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Abstract

In this paper we have compared two methods
Jor the computation of best rank (R, R, R) approx-
imation of super-symmetric tensors. Robustness to
noise corruption and the influence of the HOSVD
initial condition have been studied.

1 Introduction

In this paper we discuss a multilinear general-

ization of the best rank- R approximation problem
for matrices, namely the approximation of a given
higher-order tensor, in an optimal least-squares
sense, by a tensor that has pre-specified column
rank, row rank, ... values. In section 2 we give a
formal definition of the problem we aim to solve,
The computation of the best rank-R approxima-
tion is casted in the framework of continuous-time
matrix algorithms [2, 6] in sections 3 and 4. In
section 5 we introduce a special initialization for
these algorithms. The typical numerical character-
istics of the different algorithms are investigated
by means of a number of numerical simulations in
section 6. For clarity, we restrict ourselves in this
paper (o the casc of real-valued third-order super-
symmetric tensors (i.e. tensors that are invariant
under arbitrary index permutations). The general-
ization to orders higher than three, and to complex-
valued tensors, is straightforward.
Also these results can be extended to the non-
symmelric case, with similar results. Application
of these methods on dimensionality reduction in
higher order ICA can be found in [8].
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2 Problem definition

Let us first define the n-rank of an (I x I x I)-
super symmetric-tensor .4 as the dimension of the
vector space spanned by the F-dimensional vectors
obtained from .4 by varying the n-th index and
keeping the other two indices fixed. This quan-
tity will be represented by rank,{A). For super-
symmetric tensors we have that rank;(A) =
ranka{A) = ranks{A).

Formally, the problem we want to solve, can
then be formulated as follows:

Given a real super-symmetric third-order ten-
sor A € RIXIXI | fnd a super-synimelric-tensor
A € RIXIX paving rank; (A) = rank,(A4) =
rank;;(A) R, that minimizes the least-squares
cost function

JCA) = 3" (@iginty = diyiziy)® & |lA - AY2.
(1)

The n-rank conditions mean that the column,
row and “3-mode” vector space of .4 have dimen-
sion R. A basis transformation to orthonormal
bases of these vector spaces takes the form of
ﬁfll'Zis = Z Ui1r;ui2r2ui3r3br1r2r3 Vilai:Z)iS:

rirars

(2)

in which U € Rl *® has orthonormal columns
and B € RFXAXR 5 the new representation of A.
Actually it is sufficient to determine the matrices
U for the optimization of f: for any estimate of
these matrices, the optimal tensor B follows from
the set of linear equations (2). As U has mutually




orthonormat columns, B is given by

bflrzl‘s = § Ui py UinroWigrs iy inis V?'],TQ, 3.
f1ipig

3)
3 Steepest descent flow

In this section we present a contlinuous-time
steepest descent flow for the computation of the
best rank-R approximation of super symmetric
tensor. The idea is to make the intermediate esti-
mates of U evolve in the opposite direction of the
projection of the unconstrained gradient of the cost
function (1) on the instantaneous tangent space of
the Stiefel manifold, which is the quotient sub-
manifold of the othogoenal matrices O(I, R) by the
group O( R, R) of orthonormal matrices. The pro-
jection ensures that the estimates remain on the
Stiefel manifold.

To explain the projection mechanism, let us first
recall some essentials about the geometry of the
Stiefel manifold of real (I x R)-matrices, denoted
by O(I, R). We follow here [2].

We shall regard O(I, R} as embedded in the
I R-dimensional Euclidean space R'*# equipped
with the Frobenius inner product

(X,Y} def trace(YT - X), “
for any X, Y € RI*E The tangent space
TuO{I,R) of O(I,R} at any U € O(I,R) is
given by TuO{I, R) =

{HeRI*®H = UK + (I; - UUT)W},
(5)

where I € REXE js skew-symmetric and W €
RI*7 is arbitrary; Iy represents the (I x I) identity
matrix. If we write

