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Abstract

It is known that total least squares (TLS) estimates are very sensitive to outliers. Therefore,
identification of outliers is important for exploring appropriate model structures and deter-
mining reliable TLS estimates of parameters. In this paper, we investigate sensitivities of
TLS estimates as observation data are perturbed, and then, based on perturbation theory of
matrices, we develop identification indices for detecting observations that highly influence
the TLS estimates. Finally, numerical examples are given to illustrate the proposed detection
method. © 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

The objective of this paper is to develop identification indices for detecting influ-
ential observations on total least squares (TLS) estimates. To do this, we will exploit
some results from matrix perturbation theory.
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TLS plays an important role in systems modeling and signal processing [1,2].
TLS solves for the unknown vector x in the over-determined set of equations

Ax ≈ b, A ∈ Rm×n, b ∈ Rm×1, m > n,

when both the data matrix A and the data vector b are subject to errors. It is clear that
the assumptions of TLS differ from the ones of ordinary least squares (OLS), where
only the data vector b is assumed to be subject to errors.

One of the major problems for the TLS technique is its higher sensitivity to out-
liers, or more generally, influential observations, than OLS. When influential obser-
vations are present, the accuracy of TLS estimates is strongly affected [1].

In general, there are two typical approaches to deal with influential observations
on estimates. The first one is to develop robust estimation methods. This approach is
based on the belief that the model structure itself is perfect, while something is wrong
for a few of the observation data, for instance, mis-recordings of them. Hence, the
idea of this approach is to decrease the effects of those data on our estimates. Many
robust methods have been proposed in the last two decades (see [3,4] for overviews).
Recently, Li and De Moor [5] developed an adaptive robust estimation procedure
that can automatically select an appropriate estimate from an estimate family ranging
fromL2 estimates toL1 estimates, depending on how serious the outliers of a data set
are. For TLS, a robust approach termed total least norm Lp estimate was proposed
to improve the TLS when outliers were present [2].

The second approach does not assume a priori a perfectly established model struc-
ture. On the contrary, it is believed that exclusive use of robust methods can obscure
important problems, and carefully constructed models in combination with appropri-
ate diagnostic methods provide a useful basis for thorough statistical analysis [6]. In
fact, influential observations can often provide useful information. Sometimes, iden-
tified influential observations can help analysts to reconsider their models, including
questioning certain assumptions of linearity or homogeneity of variances, and from
this gain some insight for future modeling.

The key issue of the second approach is to develop appropriate identification in-
dices as diagnostic tools that can be used to identify influential observations. This
is crucial for higher dimensional problems since unlike the two-dimensional case,
it is no longer possible to visually inspect model validations and outliers through
scatter plots of the observed data. Cook and Weisberg [7] gave an overview and
practical examples on how to identify and handle influential observations for the OLS
regression diagnosis. Recently Hadi and Nyquist [8] considered diagnostic problems
of multivariate data based on the Frechet distance. Li and De Moor [9], and Shi [10]
investigated identification of influential observations in principal component analy-
sis. In the researches of [9,10], identification indices were developed to detect the
observations that have strong influences on principal components, i.e. eigenvalues
and their associated eigenvectors of a covariance matrix.

In this paper, we consider the identification of influential observations on TLS
estimates. From the point of view of regression analysis, it is an extension of OLS
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diagnostic methods [6] to the TLS situation, while from the point of view of matrix
theory, it is an extension of the perturbation analysis of normalized eigenvectors
[9,10] to TLS-scaled eigenvectors.

Section 2 is devoted to the problem formulation. The main results are given in
Section 3. Finally, examples are examined in Section 4.

2. Problem formulation

2.1. A brief summary of TLS estimation

Consider an over-determined set of m linear equations for an unknown vector
x ∈ Rn×1

Ax ≈ b, (1)

where A = [a1, . . . , am]T ∈ Rm×n (m > n), ai = [ai1, . . . , ain]T ∈ Rn×1, and b =
[b1, . . . , bm]T ∈ Rm×1. Denote the ith observation as zi = [aT

i , bi]T and let Z =
[A, b] = [z1, . . . , zm]T.

