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Abstract

In this paper we present a framework that combines some ideas of the behavioral modeling approach and the prediction error
modeling approach. It is shown that the proposed model selection procedure can be rephrased as an optimization problem that only
depends on the model parameters. Experiments illustrate the potential of the so-called mis"t versus latency framework. � 2001
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Mathematical models are the heart of many applica-
tions in areas such as control system design, prediction,
simulation, fault detection, etc. In this paper a new frame-
work for modeling dynamic linear time-invariant (LTI)
systems is developed. It combines some ideas of the
prediction error modeling (PEM) approach (Ljung, 1987;
SoK derstroK m & Stoica, 1989) and the behavioral modeling
approach (Willems, 1986; Roorda, 1995; Roorda &
Heij, 1995; De Moor & Roorda, 1994; De Moor, 1993,
1994, 1997). Both approaches*the PEM approach and
the behavioral modeling approach*aim to "t a model of
a proposed model set to observed data. The PEM
method minimizes a cost function involving the so-called
prediction errors, which are computed using the model
and the observed data. These prediction errors can be
thought of as `unobserveda signals, with certain pre-
assumed properties, such as for instance a typical station-
ary zero mean white Gaussian noise assumption. Such
signals will be labeled latent. Summarizing we can say
that in the PEM approach the observed data can be

explained by a model belonging to the proposed model
set owing to the introduction of latent variables.

The behavioral modeling framework approaches the
modeling problem from a set theoretic point of view: the
set of all conceivable input/output time series compatible
with the model, is called the behavior of the system.
A model is then found by selecting*according to some
user-de"ned distance measure*the time series of the
behavior closest to the observed data. The latter distance
is termed `mis"ta. Summarizing, we can say that in the
behavioral modeling approach the observed data are
explained by a model of the proposed model set, through
the modi"cation of the observed data in such a way that
they become compatible with a model of the model set.
The latter modi"cation will be referred to as `mis"ta. In
this paper, we develop the idea of obtaining mathemat-
ical models that `explaina observed data, by modifying
the data (`mis"ta) or introducing new `unobserveda ad-
ditional data (`latencya) or by applying a combination of
mis"t and latency (De Moor & Lemmerling, 1998). The
di!erence between `mis"ta and `latencya can also be
explained in a more pragmatic way. `Mis"ta accounts for
the measurement errors on the data and `latencya ac-
counts for some unobserved input. A priori, there is no
reason to assume that the measurement noise and the
unobserved inputs have similar properties and therefore
it makes sense to combine both while assigning a di!er-
ent weight to each of them.

The paper is structured as follows: the next section
introduces the idea of mis"t versus latency for static LTI
models (linear regression models). Section 3 extends this

0005-1098/01/$ - see front matter � 2001 Elsevier Science Ltd. All rights reserved.
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idea to a general set of dynamic LTI models. We moti-
vate the use of this framework in system identi"cation
and rewrite the associated model selection procedure in
a matrix framework. By using Lagrange multipliers the
new framework can be recast into an optimization frame-
work with only the model parameters as variables. Not
only does this allow us to perform some experiments (see
Section 5), it also provides additional insight into the
model selection procedure for the new framework. Fur-
thermore, we discuss the importance of using the correct
constraints that have to be imposed on the model param-
eters. Section 4 derives some properties of the new frame-
work. The potential of the mis"t versus latency
framework is illustrated with some simulation examples
in Section 5.

In the remainder of the paper, we will adopt a Matlab
like notation for vectors and matrices:

� A(i, j): the entry in the jth column of the ith row of A.
� A(i, :): the ith row of A.
� A(:, j): the jth column of A.
� A(p : q, r : s): the (q!p#1)�(s!r#1) submatrix of

A containing the entries that belong to rows p till q and
to columns r till s.

� b(i): the entry on the ith row of column vector b.
� b(p : q): the (q!p#1)�1 subvector of b containing

the entries of row p till row q.
� b(q : !1 : p): this vector is equal to the previous one

but with the elements in reversed order.

2. Static case

In this section we address static LTI models of the
form

Ax"b (1)

with A3����, m*n, b3���� the data and x3���� the
parameter vector. In general, Eq. (1) is not satis"ed for
measured data as it implies the rank de"ciency of the
matrix [A b]3��������. In those cases, the rank of [A b]
equals n#1 instead of n and therefore we will have to
determine approximate models. We will now describe
three di!erent approximate models and associated model
selection procedures.

