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4 Abstract:This paper describes the development of a new model predictive control
| technology INCA® that enables a high performance demand driven operation in the
! chemical process industry. The technology sustains optimal grade changes, maintains
tight quality control and leads to low application development and implementation
costs. An application on a polyethylene gasphase reactor is discussed. Copyright ©

2000 IFAC

1. INTRODUCTION

The chemical process industry is facing a huge
problem to increase their capital preductivity. A
solution to this problem is demand driven process
operation. This implies that exactly these products
can be produced that have marke! demand and take
price advantage of a scarce markel. A flexible
production operation is therefore required.

A new process control technology is needed for this
purpose. A very important requirement for this
technology is to enable optimal control of grade
transitions such that these transitions become feasible
and economically attractive. Also tight quality
control is needed, requiring f{arge bandwidth
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controliers and inferential sensors. Finally the
application cost and the implementation cost must be
reduced to make these projects economically
attractive. This is done by using as much a-priori
knowledge as possible.

INCA® has been developed for these purposes
[Ludlage et al, 1999]. An application on a
polyethylene gasphase reactor is discussed,

The paper is organized along the following three
Sections:

+ In Section 2 the economic background showing
the needs for a new process operation is
explained. This process operation requires high
performance process control technology.




s  Subsequently, in Section 3 the requirements for
the new process control technology are
discussed. An answer te all these technological
chatlenges, INCA®, is presented.

e Finally, Section 4 describes the application of
INCA® on a fluidized bed gas phase high density
polyethylene (HDFE) reactor.

2. ECONOMIC BACKGROUND

Nowadays chemical processing industries are facing
a tremendous pressure to improve their capital
productivity. Some possible explanations for this
evolution are the global competition, the worldwide
saturation of markets and the tightening of legislation
on ecosphere loads and resource consumption.

The answer by most of the chemical industries to
these problems is a predominantly supply driven
process operation that focuses on minimization of
operation cost. This is realized by an increase of
scale and by minimization of the number of product
types per production site.

As a direct consequence plants only operate a limited
number of product types. Typically a largely fixed
product slate is fotlowed with recipe driven product
changeovers.

However, a constrained market situation asks for a
demand driven mode of process operation, requiring
flexible processing of different feedstocks to produce
a flexible set of end-products [Backx et al, 1998],
This implies that exactly these products can be
produced that have market demand and that take
advantage of scarceness in the market of specific
products at each momeat.

Since the right product can be produced at the right
time in a demand driven process operation, capital
blocked in stored products and intermediates is
minimized. A shortened production-to-product
delivery cycle also increases capital turnaround. Each
of the mentioned effects directly contributes to an
increase of capital productivity.

However, a demand driven operation of production
processes requires a new technologythat enables:

s Flexible operation of plants over broad
operating ranges at minimum costs. In fact, a
technology is needed that supporls transitions
between grades, such that these transitions
become feasible and are economically justified.
Dynamic optimization is needed to realize
overall optimization of economic performance,
leading to optimal grade changes.

s Tight production at pre-specified Cpy values,
requiring high performance mode! based control
systems that enable significant reduction of
variance of critical process/product variables,

516

s  Extensive use of available a-priori knowledge,
such as models used for design purposes, to
minimize total application costs and to enable
economic feasibility.

Each of these key requirements will be treated in
more detail in Section 3.

3, INCA®: A NEW TECHNOLOGY

A new technology INCA® is developed that makes
flexible operation combined with tight preduction at
a reasonable application cost feasible.

The production flexibility is enhanced by the use of
a rigorous non-linear dynamic model. Models are
typically widely available in chemical industry since
they are used for design purposes. Specific
extensions to these models make them suited for
dynamic optimization purposes oriented towards
optimal trajectory calculation. These optimal
trajectories not only provide economically optimai
grade transitions and thus production flexibility, but
also guarantee continucus optimal disturbance
recovery in normal operation.

To integrate the overall dynamic optimizer with the
underlying model predictive  controller, an
architecture as shown in

Fig. 1 is implemented. Actually the model predictive
controfler is operated in a delta-mode, only
comrecting for the deviations Au and Ay from the
process input-output setpoints uyy and Yo that are
calculated by the overall dynamic optimizer. This
delta-mode guarantees that an optimal operation as
calculated by the optimizer, is not cancelled by the
underlying model predictive controller.

In order to avoid conflicts between the dynamic
optimizer and the model predictive controller an
economically consistent cost function for both layers
is chosen.

The model predictive controlier is also designed such
that it can make use of different linear models
according to the current operation poinl. As such
trajectories can be optimally followed. No longer one
single, linear dynamic model must be used, but
instead adequately tuned sets of linear models can be
applied for all the different grades. During transients,
the model predictive controller will smoothly switch
between the different models of a set of models
through a linear interpolation scheme.