As mentioned before, TLS considers situations where both the vector b and the
matrix A are subject to errors. Mathematically, TLS seeks for a solution satisfying
(see [1]):

min
[Â,b̂]∈Rm×(n+1)

‖[A, b] − [Â, b̂]‖F (2)

subject to b̂ ∈ R(Â),

where ‖B‖F and R(B) denote the Frobenius norm and the range of a matrix B, re-
spectively.

Let the singular value decomposition of [A, b] be

[A, b] = ���T with � = diag{σ1, . . . , σn+1} ∈ Rm×(n+1)

and let �n+1 be the last column of �. If

σn > σn+1 and ϕn+1,n+1 /= 0, (3)

where ϕn+1,n+1 is the last element of �n+1, then it can be proved that [1]

[Â, b̂] = ��̂�T and �̂ = diag {σ1, . . . , σn, 0}
solve the TLS problem (2) and the TLS solution,

x̂ = (−1/ϕn+1,n+1)[ϕ1,n+1, . . . , ϕn,n+1]T, (4)

exists and is the unique solution to Âx = b̂.
It is easy to check that �n+1 is an eigenvector of the matrix ZTZ associated with

the smallest eigenvalue σ 2
n+1, i.e.

ZTZϕn+1 = σ 2
n+1�n+1. (5)
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Hence, the TLS estimate x̂ is an eigenvector of ZTZ corresponding to the smallest
eigenvalue after multiplying a TLS scaling factor −1/ϕn+1,n+1 and crossing out the
last element, −1.

Finally, it should be noted that from (5) we can easily derive a closed-form ex-
pression of the TLS estimate

x̂ =
(

ATA − σ 2
n+1I

)−1
ATb, (4′)

where I is an identity matrix of appropriate dimensions.

2.2. Sensitivity of TLS estimates to perturbations

Suppose � is a perturbation vector restricted to an open subset � ⊂ Rm×1. Denote
the perturbed version of the data matrix Z = [A, b] as Z(�) = [A(�), b(�)], and the
perturbed version of the TLS estimate x̂ as x̂(�) which is given by (4)′ for the data
matrix Z(�):

x̂(�) =
[
AT(�)A(�) − σ 2

n+1(�)I
]−1

AT(�)b(�),

where σ 2
n+1(�) is the smallest eigenvalue of ZT(�)Z(�).

It is assumed that there exists a null perturbation point �0 ∈ � such that x̂(�0) =
x̂. To investigate behaviors of the TLS estimate x̂ under small perturbations around
the null perturbation point, consider a pencil of straight lines through the null pertur-
bation point �0 (see [6,10]):

�(ε) = �0 + εh, (6)

where ε ∈ R1 and �(ε) = [ω1(ε), . . . , ωm(ε)]T. h = [h1, . . . , hm]T ∈ Rm×1 is a vec-
tor of unit length.

Following the results in [6,10], if x̂(�) is differentiable, we consider the rate of
change of the TLS estimate x̂ in the direction h under small perturbations:

R(x̂; h)= lim
ε→0

[x̂(�0 + εh) − x̂(�0)]/ε
= [dx̂(�0 + εh)/dε]ε=0 = [�x̂(�)/��]�=�0 h, (7)

where [�x̂(�)/��]�=�0 is an n × m matrix.
The rate of change characterizes how sensitive the estimate x̂ is under small per-

turbations in the direction h. The sensitivity, S(x̂), of a TLS estimate x̂ is defined to
be the supremum of a norm of the rate of change:

S(x̂) = sup
‖h‖=1

∥∥R(x̂; h)
∥∥2

M = sup
h /=0

{
hT(PTMP)h

}
/
{
hTh

} = ‖PTMP‖2
2, (8)

where M > 0 (positive definite) is a given weighting matrix. P = [�x̂(�)/��]�=�0

is termed the sensitivity matrix. S(x̂) gives the maximum magnitude of the rates of
change of a TLS estimate x̂. The direction of the perturbation that maximizes (8) is
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given by h∗ = arg maxh /=0{hT(PTMP)h}/{hTh} which is equal to the eigenvector of
PTMP corresponding to the largest eigenvalue.

