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Abstract

The product singular value decomposition (PSVD) of two matrices is revisited in this pa-
per. The nonuniqueness of the factorization factors in the PSVD is characterized in a way
different from that in existing work. © 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

The product singular value decomposition (PSVD) is a generalization for two
matrices of the (ordinary) singular value decomposition (SVD) for one matrix. The
explicit formulation of the PSVD was given for the first time by Fernando and
Hammarling [7], who called it th@ISVD. In this paper, unless noted, we always
denote

ra =rankA), r, =rankB), ra =rank(ABT), X T=(Xx"1H'

for any given matricest, B of appropriate dimensions and nonsingular makix
Let us first state the following:

Theorem 1(The PSVD Theorem)siven matricesA € R"*" andB € R”*". Then
there exist orthogonal matricag € R™*™, V € RP*? and a nonsingular matrix
X € R such that

Fab Ta —Vab Th —Vtab N ~+Tap —Ta—Tp
T'ab s 0 0 0 i
UAX=r,—rqep | O 1 0 0 ,
m—rg 0 0 0 0 1
(1)
Fab Ta —VYab Th —Vtab N+ Tap —Ta —Tp
T'ab s 0 0 0 i
VBX T=rp—ray | O 0 I 0
p—rp 0 0 0 0 1
where
k
S =diadlor1l;,, 021y, ..., 0kl }, o1>02>--- >0 >0, Zij = rap.
j=1
Observe that
Yab ¥Yb —VYab P —7Th
Tab ssT 0 0
UAB) VT =rs—rap | O 0 o |,
m—rg 0 0 0

henceSST contains the singular values afBT.

Algorithmic ideas to implement the PSVD in a numerically reliable way can be
found in [2,7]. Applications include the orthogonal Procrustes problem [1], com-
puting balancing transformations for state space systems [7,9], and computing the
Kalman decomposition of a linear system [8]. The PSVD could also be applied in
the computation of approximate intersections between subspaces in the stochastic
realization problem [6], as an alternative to canonical correlation analysis.
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The structure and geomety of the PSVD have been studied in [4]. In particular, the
nonuniqueness of the factorization factors in the PSVD has been analyzed in detail.
In this paper, we revisit the PSVD. Our purpose is to characterize the nonuniqueness
of the factors in the PSVD in a way different from that in [4].

2. Main result
Before we state our main result, we need a technical lemma.

Lemma 2. GivenA € R™", B € RP*". Then there exist orthogonal matricEs <
R™™ 'V, € RP*P and Qg € R such that

Fab Ya—Vab Tb—Tab N +Tab—Fqg—Tp

Fab (A1 A 0 0
UiAQup=7q — Yap 0 A2 0 0 ,
m-—raq | 0 0 0 0 i
(2
Tab Ya—Vtab Tb—Tap N +Tagp—Vqg—Tp
Tab B11 0 B13 Big
VoBQap=71p —Tap | O 0 B23 0 ,
p—rn | O 0 0 0 A

whereA11, A2z, B11, Bzzare nonsingular.
Proof. See Appendix A. O
Based on Lemma 2, we can prove Theorem 1. In fact, we have:

Corollary 3. GivenA € R"*" andB € RP*". Let orthogonal matrice¥/,, V,, and
Q.» be defined as in Lemnta Assume that the SVD ﬂfllBlTl is

UnAnBl; Vi = S, 3)
whereU11, Vi1 are orthogonal and S is defined as in TheoterDefine
Im_r{zb I[]_rab
ATULS  —AlA1RA,; 0 O
-1
=0 0 A5 0 0
~ o BLvsT 0 Bj; 0

~

T yT o1
BLVIS 0 0



194 D. Chu, B. De Moor / Linear Algebra and its Applications 314 (2000) 191-203

ThenUAX andVBX~T are in the form(1).

Corollary 3 provides an alternative and very simple way to characterize the PSVD,
which is different from the derivationin [4,5,7]. We are now in the position to present
our main result.