Case 1: The "rst method consists of introducing a so
called vector of `latent variablesa e3����, such that
Ax"b#e, and the appropriate model is selected by the
following optimization problem:

min
���

��e���
�

such that Ax"b#e, (2)

where ��.��
�

indicates the vector 2-norm. The latter ap-
proach is called the `latencya approach and corresponds
to the well-known LS solution of an overdetermined
system of equations. As can be seen from (2), the

inconsistency of the equations (revealed by
rank([A b])"rank(A)#1) is remedied by the intro-
duction of a new vector of unknowns e. The minimiz-
ation of ��e��

�
can heuristically be explained by the desire

to "nd the `minimum energya e so that Ax"b#e. The
latent variable can be thought of as an unobserved input.

Case 2: A second method does not introduce new
variables, but it assumes a mis"t [�A �b] between the
observed data [A b] and the true data, such that
(A#�A)x"b#�b. The model selection procedure can
be formulated as follows:

min
�������

��[�A �b]���
�
, such that (A#�A)x"b#�b,

(3)

where ��.��
�

stands for the Frobenius norm. Formulation
(3) obviously corresponds to the classical errors-in-vari-
ables (EIV) approach, which solves the overdetermined
system of equations Ax+b in a total least-squares (TLS)
sense. It is well known (Golub & Van Loan, 1996; Van
Hu!el & Vandewalle, 1991) that the solution to (3) fol-
lows from the Singular Value Decomposition (SVD) of
[A b]. The correction [�A �b] is a rank one matrix
obtained from the SVD of [A b]. Further on, this type
of approach will be referred to as the mis"t approach.
The mis"t can be thought of as measurement error on the
data.

Case 3: The third way is to combine both the latency
and the mis"t approach, so that we obtain the following
general model: (A#�A)x"b#�b#e. To select the
model x in this case, we propose to solve the following
optimization problem:

min
���������

���[�A �b]���
�
#���e���

�
,

such that (A#�A)x"b#�b#e, (4)

with � and � user-speci"ed positive scalar weights that
are inversely proportional to the importance assigned to
the mis"t respectively the latency contributions. The in-
troduction of weights is a logical consequence if one
starts from the assumption that the properties of the
unobserved input (latency) and the measurement errors
(mis"t) are di!erent. Use of the method of Lagrange
multipliers shows that the solution of the latter optimiza-
tion problem is the solution of a weighted SVD problem:
x"!<(1 :n,n#1)/<(n#1,n#1) with [A b]=����"

;�Z	, the SVD of [A b]=����, <"=����Z,

="�
1

�
I
�

0

0
1

�
#

1

� �
under the assumption that <(n#1, n#1)O0. We see
that the approach (4) is a generalization of the ap-
proaches described in (2) and (3). By taking e.g. �"R
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Fig. 1. This "gure shows the solution x of (4) as a function of log
�
(�)

and log
�
(�), applied to example (5). The higher �, the less `mis"ta we

allow; the higher �, the less latency we allow.

Fig. 2. This "gure illustrates the new model set of LTI dynamical
systems. The observed data are u(t) and y(t). They are assumed to be
corrupted versions of exact data, such that w(t)"u(t)#�u(t) and
z(t)"y(t)#�y(t). There are also `unobserveda inputs e(t), that `help
explaina the data z(t).

and �"1 in (4), we obtain (2). In Fig. 1, we show the
solution x of problem (4) as a function of the weights
� and � for the following example:

A"[3 4 4.3 3.4 2 1.09 !3 !2.54 !2.09 0.89]	 (5)

and

b"[3.57 4.80 4.33 3.93 2.50 2.05

!2.25 !1.99! 1.20 1.52]	.

It is clear that by changing the values of the weights, we
can go in a continuous way from the LS solution
(x

	

"1.04909, �"R, �"1) to the TLS solution

(x
�	


"1.0757, �"1, �"R).
Finally, from a statistical point of view, it is obvious

that these three approaches correspond to the maximum
likelihood (ML) solution under di!erent noise assump-
tions, namely independently identically distributed (i.i.d.)
Gaussian noise on b (case 1), i.i.d. Gaussian noise
on [A b] (case 2), i.i.d. Gaussian noise with standard
deviation �

�
on [A b] and i.i.d. Gaussian latency

contribution e with standard deviation �
�
, where

�/�"(�
�
/�

�
)�.