A large bandwidth controller realizes tight
production at a specific Cpy, value. The Cpy value
is a normalized number giving an indication aboul
the variance ¢ of a relevant process quality parameter
compared to distance to the tolerance boundaries
(tol,, tol) (Eq. 1) Fig. 2).




B min([tol_~ YmeanJrol, — Ymean|)

3o
(1)

A large Cpy value corresponds to a small variance
and thus a successful process operation. A Cpy-value
of 1.3 is standard, although sometimes 1.6 is already
used in some cases.

Dynamic Optimizer

Uopt Yop1
+

Economic cost

é +| MPC +
+ Au + Ay
Economic cost
——P Process
u Y

Fig, 1. Integration of the overlying dynanic
optimizer with the model predictive controller

The economic impact of a smaller quality variance
can be understood from the shift in operation point
that can be realized. In fact, a large variance forces
operation to be better than desired since outliers may
not exceed the tolerance boundaries. If variance is
reduced, one can shift the mean operation towards
the most economic boundaries, resulting in a cost
reduction. This is indicated in Fig. 2.

A reduction in variance can only be realized by a
larger bandwidth of the controller, in accordance
with Parceval’s theorem. This large bandwidth
controller is made possible by the use of large
bandwidth prediction models opposite to the
traditionally applied step response meodels with
restricted complexity. Systems with both slow and
fast dynamics cannot adequately be represented by a
step response model due to the fact that only a
limited number of samples is available for storing the
mode} and due to the fact that the steady state must
be captured for stability reasons {Fig. 3). Therefore
the fast dynamics cannot be captured in the model
and reduction of the bandwidth of the controller is
needed as a consequence, INCA® uses state-space
models that enable the modeling of process behavior
at all relevant frequencies up to the Nyquist
frequency.

Inferential sensors are developed for the instant
calculation of product properties such as melt index,
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density, concentration... based on on-line process
measurements. This speeds up the feedback ioop
since no longer must be waited for lab analysis
results, thus leading to further improvement in the
closed loop controller bandwidth.
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Fig. 2. Histogram of quality parameter in 3 different
cases, Original situation with Cp, = 1.0
(upper figure), reduced variance case with
Cpr = 3.2 (middle figure) and reduced
variance with shift in operating point and Cp,
= 1.0 (lower figure)
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Fig. 3 A step response (here shown with 10 samples

Sor illustrative purposes) cannot capture high-
Srequent behavior

A reduction of the total appHeation cost is
obtained by making maximum use of a priori
knowiedge. In fact, the dynamic model applied in the
controller can be understood as a combination of a
first principles based model part, describing the main
process mechanisms, and an empirical model part
describing specific dynamic process characteristics
that cannot be modeled sufficiently accurately for
control on the basis of first principles, The first part
mainly describes physical phenomena. Chemical
phenomena often require empirical modeling due to
unknown or only roughly known reaction complexes
and reaction kinetics.



The first principie part can be tuned based on the
design data and historical data of the plant under
“concern. A dominant pari of these dynamics
corresponds to the physical phenomena, which are
predominantly low frequent and which can be
modeled accurately on the basis of first principles.
Once a plant model template has been realized, this

model is tuned by optimization techniques such as .

simulated annealing.

The chemical parts of the model and the properties
will be a mixture of first principle parts and empirical
parts. Some well-defined experiments are needed to
tune these parts of the model. These experiments do
not take much time, since the related phenomena are
considerably faster than the previously mentioned
physical phenomena related to mass and energy
balancing, transport phenomena etcetera,
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Fig. 4 Combination of low frequency identification
on the rigorous model and high frequency
identification on the plant.

Concemning the linear models needed for the model
predictive controller, the tmodel identification is done
in parallel on the plant for the high frequencies and
on the rigorous model for the slow dynamics, as
shown in Fig. 4 {cf. [Backx, 1999]).

Since only high frequency components have to be
estimated on the real plant, short dedicated PRBNS
tests are sufficient, in contrast to the long
experiments that are needed for the identification of
step response models. This results in a significant
reduction of project engineering hours and thus
application development costs.

A second means of reducing the application cost is to
re-use the knowledge in several applications. As such
special shells are being developed for the

pelyethylene, polypropylene and PET industry.

4. APPLICATION: THE POLYETHYLENE
GASPHASE REACTOR

The INCA® technology mentioned before is applied
to a high density polyethylene (HDPE) fluidized bed
gas phase reactor. A complete rigorous dynamic
model for the polyethylene gas phase reactor has
been developed in gPROMS.