Theorem 4 (Main Result).GivenA € R™*" and B € RP?*". Let orthogonal matri-
cesU,, Vi, Oup, U11 and Vi1 be defined as in Lemntaand Corollary 3. Assume
thatU € R™™ andV e R”*? are orthogonal and{ € R"*" is nonsingular. Then
UAX andVBX T are in the form(1) if and only if

Yab g —Tgh M —1Tq
Tab P11U11
U=rqg—rap P> Ug,
m—rq | P33

Tab b —Tab P —Tb

Tab [ P11Vi1
V=rp—rap Wa2 Vb, 4)
p—rp | W33
ATUT SPT —ATrA1ASP) 0 0
11Y11° 11 11 4124322 55
“1pT
‘o 0 APl 0 0
TX2ab | AT T o—1pT T T
Bi3V11S7 Py X32 BysWy,  Xaa
TyT o—1pT
Bl4V11S Pll Xa2 0 X44

where P11, P22, P33, Wo2 and W33 are arbitrary orthogonal matricesP1; the
block-diagonal

i1 in - ig
. 1
i1 [P 1(1)
. 2
i2 Pll

P11= _ . %)
: ' k
i Pl(l)

X32, X34 and X2 the real and arbitrary and X44 is arbitrary real nonsingular
matrix.

Obviously, Theorem 4 gives a complete characterization of the nonuniqueness
property of the factorization factors in the PSVD.
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3. The proof of Theorem 4

In order to prove Theorem 4, we need two preliminary lemmas, in which the
first one is well known and the second one is a direct consequence of QR and QL
factorizations.

Lemma5. The SVD ofABT is given by

T 2
U1 T(|V11 _|$° O
([ Im—rabi| Ua) AB <|: IP—Vabi| Vb) B [0 Oi| .

Furthermore if orthogonal matriced/ and V satisfy

2
UABTVT = [S 0]

0O O
then
Yab rq —Tgh M —1Tq
Tab P11U11
U=rq—rap P22 Po3z  |Ug,
m—raq | P32 P33
(6)
Tab 'b —Tab P —Tb
Tab P11V
V=ry,—ruw W22 Waz | Vp,
p—ry | W32 W33
where
Pis Py Po3 Wao  Was
’ P3; P33 W32 Wiss

are orthogonaland Py is of the block-diagonal forr(b).
Proof. The proofis trivial. O

Lemma 6. LetX € R"*" be nonsingular. Then there exists an orthogonal matrix Q
such that

Tab TYa—Tab Tb—Tab N+Ftapb—Tqa—Th

Tab Ly L1 0 0

07X = ra — Yab 0 Lo2 0 0 ’
Iy — Tab L31 L32 L33 L3s
n+rap—7ra—7p | La1  La2 Ly3 Laa

)

where
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L3z L3za
L1, Lo and
Laz Lya
are nonsingular.
Proof. We partitionX to be
Tab Ta—Tab Vb —Tab N+V¥ap —Tqg—Tp
X=n[X1 X2 X3 X4 ]-
Let O be such that
b —Tab N +Tah —Va —Tbh
T'ab 0 0
T Fa — Tab 0 0
X3 Xy|=
Q [ ] b — Tab L33 L3a
n+rap—ra—rp | L4z Lsa
and denote
Fab Ta — Tab
Fab Ly L1
AT Ya — Tab L2 L2z
X1 Xo|=
Q [ ] b — Tab L31 L3z
n+rap—rq—rp | La1 L4z

Now, there exists an orthogonal matiiksatisfying

Yab Ta — TVab
oT Lin Li2| _rap Lig Lio
L1 Lyo| ta—rap | O Lo |

Set
_pl0
0-0[¢ |
ThenQ is such that (7) holds. O

Now we prove Theorem 4.

Proof of Theorem 4. First we prove the sufficiency, then prove the necessity.

SufficiencyAssume that/ € R™*™ andV € RP*? are orthogonalX € R"*" is
nonsingular, an@/ AX andV BX~" are in the form (1). Thet ABT VT is the SVD
of ABT, and hence, by Lemma B, andV are of the form (6). Note that

[0 P3> P33] U,AX =0, [0 W32 W33] V;,BX_T =0.
This implies that
[0 P32 P33|UsAQuy =0, [0 Ws2 Was] VyBQuy =0.
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So,

P32 =0, W32 = 0. (8)
Consider that

Rl U
are orthogonal. Hence, we also have

Po3 =0, Wo3 = 0. (9)