3. Dynamic case

In a way similar to the static case, we can create a new
framework for dynamic LTI systems by combining the
dynamic `latencya approach (i.e. the prediction error
approach containing models such as AR, ARX, ARMA,
etc. in which `white noise residualsa are introduced to
explain the observed input/output data) and the dynamic
`mis"ta approach (i.e. the behavioral approach contain-
ing models such as dynamic TLS or EIV, etc.). The

motivation for this framework is shown in Fig. 2. There is
no reason why the presence of a latency input e(t) would
exclude a noise mis"t of the measurements at the input
(�u(t)) and output (�y(t)) of the system or vice versa. Since
the statistical properties of latency inputs and noise mis"t
can be very di!erent, it makes sense to make a distinction
in the problem formulation and the consecutive model
selection procedure (where using the weights �, � and � in
(7), we can vary the importance of the latency terms
versus the mis"t terms). Models in this framework are of
the form

A(q)z(t)"B(q)w(t)#C(q)e(t), (6)

with z(t)"y(t)#�y(t) and w(t)"u(t)#�u(t), where
�y(t) and �u(t) represent the so-called mis"t of the ob-
served output y(t) and the observed input u(t). Further,
e(t) is the so-called latent variable, which can be inter-
preted as an `unobserveda input. In the remainder of the
paper, it is assumed that �u(t), �y(t) and e(t) are indepen-
dent for all time instants t. Furthermore it is assumed
that �u(t), t"1,2,N, are zero mean independently and
identically distributed random variables with variance
���� (where N stands for the number of data points).
A similar assumption is made for �y(t) and e(t) but with
variances of respectively ���
 and ��

�
. A(q), B(q) and C(q)

are polynomials of appropriate degree in the delay oper-
ator q��, with A(q)"a



#a

�
q��#2#a

��
q��� ,

B(q)"b


#b

�
q��#b

�
q��#2#b

��
q��� and C(q)"c



#

c
�
q��#2#c

��
q��� , where we assume that n

�
, n

�
and

n
�

are known. As model selection procedure, i.e. to select
the best model from this new model set (6), we propose to
minimize the following cost function:

J"�J
������

#�J
�����

#�J
�	�
���

(7)

with J
������

"��
����

(�y(t))�, J
�����

"��
����

(�u(t))�,
J
�	�
���

"��
����

e(t)�, N being the number of data points,
and �, �, � real positive scalars, speci"ed by the user; let
M"max(n

�
, n

�
, n

�
)#1 and m"N!M#1, then

t
�
"M!n

�
, t

�
"M!n

�
and t

�
"M!n

�
.
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Table 1
This table shows the di!erent LTI dynamic systems of our general framework. Depending on the triplet (�, �, �) we obtain 1 of the 27 model sets (note
that when e.g. �"*, this means that there is no input term present in (7), nor in (6)). Some of them correspond to existing model sets, others are new.
The last column indicates whether we have a mis"t-like model (M), a latency-like model (L) or a model that applies to exact data (E) only

No (�, �, �) Case Data mis"t Model M/L

1 (*, *, *) No meaning
2 (*, *, 1) No meaning
3 (*, *, R) See Case 1
4 (*, 1, *) Noisy input realization ;P= =b"0 M
5 (*, 1, 1) ARMA with noisy inputs ;P= =b#Ec"0 M#L
6 (*, 1, R) See Case 4
7 (*, R, *) Input"impulse response ;b"0 E
8 (*, R, 1) ARMA for inputs ;b#Ec"0 L
9 (*, R, R) See Case 7

10 (1, *, *) Noisy output realization >PZ Za"0 M
11 (1, *, 1) ARMA with noisy outputs >PZ Za#Ec"0 M#L
12 (1, *, R) See Case 10
13 (1, 1, *) Dynamic errors-in-variables >PZ Za#=b"0 M