The direction h∗ indicates how to perturb the postulated model to attain the great-
est rate of change. It can be used for diagnostic purposes [6]. Each of its elements
reflects the contribution of the corresponding observation to the sensitivity S(x̂) of
the TLS estimate x̂. Suppose that the ith element of h∗ is found to be relatively
large. This indicates that perturbations for the ith observation may lead to substan-
tial changes in the results of the analysis and thus the ith observation is relatively
influential. The elements of the vector h∗ are called identification indices.

3. Identification indices of TLS estimates

In this section, we develop identification indices of TLS estimates. We consider
only the situation where the TLS estimate exists and is unique. This is insured by the
conditions (3).

As mentioned before, Li and De Moor [9], and Shi [10] recently developed iden-
tification indices to detect those observations that have a strong influence on nor-
malized principal components, i.e. eigenvectors of unit length, and their associated
eigenvalues of a covariance matrix. Those results are closely related to a TLS es-
timate that can be either expressed as a TLS-scaled eigenvector of the matrix ZTZ
given by (4), or characterized as a vector-valued function of the smallest eigenvalue,
x̂ = f(σ̂ 2

n+1) given by (4)′. In this paper, the second expression, x̂ = f(σ̂ 2
n+1) given

by (4)′, is adopted as the starting point for influential analysis.
Let �(0) = [ω1(0), . . . , ωm(0)]T = �0 = 1 be the null perturbation point, where

1 is an m × 1 vector of ones. For small perturbations �(ε) = �0 + εh given by (6),
consider the following perturbation scheme where perturbed data are constituted by
“true” data plus perturbation increments:

zi (�) = ωi(ε)zi = zi + εhizi for i = 1, . . . , m (9)

and at the null perturbation point, zi (�0) = zi . The perturbed version of the obser-
vation matrix ZTZ is then given by

ZT(�)Z(�)=
[

AT(�)A(�) AT(�)b(�)
bT(�)A(�) bT(�)b(�)

]

=
[

ATA ATb
bTA bTb

]
+ 2ε

[∑m
i=1 hiaia

T
i

∑m
i=1 hiaibi∑m

i=1 hia
T
i bi

∑m
i=1 hib

2
i

]
+ O(ε2). (10)

Then, we obtain from (10)

d[AT(�)A(�)]/dε|ε=0 = 2
m∑
i=1

hiaiaT
i ,
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d[AT(�)b(�)]/dε|ε=0 = 2
m∑
i=1

hiaibi . (11)

Define E = diag{e1, . . . , em} and e = [e1, . . . , em]T, where ei = bi − aT
i x̂ is the

residual (j = 1, . . . , m).

Lemma 1. Let σ 2
n+1(�) be the smallest eigenvalue of ZT(�)Z(�), and [x̂T,−1]T

the eigenvector of ZTZ associated with the smallest eigenvalue. Then for perturba-
tion scheme (9)

dσ 2
n+1(�)/dε|ε=0 = 2

(
1 + x̂Tx̂

)−1
eTEh.

The proof is given in Appendix A.

Lemma 2. Suppose B(ε), C(ε), and G(ε) are matrices of appropriate dimensions
of which the entries are differentiable functions of the scalar ε, and G(ε) is nonsin-
gular. Then

d[B(ε)C(ε)]/dε = [dB(ε)/dε]C(ε) + B(ε)[dC(ε)/dε]
and

d[G−1(ε)]/dε = −G−1(ε)[dG(ε)/dε]G−1(ε).

The proof of Lemma 2 is trivial.
Let T(�) = AT(�)A(�) − σ 2

n+1(�)I and T = ATA − σ 2
n+1I. Then T(�0) = T.

From Lemmas 1 and 2 we have:

Theorem 1. For a given weighting matrix M > 0, the sensitivity matrix P of the
TLS estimate x̂ for problem (1) is given by

P = 2T−1 [(1 + x̂Tx̂)−1x̂eT + AT]E. (12)

Proof. From Lemmas 1 and 2, and noting Eq. (11)

dT−1(�)/dε|ε=0

=
[
−T−1(�)

{
dAT(�)A(�)/dε − (dσ 2

n+1(�)/dε)I
}

T−1(�)
]
ε=0

= 2T−1

[
(1 + x̂Tx̂)−1eTEh −

m∑
i=1

hiaiaT
i

]
T−1.