By (8) and (9), we have thdf andV are in the form (7).
According to Lemma 6, there exists an orthogonal mafrisuch thatQ " X is of
the form (7). Set

0=[01 Q2 Q3 Q4.
Then

A[Q3 Qs =0. (10)
But, let us partitionQ,, in Lemma 2 into

Yab Fa —Tab Th—Tab N +Vap —Tq—Tp
Ow = [Qav1  Qab2 Qab3 Qaba ]-
Then we know

A[Quz  Qapa] = 0.
Hence,

_ 033 O
[Q3  Q4]=[0Qa3 Quba] [Q43 QM]

_ 0 O
[Q1 Q2]=[Qa1 Qus2] |:Q21 Q22:|
011 O 033 Q34
02 Q2 Q43 Qs
orthogonal. Since we also have
BQ2 =0, BQap2 =0,

with

so,
021 =0, 012 =0.
Hence, we have
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Yab
Ya — Tab
0 = Qup X b — Tab

with

n4+regp—"reg—rp

011, Q2 and |:Q33
043

orthogonal. We can writX to be

st
043

n4+regp —rqg —1p

Ou
022
X= Qab
Yab
Ya — Tab
=Qap X
Py = rab
Obviously,

X11, X22 and [

X33
X43

are nonsingular. Now we have

and

P11U11

|
o oun

P11V11

P>y

o ~O
o O o

W22

P33

o O o

W33

Yab  Ya —Vab Th — Vab
Q11 :
022 }
033
043
O34
Qa4
L1y Lip O
0 Loo 0
Q34| | L31 L32 L33
Qaa| | Lar Laz L3
Yab  Ta —Tab Tb —Tab
X1 X1 0
0 X0 0
X31 X32 X33
X4 X42 X43
X34
X4
A1z A 0 O X011
0 Ao 0 O Xa1
0 0 0 O
X4
Bi1 0 Biz B
0 0 B3 0
0 0 0 0

n4+rgp—"re—rp

X34

O34
Ous
0
0
L3a
Lag
n—+rgp —rqg—rp
0
0
X34
X414
X12 0
X22 0
X32 X33
X42 X3

X4

(11)
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X11 X122 O 071"

0 X22 0 0
X31 Xsz2 X33 Xz
X421 Xap Xuz Xug

S 0 0 O
=|lo 0o 1 O (12)
0 0 0 O

A simple calculation yields that (11) and (12) hold if and only if

P11U11A11X11 = S,
PooA22X22 =1, (13)
P11U11(A11X12+ A12X22) =0

and

P11V11B11 = SXL,
P11V11B13 = SXL,

W22B23 = X1s, (14)
P11V11B14 = SXL,
X;|1—3 = O.

Equivalently, (11) and (12) hold if and only if
X11= A UL SPY),
X22 = Ay, Phy,
X12 = —A7j A12A% Pl
X33 = ByaWy,, (15)
X31= BfV{1P{;S ™ = BV P[],
Xa1 = B,V{1 P18~ = BV P,
X43=0.

Moreover, (15) also implies thafso, X402, X34 and X4 are arbitrarily, andX44 is
nonsingular because

X33 X34

Xa3 X
is nonsingular an& 43 = 0. ThereforeXis also in the form (4). Up to now, we have
completed the proof of sufficiency in Theorem 4.

NecessityLet orthogonal matrice& € R™*™", V € R?*? and nonsingular ma-
trix X € R"*" are in the form (4). Then a simple calculation gives that

PuSP;, 0 0 O S 0 0 O
UAX = 0 PP, 0 0|=|0 I 0 O (16)
0 0 0 0 0 0 0O
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and
1T ¢pT -1 —1pT T
AU SPyy  —Aj1A1245; Py 0 0
S 0 0 O —-1,T
0o 0 1 0 0 Ass Py, 0 0
TyTo—1pT T wT
0 0 0 of|BwYuS Pn X32 BysWyy  X3a
Bl VIis7tpP], Xa2 0 X44
_SP115U11A1_J 0 SP1S Vi1B1z  SP11S 1Vi1B14
= 0 0 W22B23 0
i 0 0 0 0
[P11V11B1n O  P11Vi1Biz  P11Vi1Bia
= 0 0 Wo2B23 0
|0 0 0 0
[ P11V11 Bin 0 Biz B
= Woo 0 0 Bo3 0 |, a7
L Wa3 0 0 0 0
equivalently, we have
S 0 O O
VBX T=|0 0 I 0. (18)
0O 0 0O O

In (17), we have used the following equalities:
§P11 = P11S, ST =5, Vi1B11 = SZUllAflT.