;P=
14 (1, 1, 1) ARMAX with noisy >PZ Za#=b#Ec"0 M#L

in/outputs ;P=
15 (1, 1, R) See Case 13
16 (1, R, *) Output error >PZ Za#;b"0 M
17 (1, R, 1) ARMAX with noisy output >PZ Za#;b#Ec"0 M#L
18 (1, R, R) See Case 16
19 (R, *, *) Output"impulse response >a"0 E
20 (R, *, 1) ARMA >a#Ec"0 L
21 (R, *, R) See Case 19
22 (R, 1, *) Input error ;P= >a#=b"0 M
23 (R, 1, 1) ARMAX with noisy input ;P= >a#=b#Ec"0 M#L
24 (R, 1, R) See Case 22
25 (R, R, *) Linear System >a#;b"0 E
26 (R, R, 1) ARMAX >a#;b#Ec"0 L
27 (R, R, R) See Case 25

It is clear from the e.g., that a classical ARMAX model
"ts into this framework by selecting �PR, �PR and
�"1. There are 27 di!erent cases that can be obtained
by the particular choices of �, � and � (they can be "nite,
in"nite, or their corresponding term can be omitted in
model (6)). Table 1 shows the di!erent possibilities. We
see that the framework covers many existing linear dy-
namic modeling techniques, but in addition it proposes
several new models (e.g. case 23 in Table 1). We now
discuss two cases, in order to clarify the table:

� Case 17 (�"1, �"R and �"1): to interpret the
values of the weightings �, � and �, we have to look at
the model equations (6) and the cost function of the
model selection procedure (7). Setting �"1 we see
from (7) that we allow a mis"t term �y(t) on the
output. The fact that �"R implies that J

�����
in (7)

has to be zero and thus there can be no mis"t on the
input. Finally, �"1 means that the cost function (7)
contains latency variables. As a result the model equa-
tion (6) becomes

A(q)z(t)"B(q)u(t)#C(q)e(t),

since there is mis"t on the output (this explains why
z(t) is used instead of the measured y(t), see Fig. 2),
there is no mis"t on the input (in that case u(t)"w(t),
so we use the measured quantity u(t)) and a latency
variable is included.

� Case 11 (�"1, �"* and �"1): again using the cost
function (7), we see that there is mis"t on the output
(�"1), there is no input (�"*; this `*a indicates that
the input term in (7) and (6) is simply omitted) and
a latency term is included. Obviously this leads to the
following model equation: A(q)z(t)"C(q)e(t). Now it
should also be clear why this model is called ARMA
with noisy output: the only di!erence with the classical
ARMA model A(q)y(t)"C(q)e(t) is the fact that we
take a mis"t on the output (y(t)Pz(t)) into account.

We can write Eq. (6) for t"M,2, N in the following
matrix format: Za!=b!Ec"0, with a"[a

��
,2,a



]	,

b"[b
��

,2, b


]	, c"[c

��
,2, c



]	, Z3���������

a Hankel matrix constructed from z� ,z(t
�

: N) (> is
de"ned in a similar way w.r.t. y� ,y(t

�
: N)),

=3��������� a Hankel matrix constructed from
w� ,w(t

�
: N) (; is de"ned in a similar way w.r.t.
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� Note that we have left out the constraints on a and c since this will
be discussed further on.

� A square matrix A3���� is called centrosymmetric if A"E
�
AE

�
,

with E
�
3���� the anti-identity matrix.

� A vector v3���� is called (skew) centrosymmetric if
v"E

�
v (v"!E

�
v) with E

�
3���� the anti-identity matrix.

u� ,u(t
�

: N)) and E3��������� a Hankel matrix con-
structed from e� ,e(t

�
: N) (all these Hankel matrices are

constructed by putting the corresponding vector in its
"rst column and last row, starting in the upper left
corner). The model selection procedure can thus be reph-
rased as

min
�
�����������

�J
������

#�J
�����

#�J
�	�
���

,

such that Za!=b!Ec"0,

such that a


"1 and c



"1. (8)

Note the introduction of the constraints a


"1 and

c


"1, which are not mentioned before. These extra

constraints are imposed to avoid the trivial solution
a"0, b"0 and c"0. We propose a set of linear con-
straints, which lead*under the statistical assumptions
stated at the beginning of this section*to ML solutions
for the special cases like AR, ARMA, etc. At the end of
this section we will revisit the choice of the constraints.
By applying the technique of Lagrange multipliers to
the optimization problem in (8) we can derive a set of
equations that characterizes the stationary points of
problem (8) (for details see Appendix A). Using the
latter equations, it is possible to transform (8) into
the following optimization problem:

min
�����

[a	 b	]�	�
B
�
(a)