S(R) def {all symmetric matrices in Rf¥*#},

we have that the normal space of O(I,R) at
any U € O{,R) is given by NyO(I,R) =
US(R). At any point U of the Stiefel manifold
the space R *F can be written as the direct sum of
three mutuatly perpendicular subspaces: R/ *f =
US(p) ® US(p)*t @ N(UT), where S{p)* is the

orthogonal complement of S(p) with respect to

the Frobenius inner product and A (U) def {Ve

RI*RIUTVY = 0} is the null space of U,
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Therefore, we can define the following projec-
tion. Let Z € R7*®, Then

def . UTZ - ZTU

wr(Z) E U 5 +(I-uuth)z
' (6)
defines the projection of Z onto the tangent space
ToO(I, R).

Suppose the projection g{U) of the gradient
V f(U} onto the tangent space Ty (I, R) can be
computed explicitly. Then the differential equation

dU

= = 9U)
. naturally defines a steepest ascent flow for the
function f on the feasible set O(I, R).

The best rank-{R, R, R} approximation of a
super-symmetric {I x I x I}-tensor A can be cal-
culated by a descent gradient flow on the Stiefel
manifold (I, R), governed by the following first-
order differential equation:

i—g = 6(I;—-uuh)yuoTu, (@
where U 4% Ay {U & U) and Agyy is the matrix
with the columns of A .

For a further anatysis of the critical points of the
cost function, one could also derive an explicit for-
mula for the projected Hessian, in a similar way,
We refer to [1].

4 Differential Geometric approach

Eq. (7) has to be solved by means of a numerical
routine that is able to perform the integration in
a numerically robust way. With this respect, it
should be noted that stiff problem solvers are re-
quired. Indeed, the cost function is a multivariate
polynomial function of degree 6, which can be
very flat in the neighborhood of the optimum.

While the PG approach only relies on the de-
scription of the tangent space along the Stiefel
constraint, the DG approach will exploit second
order information of the constraint in several
aspects of the optimization. The DG approach is
a generalization of basic discrete-time steepest
descent, Newton and Quasi-Newton methods [16]
for optimization under constraints. In the uncon-
strained case these methods consist of a series
of gradient computations, Hessian computations,
vector translations (moving a tangent vector from




one point to another) and line searches. The DQ
method is an adaptation of all these technigues
such that the constraint js obeyed at every instan|
of the optimization procedure,

For more details we refer to [11). A general-
burpose MATLAB Toolbox can be downloaded
from hllp://www-math.mit.edu/ edelmany/,

S HOSVD initialization

A natural way to obtain a rank-Rg approxima-
tion of a given (I x I x I-tensor A would be
0 consider the projection on the dominant R-
dimensiona] subspace of its column space (or row
space or 3-mode veclor space, this makes no differ-
ence due to the Super-syminetry), in Eq. (3). Asa
matter of fact, this procedure leads to the best rank-
R approximation in the matrix case, For higher-
order tensors however, the result generally turns
out to be suboptimal, although it is clear that, if
Ais theoretically known 1o be arank-(R, R, R)
tensor, the technigue will yield a fairly good ap-
proximation under moderate noise levels, Actu-
ally, in analogy to the matrjx case, this procedure
can be interpreted in terms of a truncation of a par-
ticular generalization of the SVD 1o higher-order
tensors {7]. For the ease of reference, we wil) use
the term “Hj gher-Order Singular Valye Decompo-
sition™ (HOSVD) here.

[13, 10 suggest (o use the HOSVD lruncate as
an initial vaiue in the optimization of (1. In {10}
we have shown that there js notan absolute guaran-
tee that this initialization wil] lead to the globa] op-
timum, but it is our experience that defecijve cases
are rarely met in practice.

6 Numerical] results

Inthis seclion, we report some of our nuinerical
experiments on solving the least-squares problem
(1) by the PG and DG approach, For each method,
all tests had similar convergence behavior. In or.
der to fit the data comfortably in the running text,
we display all numbers only with three digits. The
computations were carried out in MATLAB 5.2 o
a SUN Ultra-2/200 workstation. Alf codes and re-
sults are available upon request.