Hence, the “necessity” follows directly from (16) and (18).]

4. Conclusion

In this paper, the nonuniqueness of the factorization factors in the PSVD has been
characterized in a way different from that in [4].

Appendix A

Before we prove Lemma 2, we need to recall the QR factorization with column
pivoting and URV decomposition [1], which will be the building blocks of our con-
structive proof of Lemma 2.

It is well known that any matrid € R™*" can be factorized as
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_|R1 R2
UA_[O O]H, (A.1)

whereU and IT are orthogonal matrix and permutation matrix, respectivlyjs
nonsingular and upper triangular. The factorization (A.1) is called the QR factoriza-
tion of A with column pivoting.

If we continue to squeeze{ r»] into upper triangular form by applying a se-
quence of Householder transformations, then we have the following URV decompo-
sition of A, i.e., we get an orthogonal matfiksuch that

R O
oav=[E 9 »

with R nonsingular and upper triangular.
Now we are ready to present a constructive proof for Lemma 2.

Proof of Lemma 2. We prove Lemma 2 constructively by following six steps:
Stepl: Compute thé/ RV decomposition oA:

T N —ry
@
AA T A 0
UiAQ1=""1 1 ,
Q m—rg 0 0

whereA(ll) is nonsingular.
Step2: Compute the QR factorization & Q1 with column pivoting:

ra n—ry

o O pM
(B8O =" Bit Bt
p—rp 0 0

where[ 8" B§"] is of full row rank. Note that
rap = rank(AB") = rank(A(ll)Bil)) = rank(Bil)) .
Step3: Compute the QR factorization 68{")T:
Tab  Ta — Tab
B{" 02 =r, [Bf) 0 ]
with B{z) of full column rank. Set
Tab  Ta — Tab
APOo=r, [4P AP |
Stepd: Compute the QR factorizations a4 2 andBf) with column pivoting:

Yab Ya — Tab

AT @ @71 _rab A1 A
Us [Al A7 ] P ) |: 0 Az |
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Yab n—rq
(©)
Vs [Bf) B?(’l)] _ Fab |:Bll B3 i|
3 |
s — T'ab 0 Bég)

whereA11, A2 andBi1j are nonsingular. We also have thbg) is of full row rank.
Step5: Compute the QR factorization ()Bg))T with pivoting:

b —Fab N +Tap —Ta—Tp

3
|:313 } D4 = Tab [ B13 Bia }
3 T — B 0 ’
Byy b — Tab 23
whereBz3 is nonsingular.
Step6: Set

Ua = [U3 ] 015
In—r,

Vb = [V3 ] Va,
Ip_rb

_ A QZ Ira
Qab = Ql[ In—ra:| |: Q4:| .

Now we have
Fab Ya—Tab Tb—Vap N+Tegp—Tqg—Tp
Tab A1l A1 0 0
UiAQup=7a—7Tap | O A2 0 0 ,
m-—rq | 0 0 0 0 i
Tab Ya —VYab Vb —Tab N+Tapb—Va—Th
Tab B11 0 B13 Big
VoBQap=1p—tap | O 0 Bo3 0
p—rn | O 0 0 0 i

with A11, A2, B11andBaz nonsingular. Therefore, Lemma 2 follows[]

In general, the size ofi11 (i.e., the size 0fB11) is much smaller than those of
A andB. Moreover, the condensed form (2) can be computed via numerically sta-
ble ways. Hence, similar to [3], the condensed form (2) can be considered to be an
efficient preprocessing algorithm for computing the PSVD of matrix pairB).
This preprocessing algorithm will reduce the complexity of the Kogbetliantz-type
algorithm in [2]. Therefore, the PSVD @f4, B) can be computed in the following

two phases:
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e Reduce matrix pai¢A, B) to the condensed form (2).
e Compute the PSVD of matrix paid11, B11) using the Kogbetliantz-type algo-
rithm in [2].
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