�
#

B
�
(b)

�
#

B
�
(c)

� �
��

��
a

b�,

such that a


"1, c



"1, (9)

where

�"[> !;], B
�
(l ),P

�
(l)P

�
(l )	,

B
�
(l ),P

�
(l)P

�
(l)	,

B
�
(l ),P

�
(l)P

�
(l)	

and

P
�

: ���������P������������� : aPP
�
(a),

defined by P
�
(a)z� "Za.

P
�

: ���������P������������� : bPP
�
(b),

defined by P
�
(b)w� "=b.

P
�

: ���������P������������� : cPP
�
(c),

defined by P
�
(c)e� "Ec.

Note that the objective function in (9) only depends on
the model parameters a, b and c. The latter objective
function is scaling invariant in the parameter vector
[a	 b	 c	]	 (this is easily veri"ed by noting the quadratic
dependence of B

�
(a) on a, B

�
(b) on b and B

�
(c) on c),

implying that the constraints in (9) are necessary to single
out a solution.

By choosing the constraints a


"1, c



"1, the solu-

tion obtained by solving (9) in the special case of PEM

problems, corresponds to the solution obtained with
classical methods for solving the PEM approach. From
formulation (9) it is also clear that a change of the
constraints into a	a"1, c	c"1 is bound to yield a dif-
ferent solution.

In this paragraph it is shown that the choice of the
constraints*that have to be imposed to the model vec-
tors a and c of problem (8) in order to avoid the trivial
solution*is not an obvious one. To this end, we consider
a simple AR model, since this is a special case of the
framework described in (6). The model selection proced-
ure� formulated in (8) then becomes

min
����

e� 	e� such that >a"e� . (10)

Clearly, if we do not want to end up with the trivial
solution a"0, e� "0 we have to impose an extra con-
straint on a. The classical PEM approach adopts the
constraint a



"1. We now investigate what happens

when the latter constraint is replaced by a	a"1. Prob-
lem (10) thus becomes

min
�

a	>	>a

m
such that a	a"1. (11)

We inserted m (the number of rows of >) in the cost
function of (11), since this allows us to let mPR while
the cost function stays bounded. Suppose that the latent
variables in e� are i.i.d. zero-mean Gaussian noise. For
stable AR systems it is well-known (Ljung, 1987) that the
output will then be stationary too. As a consequence, the
matrix >	>/m becomes Toeplitz in the limit for mPR.
Since it is already symmetric by construction, it belongs
to the class of centrosymmetric� matrices. It should be
clear that the a that results from (11) is the eigenvector
corresponding to the smallest eigenvalue of >	>/m.
Applying Theorem 3.2.6 from Lemmerling (1999) to
problem (11) we can conclude that the model vector
a is centrosymmetric or skew centrosymmetric� and
thus we "nd that the poles of the AR system, i.e. the roots
of the following equation in �:

a


���#a

�
�����#2#a

����
�#a

��
"0,

come in pairs (�, 1/�) (i.e. symmetric w.r.t. the unit circle).
Hence by using a quadratic constraint we identify
a model that has unstable poles, even if the original
system that generated the data was stable. Said in other
words, the pole estimates are biased. One can show that
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with the linear constraint a


"1, the pole estimates are

unbiased.

4. Properties and interpretations

In this section we discuss some properties of the mis"t
versus latency framework. In the "rst subsection some
orthogonality properties between the mis"t on the input,
the mis"t on the output and the latent variables are
discussed. Such orthogonality properties should come as
no surprise. They express orthogonality in a similar way
as in a (static) LS approach where the residuals are
orthogonal to the data or as in a (dynamic) PEM ap-
proach where the residuals satisfy an orthogonality
condition w.r.t. the data. The second subsection shows
that the mis"t on the input, the mis"t on the output
and the latent variables satisfy themselves linear systems.
Proofs are presented in appendix B.

4.1. Orthogonality

The "rst orthogonality property we prove concerns the
`correcteda input w� and the input mis"t w� !u� .