Then, we obtain from (4)′, (11), and Lemmas 1 and 2

R(x̂; h)=
{
[dT−1(�)/dε]AT(�)b(�) + T−1(�)d[AT(�)b(�)]/dε

}
ε=0
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= 2T−1

[
(1 + x̂Tx̂)−1eTEh −

m∑
i=1

hiaiaT
i

]
T−1ATb

+ 2 T−1
m∑
i=1

hiaibi

= 2T−1[(1 + x̂Tx̂)−1x̂eT + AT]Eh,

which yields P = 2T−1[(1 + x̂Tx̂)−1x̂eT + AT]E. �

For the sensitivity matrix P obtained by Theorem 1, the vector of identification
indices of influential observations is a vector of unit length given by

h∗ = arg max
h /=0

{
hT(PTMP)h

}
/
{
hTh

}
, (13)

which is a normalized eigenvector of the matrix PTMP associated with the largest
eigenvalue. Particularly, when the unknown x is univariate, i.e. n = 1 and A =
[a1, . . . , am]T ∈ Rm×1 in (1), it is easy to check that

h∗ = c[e1a1 + e2
1x̂/(1 + x̂2), . . . , emam + e2

mx̂/(1 + x̂2)]T, (14)

where c is a normalization scalar to ensure that h∗ has unit length.
It can be seen from (14) that the impact of an influential observation on the TLS

estimate depends on both the residual ei and its value ai, i.e. whether it is an outlier
and/or whether it is a high leverage point.

It is of interest to compare the above results of TLS with its counterparts for OLS.
From Eq. (29) of [6], for OLS estimates with known error variance, the vector of
identification indices for a univariate explanatory variable is given by

h∗
OLS = c[e1 a1, . . . , emam]T, (14′)

where c is a normalization scalar to ensure that h∗
OLS has unit length.

It can be can seen that the ith element of the vector of identification indices of TLS
(14) is a quadratic function of the residual ei , while its counterpart of the OLS is a
linear function of ei . This means that an observation with a large residual such that
its quadratic term dominates the identification index has a much stronger influence
on a TLS estimate than on an OLS estimate for the same magnitude of residual. This
quantitatively verifies the empirical conclusion in [1, p. 268] that if outliers are large,
TLS estimates are much more sensitive to outliers than OLS estimates.

On the other hand, however, for any observation, if its quadratic term does not
dominate the identification index of the TLS solution, the linear and quadratic terms
may cancel out each other, resulting in an even smaller index than its counterpart of
the OLS. A numerical example was given in [9] for the eigenvalues of a covariance
matrix, where the effects of the linear and quadratic terms cancelled out each other
such that a significantly outlying observation point had a small influence on the ei-
genvalue. This indicates that for these circumstances, the TLS solution may even be
superior to the OLS solution in terms of sensitivity to outliers.
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The above results can be extended to the situation where there is an intercept term
in the equation systems (1), i.e.

[1,A][α, xT]T ≈ b

According to [1], the TLS estimate of [α, xT]T is given by [α̂, x̂T]T = [b̄ − Āx̂,
x̂T]T, where b̄ and Ā are arithmetic means of the columns of b and A, respectively,
and x̂ is the solution of the following equations without intercept term:

Acx ≈ bc, (15)

where Ac = JA, bc = Jb and J = I − 11T/m.
Define E = diag{e1, . . . , em} and e = [e1, . . . , em]T, where ei = bi − α̂ − aT

i x̂ is
the residual (j = 1, . . . , m). Let Tc = AT

c Ac − τ 2
n+1I, where τ 2

n+1 is the smallest
eigenvalue of ZT

c Zc and Zc = [Ac, bc]. Then similar to Theorem 1, we have:

Theorem 1′. Given a weighting matrix M > 0, the sensitivity matrix Pc of the TLS
estimate x̂ for the TLS problem (15) is given by

Pc = T−1
c

[
2(1 + x̂Tx̂)−1x̂(e + α̂1)TE + ATE + AT

c (E + α̂I)
]
.