6.1 Choice of integrator for the PG
method

The PG approach requires a nunterically robust j;-
tegration of equation (7). With this respect, we
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have tested the different soivers of the matlab ode
suite [14). We observed that only the stiff system
solvers odel5s and ode23s are capable of integrat-
ing (7). odel5sisa quasi-constant Step size imple-
mentation of the Klopfenslein-Shampine family of
numerical differentja) formulas (implicit) for siff
syslems. ode23s is an implementation of 3 new
modified Rosenbrock (2,3) pair with a “free" inter-
polant. More details on these codes can be found
in {14], 50 Monte Carlo runs for the computa-
tion of the best rank-3, 3, 3) approximation of
Super-symmetric (7 x 7 x 7)- tensor A were car-
ried out. The entries of A were taken from & uni-
form distribution on (—0.5,0.5]. The initial ma-
trices U;,, € O(7,3) was obtained from a QR-
factorization of a (7 x 8)-matrix, of which the en-
tries had been drawn from a uniform distribution
on (—0.5,0.5) as weli,

The stop-criterion took the following form. The
Output values at time interyal [0,10] are examined.
The integration terminates automaticaily when the
absolute improvement of the objective function be.
lween two consecutjve Output points is less than
100 times the absolute error, indicating a jocal
minimizer has been found.

In the foliowing experiments, we will yse the
inegrator odelSs, as it turps out to be the most
efficient one. Both the absolute and relative error
tolerances will be st to 1078, For the DG method
comparable settings are used.

6.2 Comparison between PG ang
DG approach

Next, we Teport our results for the hest rank-
(1,1,1), -(2, 2,2) and -(3, 3, 3} approximation of
supeﬁsymmetric tensors with sizes 5 x 5 x 5,6 x
6x6and 7 x 7 x 7. For each case 50 Monte
Carlo runs were conducted. In each ry 1, the tensor
Was generated as above, Fop each tensor, the PG
and DG algorithms were initialized with the same
set of 20 differep initial matrices, constructed as
above. The results are summarized in Tables | and
2.

We nolice that the accuracy of the PG and the
DG method is Comparable. As a frgt indication
of the sensitivity of the two algorithms to hit false
local minima for different starting values we mep.-
tion that, for both approaches, only in 6 of the S50
cases the sample variance of the end values of the
objective function, obtained starting from the 20
different initial values, was less than 10~1, This
means that only in 6 cases identical minima were
found for all different starting values. As g conclu-




sion, one has to reinitialize the algorithms a num-
ber of times.

6.3 HOSVD initialization

We also investigated how initializing the PG and
DG algorithms with the HOSVD truncate affects
their convergence. In all cases the global optimum
was found, and (he computational cost was far be-
yond the cost for an average random initialization.
Even if we compare the number of flops to the one
obtained for the best random start, we found an av-
erage reduction of the computational cost of more
than 50%.

6.4 Noise sensitivity

We also check the seasitivity of the algorithm to
perturbation of the data by noisy data,

Consider a given super-symmetric tensor A of
the forny:

Ay = UA (U @ U), (8)

where 1J is certain orthonormal matrix of proper
dimension and A = 37, i 13 Miyigis {dir4055 } I5 2
diagonal tensor. Then form:

A=A/l + o N /1IN,

where A is a symmetric tensor generated by Gaus-
sian noise. Each line illustrates the reconstruction
error for increasing noise intensity for a matrix
with a given condition number, where we define
the condition number of a diagonal 3 tensor as the
ratio between the largest and the smallest diagonal
element of A,

In the figure the results obtained by DG ap-
proach are given.

In these figures the full line corresponds with
an initial tensor of condition 1, the dotted line cor-
responds with an initial tensor of condition 10, the
dashed line comresponds with an initial tensor of
condition 100.

7  Conclusions

We have developed and compared 2 continuous
time methods for the integration of the differential
equations related with the best rank (R, R, R) ap-
proximation problen:.

Both methods reached the same optimum for all
problems .