The process is depicted in Fig. 5. The ethylene
monomer and butylene co-monomer react to HDPE.
The unreacted ethylene goes to the top of the reactor
and is recycled. The butylene/ethylene (CHy/CH,)
ratio and the hydrogen/ethylene (Hp/CH;) ratio are
crucial handles to obtain HDPE with the desired
density and melt-index.

Nitrogen is used as a cooling and transportation
medium and is inert for the reaction.

There are 3 PID-controllers embedded in the process:
ethylene flow controlling tofal gascap pressure,
coolant flow controlling bed temperature and a
reactor level controller. Furthermore ratio controllers
are implemented such that CHy/CH, and Hy/CH, can
be used as manipulated variables.

The entire process to be controlled by a supervisory
model predictive controller shows 4 manipulated
variables {mv) and 4 controlled variables ¢v), as
indicated in Fig. 5

Flexible operation of a HDPE-process implies the
need for a technology that supports optimal grade
change. An INCA® based model predictive controller
combined with a rigorous model based dynamic
optimizer provides a solution for this problem.

In Fig. 6 and Fig. 7 a typical grade change is shown.
An operator, who fakes some manipulated variables
on manual, typically performs the grade change. The
other variables are controlied by PID-controllers.

The bold-face lines indicate the ranges of the
respective grades. The price of grade A is 0.67 €/kg,
while grade B is worth 0.73 €/kg. The off-spec
tnaterial is only worth 0.57 €/kg, which is less than
the operation cost at that moment. This makes it very
important to minimize the production of off-spec
material. To maximize added value over the time
interval covering the full grade change an optimum
has to be searched that trades off the amount of off-
spec material produced against lost production time
due to reduction of productivity during the grade
change. The transition needs to be done such a way
that the added value is continuously maximized
within the feasible operating region.
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Fig. 5 Polyethylene Gasphase Reactor Process
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Fig. 6. A typical HDPE Densily Grade Change,

In Fig. 8 and Fig. 9 an optimized grade change
supported by INCA® and the overall optimizer is
shown,

The dynamic optimizer tries to maximize added
value {AV) [Van der Schot et al, 1999). The added
value depends on the throughput. It is a nonlinear
function with regard to operation cost and a highly
non-linear function with regard to product price as
indicated before (¢f. Eq. 2).

T T
AV ()= I price(tythroughput (6)dt — Jcosf(! Yat
o o

+ holdup(T) price(T) — holdup (0) price(0}
@
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Fig. 7. A typical HDPE Melt Index Grade Change

The underlying INCA® model predictive controiler
supports such a non-linear excursion from one grade
to another as discussed before. In fact it is almost
transparent in the results presented here.

Two important results from the dynamic optimizer
can be distinguished;

I. The MPC controlled grade change occurs
considerably faster than a traditional grade
change. The melt index was only t1 hours off-
spec compared to 16 hours in the normal
situation. In fact, both density and melt index
show undershoot and overshoot behavior
although these phenomena stay within the
allowabte grade-range. These dynamic effects
realize maximum benefits during the grade
transition. Note that a high performance MPC is
needed to track these trajectories. It is also
needed to switch between different linear
models, since this is a large transition between
different grades. Soft-sensors are implemented
to track quality parameters such as density and
melt-index on-line.

In Fig. 10 the productivity is shown. Netice how
the productivity is reduced during the grade-
change. At that time the operation costs are
targer than the revenues, urging for reduced
production

The optimized grade change discussed above results
in an extra added value (compared with the typical
case) of 8.500 €/changeover (compare 11.000€ for
Fig. 6 and Fig. 7 to 19.500€ for Fig. 8 and Fig. 9).




5. CONCLUSION
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. An advanced model predictive control technrology
P based on rigorous dynamic models has been
e e presented. Key requirements of the new technology
¥ are the realization of a flexible process operation, a
large bandwidth controt enabling tight quality control
; and low application costs. The flexible operation is
/ realized by the combination of a dynamic optimizer
ﬁ "4 £ over a rigorous model together with a model
‘ T .t /| GRADE A predictive controller in delta-mode. A large
92 bandwidth control is enabled by the use of high
0 s % s ! 2 10 frequent prediction models. Ultimately, re-use of
Time (hours) large pants of rigerous models for different
applications together with low frequency testing on
these rigorous models reduces the application cost.
The application of the before mentioned technology
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Fig. 8 HDPE Density Grade Change using the
INCA® model predictive controller in delta-

moc.ie .in combination with the dynamic is shown successfully on a polyethylene gasphase
optimizer. reactor simulator. A considerable economic benefit
i can be obtained optimizing the transition trajectory
i 10 as well as the throughput at that time.
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