Property 4.1. The `correcteda input w� and the input
mis"t w� !u� obtained as the result of the model selection
procedure (8) are orthogonal: w� 	(w� !u� )"0.

The next orthogonality property is on the output mis-
"t and the latent variables.

Property 4.2. Let

K"�
�I

��������
0

0 �I
��������

�.

The vector that contains the `correcteda output and the
latent variables is K-orthogonal to the vector containing
the output mis"t and the latent variables:
[(z� !y� )	 e� 	]K[z� 	 e� 	]	"0.

4.2. LTI systems for misxt and latency

Remember the Rank 1 property of the mis"t [�A �b]
in the static case. Similarly, the latent variables, the input
mis"t and the output mis"t are structured too in the
sense that under certain conditions on the model orders,
they satisfy themselves model equations of LTI dynamic
systems (whose parameter vectors can easily be derived
from the parameter vectors obtained in (8)).

Property 4.3. If n
�
"n

�
, the input mis"t and the output

mis"t satisfy the following LTI dynamic system equations:

!�(=!;)a(n
�
#1 : !1 : 1)

"�(Z!>)b(n
�
#1 : !1 : 1). (12)

If n
�
"n

�
, the output mis"t and the latent variables

satisfy the following LTI dynamic system equations:

!�(Z!>)c(n
�
#1 : !1 : 1)"�Ea(n

�
#1 : !1 : 1).

(13)

If n
�
"n

�
, the input mis"t and the latent variables satisfy

the following LTI dynamic system equations:

�(=!;)c(n
�
#1 : !1 : 1)"�Eb(n

�
#1 : !1 : 1). (14)

If in the previous property, the conditions on the
orders are not satis"ed, it is still possible to prove similar
properties. If e.g. n

�
'n

�
, a formula similar to (12) can be

proven by de"ning a new P[
�
(a)3�������������, which

is simply P
�
(a) padded with n

�
!n

�
zero columns.

5. Experiments

In this section, we describe two experiments to give an
idea of the potential of the mis"t versus latency frame-
work. In the "rst experiment we simulate an ARMAX
model. The experiment itself consists in determining
models of the new framework using the selection proced-
ure (9). Models are determined for several combinations
of the triplet (�,�,�) in such a way that we obtain a `root
locusa of the zeros of the a polynomial (i.e. the poles of
the model) with on the one end the PEM approach and
on the other end the behavioral modeling approach.

The second experiment shows how the knowledge of
the statistical properties of the mis"t and latency vari-
ables can be exploited in the new framework, thereby
leading to an improved statistical accuracy of the esti-
mated parameter vectors. The results are compared to
those of the classical PEM approach.

5.1. Experiment 1

For this experiment we start from the following exact
model parameters:

a"[0.81 !1.2541 1]	, b"[1 2.3 0.3]	, c"1. Us-
ing an i.i.d. Gaussian noise sequence e(t) with standard
deviation 1, a deterministic input sequence w(t) and in-
itial conditions z(1)"z(2)"0, an output z(t) is generated
using the following ARMAX model equation:

A(q)z(t)"B(q)w(t)#C(q)e(t), t"3,2, N. Setting
N"50 we obtain Fig. 3, which shows the above men-
tioned sequences. Since we consider the case that there
is no mis"t on the input nor on the output, we have
that z(t)"y(t) and w(t)"u(t) (see Fig. 2). Using
y� "y(1 : 50), u� "u(1 : 50), e� "e(3 : 50), we can construct
the corresponding matrices >, ; and E and apply the
model selection procedure (9). The optimization is per-
formed using the function leastsq in Matlab. The proced-
ure is repeated for the following triplets (�, �, �): Case 1:
(�, �, �)"(10
,10
,1); Case 2: (�, �, �)"(10�,10�,10�);
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Fig. 3. This "gure shows the deterministic input w(t) (dash-dotted line),
the i.i.d. Gaussian noise input e(t) (dotted line) of experiment 1. The full
line is the sequence z(t), obtained by using the ARMAX model and the
initial conditions described in the "rst experiment. The dashed line is
the sequence y(t) as used in the second experiment. It is obtained by
adding a noise `mis"ta (in this particular case i.i.d. Gaussian noise with
standard deviation 10) to the sequence z(t).

