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ABSTRACT

Local influence on the eigenvalues of sample covariance matrices |

principal components analysis s examined for a reasonable modification o

Shi’s (1997) perturbation scheme. The modification is suggested for samples
from populations with both unknown mean vector and covariance matrix,
While Shi’s detection indexes (1997) consist of only quadratic terms, the
modified perturbation scheme leads to detection indexes consututed by both
linear and quadratic terms associated with centralized observations. These linear
and guadratic terms reflect local influences on the first two sample moments.

Examples are investigated based on the two detection indexes.
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1. INTRODUCTION TO PERTURBATION SCHEMES

Consider an independent and identically distributed sample xi,...x,e R’
and its sample covariance matrix S. The purpose of this note is to suggest other
detection indexes for local influence on the p distinct eigenvalues A, (j=1,....p)
of §. The indexes are produced by modifying the perturbation scheme of Shi
(1997). Extensions of this approach to the eigenvectors of § are straightforward.

1t is known that principal components analysis is quite sensitive to outliers
and influential cases (Huber, 1981; Critchley, 1985; Shi, 1997). To avoid
obtaining misleading results, identification of such cases is necessary. For this
purpose, Critchley (1985) considered global influence analysis. Recently,
another approach, local influence, was investigated by Shi (1997) as an
extension from the likelithood approach for local influence analysis (Cook,
1986},

For a sample xy,..x,€ K" from a population with known mean U and
unknown covariance matrix, Shi (1997) considered following perturbation
scheme

X 0)=w; (X~ for i=1,..n (H
with perturbation vector g):{(x);,,,,;(x),,]'f and wy=1+eh; (i=1,... 1) h:{h;,,,.,izn}"r
and WAl’=1. When the population mean is unknown, Shi (1997) replaced {1 by
its sample version ¥ =(x,+...+x,)/n and considered ¥ as perturbation-free.

The generalized local influence functions of A; are given by Shi (1997)

based on the perturbation scheme (1):
A N D) i .
GIFs(hy: y=(2m) ), yih, j=1,0.p
where yy=(x~X ) 0;. 0, is an eigenvector associated with the eigenvalue A

U=1,..p)



Downloaded by [KU Leuven University Library] at 04:25 30 July 2014

PRINCIPAL COMPONENTS ANALYSEIS 2489

—~ ) s st - . 42 v
Consequently,  Ag.(l)  which  maximizes {GIFs(Ashyl satisfies

5

h, .w(f\,,‘oqy{‘,z,”.% Vij ‘r . This gives an index [s(x; A;) used to identify influential
cases by plots of Ig(x;; ;) against case number:
I5(xs; k{,}:yﬁ =17 and j=l,.p.
In this note, for a sample x,..xeR from a population with both
unknown population mean y and unknown covariance matrix, we suggest
following perturbation scheme

£,

A= for i=1,..n (2

-

he main difference between the two perturbation schemes (1) and (2) is
that perturbation characterized by (2) may influence any of the sample
moments, while the scheme (1) with the replacement of u by ¥ is a
perturbation-free scheme for sample means (1.2. it is assumed that perturbation
of each observation case does not affect sample means), We believe that when
no prior information s available, the perturbation scheme {2) is more
reasonable since in general, minor changes of cases may influence sample
means as well as other sample moments.

Similar to Shi’s approach, letting o= 1+ehy; in {2), we consider the sample
covariance matrix from the perturbed data (2) and its eigenvalues A{w). Local
influence functions of &, are then given by {89»/,(@’)!8(:)}7”52 at w=f1,..,11" that is

GIFu(hj; hy= wFS(A,,,mOm;}; A

o o . , . PP — 2
with vi=% "0y Consequently, fndA) obtained by maximizing [GIFu{A; )]

can be used for detecting locally influential cases. Since

+

R 7 b T
# a2k f ey T
ia,,mx(,&/j <Yy s My h ’Vj);z,rjI

it leads to a detection index for eigenvaiue A, as follows:

EM{,{;; ?\,J,-):yif"-.w;_js»‘[j N 7= /] and i:“i,,p

/
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It is interesting to compare Iy(x: A) and Is(x; Ay). In(xi; Ap=yi+vyy
consists of both linear and quadratic terms of y; associated with centralized
observation {(x~¥), while Is(x;; Kj)zy,-jz has only a quadratic term. [y{x; ?\4/')
reflects two types of effects by minor changes of cases: one for sample mean
and another for sample second moment about the origin. The added effect
depends on their relative magnitudes and signs. In general, for a small linear
term vy, Tu(xi XJ) and Is(x;; :'\,j) give similar detection results, while for a large
linear term, their results may be quite different. It is clear that the difference
between Iy(x;; A;) and Is(x;; A;) originates from the perturbation schemes (i.e.

whether sample means are perturbation-free).