The proof is given in Appendix B.
The vector of identification indices is then given by

h∗
c = arg maxh /=0

{
hT(PT

c MPc)h
}
/
{
hTh

}
,

i.e. an eigenvector of the matrix PT
c MPc associated with the largest eigenvalue. In

most of cases, the parameters of interest are the “slope” parameter vector x. In those
situations, we can use h∗

c for model explorations.
If in some cases the intercept α is also of interest, we can similarly obtain

R(α̂; h) = d[b̄(ε) − Ā(ε)x̂(ε)]/dε|ε=0 = (eT/m − ĀPc)h.

Then the vector of identification indices for α̂ is given by

h∗
α = arg max

h /=0
|R(α̂; h)| = c(eT/m − ĀPc)

T,

where c is a scalar to ensure that h∗
α has unit length.

Finally, we consider the invariance of the vector of identification indices h∗ under
column orthogonal transformations.

Theorem 2. The vector of identification indices h∗ given by (13) is invariant under
column orthogonal transformations of the data matrix A if M = I or M = AT A.

The proof is given in Appendix C.
From Theorem 2, the vector of identification indices h∗ is invariant when orthog-

onal transformations of the coordinate system are made for the explanatory variables
in (1). In addition, Theorem 2 gives two often used weighting matrices. The choice
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of the weighting matrix M reflects specific interests in applications. According to
[11], it is likely that both of them would give approximately the same information.

4. Numerical examples

In this section, two numerical examples are examined to illustrate the developed
identification indices.

Example 1. Consider a set of artificial data given in Table 1 and the following
system model:

y = r1t1 + r2t2,

where r1 and r2 are parameters to be estimated.

Fig. 1 gives scatter plots of explanatory variables ti (i = 1, 2) versus response
variable y. It seems that there exists a linear relationship between the explanatory
variables and the response variable, and there do not exist any anomalous data in
Fig. 1. We then obtain the TLS estimate [r̂1, r̂2]T of the parameter vector [r1, r2]T by
using the data in Table 1.

Fig. 2 gives the diagnostic plot of identification indices h* for the weighting ma-
trix M = AT A. Since the absolute value of the 26th element of h* is significantly
larger than others, it is suggested that observation 26 has a very strong influence on
the TLS estimate [r̂1, r̂2]T.

Table 1
A set of artificial data

Obs t1 t2 y Obs t1 t2 y

1 5.0201 −1.1716 4.1729 16 2.9824 −0.7835 −2.5195
2 −0.8679 −1.3365 0.4369 17 −1.9843 1.9214 5.0180
3 −4.1001 0.5409 −3.9756 18 −2.3285 0.7073 0.2280
4 3.7196 −1.0706 −0.0041 19 0.4660 0.4492 4.7791
5 2.3391 −3.1700 −1.4151 20 −0.9890 0.8738 5.2420
6 1.2468 −1.3758 −3.9933 21 1.1382 3.0059 1.7552
7 −0.5670 −4.0769 −3.0176 22 2.3931 1.8138 4.1303
8 2.6972 0.5523 7.4431 23 −2.5760 −2.6618 −6.5651
9 −4.4617 2.0661 0.8322 24 0.9415 1.7316 6.8336

10 −4.3151 −0.2339 −3.4556 25 −1.3638 −0.0617 −4.7384
11 −0.7117 2.7923 −5.4102 26 −3.1540 −2.8607 4.1049
12 0.6919 −0.3793 2.4953 27 −1.3087 −0.1137 1.2912
13 0.9216 −2.8373 −4.2514 28 −3.4907 −1.8876 −0.2924
14 −1.5165 −1.2533 −2.1991 29 0.9726 −1.9629 2.3269
15 4.7572 −0.7279 1.3625 30 −1.1689 3.2024 0.6291
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Fig. 1. (a) Scatter plot: t1 versus y; (b) scatter plot: t2 versus y.

To investigate what happened for the data in Table 1, we adopt a new coordi-
nate system which is a counterclockwise rotation of �/6 from the old coordination
system:[

s1
s2

]
=

[√
3/2 1/2

−1/2
√

3/2

] [
t1
t2

]
.
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Fig. 2. Diagnostic plot of h∗.

Fig. 3 gives the scatter plot of explanatory variable s2 versus response variable y.
It can be seen that observation 26 is an anomalous point.