From a computational-cost point of view the PG
appreach has a slight advantage compared to the

o
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o
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Figure 1. dependence of the recon-
struction error on the noise level for 3
condition numbers

DG approach.

By choosing the HOSVD initial condition the con-
vergence speed doubles and there is convergence
to the global minimum. The DG approach is ro-
bust under noise corruption.

While it is less expensive to compute iterations for
the PG approach, the DG approach will need less
iterations to obtain convergence. Therefore the DG
approach is preferable in general.
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9 Tables [6] ). Dehaene, Continuous-Time Matrix Algorithms,
Systolic Algorithms and Adaptive Neural Ner.

SRR [FommiON ] CPUTIE T FLOTS works, Ph.D. Thesis, K.U.Lcuven, E.E. Dept,,
5x5x5 |1 |l 286 | 626 || 134105 || 34 16° Oct. 1995.
5x5x5 i 2 || 222 | 015 1.2210% 79108
Ex5x5 I 3 165 | 007 3.4310° 3.4 10° [7] L. De Lathauwer, B. De Moor, J. Vandewalle, A
6x6x6 ; 5‘;3; 0-;3 ig; :g: ?Z :gg Singular Value Decomposition for Higher-Order
6X6xX6 4. 0.31 X .
6x6x6 || 3 352 | pa7 180 10° 2910° Tensors, ‘Tech. Report No: 94-31, ESAT/SISTA,
TXTx7 I 1 0 845 |0 255 10° 3010° K.U.Leuven,SIAM J. Matrix Anal. Appl.
TxTxT {l 2 (| 728 { 053 3.98 103 2.010°
TXTXT {3 || 643 | 042 4.24 10° 4.6 10° [8] L. De Lathauwer, B. De Moor, 1. Vandewaile,
Dimensionality Reduction in Higher-Order-Only
ICA, Proc. IEEE Signal Processing workshop on
Table 1. Best rank-(1,1,1), rank- HOS, July 21-23, 1997, Banff, Alberta, Canada,
(2,2,2) and rank-(3,3,3) approxima- pp. 316-320.

tion of super-symmetric {5 x5 x5)-,

(6 x 6 x 6)— and (7 x 7 x T)—tensors [9] De Lathauwer, L, 1997, Signal Processing based

on multitinear algebra. Ph. D. Thesis. Katholieke

(PG). Universiteit Leuven.
DATA R || MINIMUM || CPUTIME || FLOFS
mean | var, miean mean (10] L. De Lathauwer, B. De Moor, J. Vandewalle,
E§x5x5 ] | 286 | 0.26 236 399405 . . ,
. 5xsxs || 2 || 222 | ore 1os N Onzhel?csthank Ial-ld Rank-(Ry, Ra,... , Ry)
{ Ex5%5 || 3 165 | 007 412 2740406 Approximation of Higher-Order Tensors, Tech.
6X6X6 1 504 | 043 KN ¥ 6.53e+03 Report 97-75, EE. Dept. (ESAT) - SISTA,
6X0x6 2 437 | 03 4.02 221e+06 .
6x6x6 1| 31l 353 | 027 06 4040406 K.U.Leuven, SIAM J. Matrix Anal. Appl.
84 0.99 2.86 9.6%c+05 .
; : ; i ; ; «,_23 054 4T 3.5;;05 {11} Alan Edelman, Tomas Arias, Steven T. Smith, The
TxTx7 || 3§} 643 | 042 5.67 7.59¢+06 Geometry of Algorithms with Orthogonality Con-
straints, SIAM J. Matrix Analysis and Applica-
tions
Table 2. Best rank-(1,1,1), rank-
(2,2,2) and rank-(3,3,3) approxima- [12] G.H. GoLus anp C.F. VAN LOAN, Matriv
tion of super-symmetric (5 x 5 x 5)—, Computations, 3rd ed., Johns Hopkins University
(6 x 6 x 6)~ and (7 x 7 x 7)—tensors Press, Baltimore, Maryland, 1996.
(DG)' {13} P.M. KROONENBERG, Three-Mode Principal

Component Analysis, DSWO Press, Leiden, 1983,
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