)

and 
P11V11

W22
W33





B11 0 B13 B14

0 0 B23 0
0 0 0 0



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=

S 0 0 0

0 0 I 0
0 0 0 0







X11 X12 0 0
0 X22 0 0

X31 X32 X33 X34
X41 X42 X43 X44




T

. (12)

A simple calculation yields that (11) and (12) hold if and only if

P11U11A11X11 = S,

P22A22X22 = I, (13)

P11U11(A11X12 + A12X22) = 0

and

P11V11B11 = SXT
11,

P11V11B13 = SXT
31,

W22B23 = XT
33, (14)

P11V11B14 = SXT
41,

XT
43 = 0.

Equivalently, (11) and (12) hold if and only if

X11 = A−1
11 UT

11SP T
11,

X22 = A−1
22 P T

22,

X12 = −A−1
11 A12A

−1
22 P T

22,

X33 = BT
23W

T
22, (15)

X31 = BT
13V

T
11P

T
11S

−1 = BT
13V

T
11S

−1P T
11,

X41 = BT
14V

T
11P

T
11S

−1 = BT
14V

T
11S

−1P T
11,

X43 = 0.

Moreover, (15) also implies thatX32, X42, X34 andX44 are arbitrarily, andX44 is
nonsingular because[

X33 X34
X43 X44

]
is nonsingular andX43 = 0. Therefore,X is also in the form (4). Up to now, we have
completed the proof of sufficiency in Theorem 4.

Necessity: Let orthogonal matricesU ∈ Rm×m, V ∈ Rp×p and nonsingular ma-
trix X ∈ Rn×n are in the form (4). Then a simple calculation gives that

UAX =

P11SP T

11 0 0 0
0 P22P

T
22 0 0

0 0 0 0


 =


S 0 0 0

0 I 0 0
0 0 0 0


 (16)
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and


S 0 0 0

0 0 I 0
0 0 0 0







A−1
11 UT

11SP T
11 −A−1

11 A12A
−1
22 P T

22 0 0

0 A−1
22 P T

22 0 0

BT
13V

T
11S

−1P T
11 X32 BT

23W
T
22 X34

BT
14V

T
11S

−1P T
11 X42 0 X44




T

=

SP11SU11A

−T
11 0 SP11S

−1V11B13 SP11S
−1V11B14

0 0 W22B23 0
0 0 0 0




=

P11V11B11 0 P11V11B13 P11V11B14

0 0 W22B23 0
0 0 0 0




=

P11V11

W22
W33





B11 0 B13 B14

0 0 B23 0
0 0 0 0


 , (17)

equivalently, we have

V BX−T =

S 0 0 0

0 0 I 0
0 0 0 0


 . (18)

In (17), we have used the following equalities:

SP11 = P11S, ST = S, V11B11 = S2U11A
−T
11 .

Hence, the “necessity” follows directly from (16) and (18).�

4. Conclusion

In this paper, the nonuniqueness of the factorization factors in the PSVD has been
characterized in a way different from that in [4].

Appendix A

Before we prove Lemma 2, we need to recall the QR factorization with column
pivoting and URV decomposition [1], which will be the building blocks of our con-
structive proof of Lemma 2.

It is well known that any matrixA ∈ Rm×n can be factorized as
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UA =
[
R1 R2
0 0

]
P, (A.1)

whereU andP are orthogonal matrix and permutation matrix, respectively,R1 is
nonsingular and upper triangular. The factorization (A.1) is called the QR factoriza-
tion of A with column pivoting.

If we continue to squeeze [R1 R2] into upper triangular form by applying a se-
quence of Householder transformations, then we have the following URV decompo-
sition ofA, i.e., we get an orthogonal matrixV such that

UAV =
[
R 0
0 0

]
(A.2)

with R nonsingular and upper triangular.
Now we are ready to present a constructive proof for Lemma 2.

Proof of Lemma 2. We prove Lemma 2 constructively by following six steps:
Step1: Compute theURV decomposition ofA:

Û1AQ̂1 =
[ ra n − ra

ra A
(1)
1 0

m − ra 0 0

]
,

whereA
(1)
1 is nonsingular.

Step2: Compute the QR factorization ofBQ̂1 with column pivoting:

V̂1(BQ̂1) =
[ ra n − ra

rb B
(1)
1 B

(1)
3

p − rb 0 0

]
,

where
[
B

(1)
1 B

(1)
3

]
is of full row rank. Note that

rab = rank
(
ABT) = rank

(
A

(1)
1 B

(1)
1

)
= rank

(
B

(1)
1

)
.

Step3: Compute the QR factorization of(B
(1)
1 )T:

B
(1)
1 Q̂2 =

[ rab ra − rab

rb B
(2)
1 0

]
with B

(2)
1 of full column rank. Set

A
(1)
1 Q̂2 =

[ rab ra − rab

ra A
(2)
1 A

(2)
2

]
.

Step4: Compute the QR factorizations ofA
(2)
1 andB

(2)
1 with column pivoting:

Û3

[
A

(2)
1 A

(2)
2

]
=

[ rab ra − rab

rab A11 A12
ra − rab 0 A22

]
,
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V̂3

[
B

(2)
1 B

(1)
3

]
=

[ rab n − ra

rab B11 B
(3)
13

rb − rab 0 B
(3)
23

]
,

whereA11, A22 andB11 are nonsingular. We also have thatB
(3)
23 is of full row rank.

Step5: Compute the QR factorization of(B
(3)
23 )T with pivoting:

[
B

(3)
13

B
(3)
23

]
Q̂4 =

[ rb − rab n + rab − ra − rb

rab B13 B14
rb − rab B23 0

]
,

whereB23 is nonsingular.
Step6: Set

Ua =
[
Û3

Im−ra

]
Û1,

Vb =
[
V̂3

Ip−rb

]
V̂1,

Qab = Q̂1

[
Q̂2

In−ra

] [
Ira

Q̂4

]
.

Now we have

UaAQab =



rab ra − rab rb − rab n + rab − ra − rb

rab A11 A12 0 0
ra − rab 0 A22 0 0
m − ra 0 0 0 0


,

VbBQab =



rab ra − rab rb − rab n + rab − ra − rb

rab B11 0 B13 B14
rb − rab 0 0 B23 0
p − rb 0 0 0 0




with A11, A22, B11 andB23 nonsingular. Therefore, Lemma 2 follows.�

In general, the size ofA11 (i.e., the size ofB11) is much smaller than those of
A andB. Moreover, the condensed form (2) can be computed via numerically sta-
ble ways. Hence, similar to [3], the condensed form (2) can be considered to be an
efficient preprocessing algorithm for computing the PSVD of matrix pair(A,B).
This preprocessing algorithm will reduce the complexity of the Kogbetliantz-type
algorithm in [2]. Therefore, the PSVD of(A,B) can be computed in the following
two phases:
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• Reduce matrix pair(A,B) to the condensed form (2).
• Compute the PSVD of matrix pair(A11, B11) using the Kogbetliantz-type algo-

rithm in [2].
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