2, EXAMPLES

In this section, we give two examples to ilustrate the detection index
Iu(xi, Ay) developed above. We firstly discuss a two-dimensional problem to

have a graphical view for scatters of observation cases.

EXAMPLE . Artificial data with 15 cases and 2 variables given by TABLE L.

FIG. 1 gives a scatter plot for the data. For the largest eigenvalue A, of the
data, the only outlier, case 10 at the position (1.5,2.5), is globally influential by
Critchley’s global influence function. FIG. 2 gives the plot of Jy(x; A and
Is(x;;A;) against case number i for local influence analysis. Obvicusly, from
Is(xihy), case 10 is a locally influential case, while it is not by Ju(x; A).

In order to gain insight for this problem, we start out from fundamental
ideas of local influence, and for minor changes of a case, consider the impacts
on the largest eigenvalue Ay. Specifically, for an increment € of case § such that

x{e)y=(1+e)x;, we directly compute the largest eigenvalue }\,gm(s) and iis relative
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TABLE L A set of artificial data
Case No. { 2 3 4 5 6 7 8
X 2.1 24 2.9 2.7 3.6 3.0 2.9 2.2
X7 1.0 1.3 1.1 0.4 0.6 0.5 0.9 0.6
Case No. 9 [0 11 12 13 14 15
x| 2.4 1.5 3.2 33 3.3 3.5 2.8
X 0.9 2.5 0.8 1.2 0.4 0.9 0.8
3
2.5; 10
o
%15
1t ’ . 10
" 11
0.5 CoLe 08
- -
1 2 3 4 5 5
x1
FIG.1. Artificial data: scatter plot
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telative error

FIG.2. Relative error versus perturbation increment €
case 5(——), 10(~3and 11{...}

error .][-(z):DW}\q“’(’8)1/)&;V Similar treatment was adopted by Cook (1986). FIG.
3 gives the plot of relative errors against the perturbation increment € for cases
5.10 and 11, Tt can be seen that case 5 has much stronger impact than cases 10
and 1. Moreover, cases 10 and 11 have almost equal effects. These
observations agree with what Iy(x;; &) indicates.

From the above analysis we conclude that minor changes of case 10 do not
have strong impacts on A or equivalently, A, is not sensitive to minor changes
of case 10.

Further analysis on Iy(x;; A;) shows that for case 10, its first and second
order effects vy, and y,-jz have almost the same (relatively large) absolute
values but opposite signs, which leads their impacts to cancel out.

Somewhat interesting is that by similar analysis, we can see that case 10 is
a globally as well as a locally influential case if it is moved to (5.5.1).

Next, we consider a more complicated practical example.



Downloaded by [KU Leuven University Library] at 04:25 30 July 2014

PRINCIPAL COMPONENTS ANALYSIS

40;

30r
0 : A
g 1 c 1y
c : o
© H L RS i
§ 10“‘\ b 7/,’\:‘ !J T

0 W ;

i
-
O‘ T

5 10 15 20
case number

FIG. 4. Detection indexes [s{(x; A;) (—)
and Ju(x A (==,

0.18—
0.16-

014

refative error

»8.2 -0.1 o 0.1 02
perturbation increment

FIG. 5. Relative errors versus perturbation
grcase 4 (——), 11 (—)and 13 (.....).

EXAMPLE 2. Kendell’s soil composition data (1975, Table 2.1).

2493

Kendell (1975) investigated a set of soil composition data. There are 20

observations and 4 variables including silt content, clay content, organic matter,

and acidity on the pH scale. This set of data was also investigated by Critchley

{19R5) and Shi (1997)
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ity we concenirate o the sec

the two detection indexes adicates

DWW

that tocally

case 13 is not locally influential. FIG. 4 shows that even case i1 has stronger

local influence than case 13, Again, we consider the plot of relative errors

displayed in FIG 5. Tt is clear that it gives consistent results with Iylx,
although case 13 is a globally influential case {Critchley, 1985), the second
largest eigenvalue A, is not sensitive to its minor changes. In contrast to this,
case 4 1s a globally as well as a locally influential case.

These examples clearly show that the detection index Iylx: i) is
f

M
reasonable for identifying the cases whose minor changes have strong impacts
on eigenvalues of sample covariance matrices. Similar discussion can be given

to eigenvectors.
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