This example shows that analysis on TLS estimates for higher dimensional
problems can be very complicated. Simple scatter plots for response variable ver-
sus each of explanatory variables may not reveal anomalies in observation data.
For those situations, a diagnostic plot of the identification indices h∗ is very helpful

Fig. 3. Scatter plot: s1 versus y.
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for detecting those observations that have larger contributions to the rates of change
of TLS estimates.

In practice, further investigations based on background knowledge are often need-
ed to look for explanation of such outliers and then make a decision how to treat
them. Sometimes a diagnostic plot of the identification indices h∗ exhibits some sys-
tematic characteristics. Such information may provide useful suggestions to further
model explorations.

Example 2. Consider the following system model

y = f (t1, t2; r1, r2, r3) = r1t1 + r2t2 + r3t1 t2 (16)

with “true” parameters r1 = 2, r2 = 1 and r3 = 0.05. Fig. 4 gives a plot of the func-
tion (16).

Suppose the “true” data set is constructed as

{(s1, s2, s3) | s1 = 0, 2, 4, 6, 8; s2 = 0, 2, 4, 6, 8; s3 = f (s1, s2 ; 2, 1, 0.05)}
while the observed data set, given in Table 2, is generated as the “true” data plus
noises which are mutually independent random variables with normal distribution of
zero mean and unit variance.

In general, modeling higher dimensional data is not easy without a priori informa-
tion on model structures. One often used approach is to inspect scatter plots for each
of the explanatory variables versus the response variable, and adopt a linear model
as a starting point if possible. Fig. 6 gives the scatter plots of ti (i = 1, 2) versus y

Fig. 4. Plot of function y = 2t1 + t2 + 0.05t1t2.
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Table 2
Observed data for system (16)

Obs t1 t2 y Obs t1 t2 y

1 −0.3609 0.5536 −1.5564 14 3.1074 6.2787 16.4542
2 −0.2067 1.5744 4.4938 15 5.6035 8.5743 21.9207
3 −0.8709 4.0798 7.4784 16 5.8486 0.3158 7.3437
4 −1.4139 5.6157 11.5421 17 3.7622 3.2929 10.2215
5 −0.2915 7.6988 14.4114 18 6.0025 4.8846 15.7825
6 3.0943 1.3242 1.8735 19 4.3858 4.4963 20.3736
7 1.2628 2.2137 5.7995 20 5.0895 6.3687 24.0409
8 2.0649 2.2420 12.0867 21 7.6024 −1.1613 6.8902
9 2.3274 6.7160 16.1986 22 8.2907 0.0898 14.1148

10 −0.0647 7.2564 18.9762 23 8.6653 3.7249 17.5770
11 4.5278 −0.5532 4.2983 24 7.0920 4.9563 22.7735
12 2.7734 1.8103 8.0983 25 8.9015 9.2785 27.0715
13 4.9570 3.4666 11.8989

for the data in Table 2. It seems that there exists a strong linear relationship between
them. We then start modeling from the following linear structure:

y = r1t1 + r2t2. (17)

From Fig. 4 we can see that the “true” system model (16) in the area (t1, t2) ∈
[0, 10] × [0, 10] is quite close to a plane except for the area where both t1 and t2 are
relatively large. The mis-specified system model, (17), leads to over-estimations of

Fig. 5. Diagnostic plot of h∗.
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Fig. 6. (a) The scatter plot of t1 versus y. (b) The scatter plot of t2 versus y.

r̂1 and r̂2 since the neglected term r3t1t2 has potentials to pull the plane (17) up when
r3t1t2 > 0.

The TLS estimates of parameters for (17) are given as [r̂1, r̂2] = [2.2183, 1.2387]
which confirm that they over-estimate the “true” values [2, 1]. Fig. 5 gives a diag-
nostic plot for the mis-specified model (17) for the weighting matrix M = ATA.
It can be seen from Fig. 5 that the absolute values of the identification indices h∗
increase gradually as the observation values of the response variable increase. In
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particular, observations 15, 19, 20, 24, and 25 have relatively large absolute values
in the identification indices. This means that the larger the values of the response
variable, the worse the fitness of the model (17) is. Due to this systematic trend, it
is suggested that there may be something wrong in the specification of the model
structure (17). The positions of the observations 15, 19, 20, 24, and 25 in the sample
space in combination with the systematic trend in Fig. 5, may provide clues for
exploring the next version of the model.