Fig. 4. These "gures show the root locus obtained by varying the parameters, �, � and � in the model selection procedure (9) applied to the example
described in experiment 1.

Case 3: (�, �, �)"(1,1,10
). Case 1 clearly corresponds to
the ARMAX case (See Case 26 of Table 1). Case 3 clearly
corresponds to the dynamic TLS model (See Case 15 of
Table 1). Case 2 is a model that lies in between an
ARMAX model and a dynamic TLS model. To give an
idea of the e!ect of the di!erent choices of the triplet
(�,�,�), we plot in Fig. 4 the poles (zeroes of the poly-

nomial based on the estimated a): poles of Case 1 are
indicated by a `xa, those of Case 2 by a `oa and for Case
3 we used a `#a. The left hand side shows the location of
the poles w.r.t. the unit circle. The right hand side zooms
in on the region of interest. We clearly see the `root
locusa for the poles of the di!erent models, i.e. the
continuous evolution of the poles when going from
a PEM approach (`xa) towards a behavioral modeling
approach (`#a).

5.2. Experiment 2

In this experiment we use the same ARMAX model as
in the "rst experiment. The output z is thus generated in
the same way as in the "rst experiment, but in this case
we add noise to z such that zOy as opposed to experi-
ment 1. The noise added to z is i.i.d. Gaussian noise with
standard deviation 10. The sequence y that is obtained in
this way is the dashed line in Fig. 3. We now perform 200
Monte-Carlo simulations in which each time a di!erent
realization of the latent variable e and the noise mis"t
on the output (y!z) is generated. In each run we
determine 2 models (using the known model orders
[n

�
n
�

n
�
]"[2 2 0]) based on the available measure-

ments y and u:

(1) a model determined using (9) with �"1, �"10


and �"100.
(2) a classical ARMAX model (i.e. the PEM approach)

using the identi"cation toolbox in Matlab.

The choice of �, � and � is obviously based on the
knowledge of the statistical properties of the latent
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variable and the output mis"t. First of all, �/�"100 since
the variance on the output mis"t is 100 times larger than
the variance on the latent variable. Furthermore,
�"10
, since no mis"t is present on the input (note that
the 10
 is thus used as an approximation of R).

The goal of the experiment is in fact to see whether we
can get better statistical results with our new framework,
if the statistical properties of noise mis"t and latent
variables are properly taken into account. To get an idea
of the statistical accuracy of our new framework and the
associated selection procedure (9), we calculate the fol-
lowing relative errors for the `mis"t versus latencya
model obtained with (9) and the classical PEM ARMAX
result

err

��

"

�


�
���

��a���

��

!a��
�

200��a��
�

, err
���

"

�


�
���

��a���
���

!a��
�

200��a��
�

,

where a is the exact AR parameter vector, a���

��

is the AR
parameter vector obtained using (9) in the ith Monte
Carlo run and a���

���
is the AR parameter vector obtained

using the classical PEM approach in the ith Monte Carlo
run. The relative accuracies obtained in this way are:
err


��
"1.84% and err

���
"35.75%. This clearly shows

the potential of the new framework.
It should be noted that better results can be obtained

with the PEM approach when a higher order noise
model c is used. The best results were obtained with
[n

�
n
�

n
�
]"[2 2 2] : err

���
"4.23%. It can easily be

explained why this model order leads to the best PEM
model. The exact model set equations are

�
�
��


a
�
(y(t!i)#�y(t!i))"

�
�
��


b
�
u(t!i)#e(t),

where ��
"10 and �
�
"1. Since �

�
;��
 a higher order

noise model will model in the PEM approach the mis"t
contribution �y, which can be represented by the follow-
ing equation:

�
�
��


a
�
y(t!i)+

�
�
��


b
�
u(t!i)#

�
�
��


c
�
�y(t!i),

where + indicates that the latency contribution e(t) has
been neglected. Nevertheless, even the best PEM model
yields a more than 100% higher relative error (as de"ned
above) than the obtained mis"t versus latency model.