In general, however, there may exist several possible reasons for a single symptom
in diagnostic problems. For instance, for the diagnostic plot given by Fig. 5, the prob-
lem may be caused by heterogeneous variances of response variables, or as in this
example, by missing some important “explanatory” terms. Further careful analysis
is then necessary based on background knowledge and data analysis. If, as in this
example, there is no a priori knowledge for the model structure and no evidence of
heterogeneous variances in data measurements, it is natural to try some second-order
models in the next modeling step.

Appendix A. Proof of Lemma 1

Lemma A.1 [12]. Let B and C be symmetric matrices, λ a simple eigenvalue of
B and � an associated eigenvector of unit length. Let B be perturbed to B(ε) =
B + εC + O(ε2), and assume that the corresponding perturbation of λ is λ(ε) =
λ + εµ + O(ε2). Then µ = �TC�.

Proof of Lemma 1. Noting that the eigenvector of unit length associated with the
smallest eigenvalue σ 2

n+1 of the matrix ZTZ is (1 + x̂Tx̂)−1/2[x̂T,−1]T, and from
Lemma A.1, the perturbed version of the smallest eigenvalue of ZT(�)Z(�) is given
by

σ 2
n+1(�) = σ 2

n+1 + εµ + O(ε2),

where from (10),

µ= 2(1 + x̂Tx̂)−1 [
x̂T −1

] [∑m
i=1 hiaia

T
i

∑m
i=1 hiaibi∑m

i=1 hia
T
i bi

∑m
i=1 hib

2
i

] [
x̂

−1

]

= 2(1 + x̂Tx̂)−1eTEh.

Hence, we obtain dσ 2
n+1(�)/dε|ε=0 = µ = 2(1 + x̂Tx̂)−1eTEh. �

Appendix B. Proof of Theorem 1′

Let Zc(�) be a perturbed version of Zc = [Ac, bc]. For the perturbation scheme
(9),
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ZT
c (�)Zc(�) = ZTJZ + εUc + O(ε2),

where Uc = diag {h1, . . . , hm} ZTJZ + (JZ)Tdiag {h1, . . . , hm}Z.
Denote the smallest eigenvalue of ZT

c (�)Zc(�) as τ 2
n+1(�). From Lemma A.1

τ 2
n+1(�) = τ 2

n+1 + εθ + O(ε2),

where θ = (1 + x̂Tx̂)−1[x̂T,−1]Uc[x̂T,−1]T = 2(1 + x̂Tx̂)−1(e + α̂1)TEh. Hence
we obtain

dτ 2
n+1(�)/dε|ε=0 = 2(1 + x̂Tx̂)−1(e + α̂1)TEh.

Finally, similar to the proof of Theorem 1, we obtain

R(x̂; h)= �x̂n+1(�)/��|�=�0h

= T−1
c [2(1 + x̂Tx̂)−1x̂(e + α̂1)TE + ATE + AT

c (E + α̂I)]h.
This yields

Pc = T−1
c [2(1 + x̂Tx̂)−1x̂(e + α̂1)TE + ATE + AT

c (E + α̂I)]. �

Appendix C. Proof of Theorem 2

Let AQ denote the data matrix A after applying the transformation

AQ = AQ for orthogonal matrix Q. (C.1)

Then for ZQ = [AQ, b], we have ZT
QZQ = diag{QT, 1} ZTZ diag{Q, 1}.

It is clear that for the orthogonal transformation of the orthogonal matrix diag
{Q,1}, the eigenvalues of ZTZ are invariant, and the eigenvector [x̂T

Q,−1]T of ZT
QZQ

corresponding to an eigenvector [x̂T,−1]T of ZTZ satisfies[
x̂Q
−1

]
=

[
QT 0
0 1

] [
x̂

−1

]
or x̂Q = QTx̂. (C.2)

Then we conclude that PTMP is invariant by inserting (C.1) and (C.2) into (12) and
noting that both E and e are invariant. Hence, h∗ as an eigenvector of PTMP is
invariant. �
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