6. Conclusion

In this paper we have presented the mis"t versus
latency framework that was introduced in De Moor and
Lemmerling (1998). The latter framework combines some
ideas of the PEM approach and the behavioral modeling
approach. We have shown that by using the technique of
Lagrange multipliers the proposed model selection pro-
cedure can be rephrased as an optimization problem

involving only the model parameters as variables. The
importance of the constraints imposed on the model
parameters has been demonstrated. Some orthogonality
properties and interpretations are proven.

Using this new optimization approach we have been
able to do some experiments in the new framework. First
of all it has been demonstrated*by means of a root locus
plot*how the speci"c values of the weights �, � and
� in#uence the location of the poles of the selected model.
Secondly, it has been shown that knowledge of the stat-
istical properties of the mis"t and latency variables can
greatly enhance the statistical accuracy of the obtained
model parameter vectors, compared to the classical PEM
approach.
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Appendix A

A.1. Derivation of (9)

By applying the technique of Lagrange multipliers to
the optimization problem in (8) we will now derive a set
of equations that characterizes the stationary points of
problem (8). The Lagrangian of the latter problem is

¸(a, b, c, w� , z� , e� , l, 	, 
)

"�
�
�
����

(�y(t))�#�
�
�
����

(�u(t))�#�
�
�
����

(e(t))�

#l	(Za!=b!Ec)#	(a


!1)#
(c



!1).

Taking the derivatives of ¸ with respect to a, b, c, w� , z� , e� , l,
	, 
 and setting these equal to 0, we obtain the following
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equations:

Z	l#	[0 2 0 1]	"0, (A.1)

!=	l"0, (A.2)

!E	l#
[0 2 0 1]	"0, (A.3)

�(w� !u� )!P
�
(b)	l"0, (A.4)

�(z� !y� )#P
�
(a)	l"0, (A.5)

�e� !P
�
(c)	l"0, (A.6)

Za!=b!Ec"0, (A.7)

a


"1, (A.8)

c


"1, (A.9)

where P
�
, P

�
and P

�
are matrix functions de"ned as

follows:

P
�

: ���������P������������� : aPP
�
(a),

de"ned by P
�
(a)z� "Za.

P
�

: ���������P������������� : bPP
�
(b),

de"ned by P
�
(b)w� "=b.

P
�

: ���������P������������� : cPP
�
(c),

de"ned by P
�
(c)e� "Ec.

P
�

: ����P������������������ : lPP
�
(l),

de"ned by P
�
(l)z� "Z	l.

P



: ����P������������������ : lPP


(l),

de"ned by P


(l)w� "=	l.

Furthermore we de"ne B
�
(l),P

�
(l)P

�
(l)	, B

�
(l),

P
�
(l)P

�
(l)	, B

�
(l),P

�
(l)P

�
(l)	, B

�
(l),P

�
(l)P

�
(l)	,

B


(l),P



(l)P



(l)	 and B

�
(l),P

�
(l)P

�
(l)	. Using (A.4)

and the de"nition of B
�
, we "nd

(w� !u� )	(w� !u� )"l	B
�
(b)l/��. (A.10)

Similarly, we "nd by combining (A.5) with the de"nition
of B

�
that

(z� !y� )	(z� !y� )"l	B
�
(a)l/��, (A.11)

and "nally, proper use of (A.6) and the de"nition of
B
�

reveals that

e� 	e� "l	B
�
(c)l/��. (A.12)

From (A.7), the de"nition of P
�
, P

�
and P

�
, we know that

P
�
(a)z� !P

�
(b)w� !P

�
(c)e� "0.

Using (A.4)}(A.6), the de"nitions of P
�
, P

�
, B

�
, B

�
and

B
�
, the last equation becomes

>a!;b"�
B
�
(a)

�
#

B
�
(b)

�
#

B
�
(c)

� �l

or

l"�
B
�
(a)

�
#

B
�
(b)

�
#

B
�
(c)

� �
��

(>a!;b). (A.13)

Combining (A.10)}(A.13), the cost function in the model
selection procedure can be rewritten as follows:

[a	 b	]�
>	

!;	��
B
�
�

#

B
�

�
#

B
�
� �

��
[>!;]�

a

b�.

(A.14)

Note that (A.14) only depends on the model parameters
a, b and c. Careful inspection of the Lagrange multiplier
equations (A.1)}(A.9) that have been used to arrive at
(A.14) reveals that only constraint independent multiplier
equations were used. The latter means that if the con-
straints on a and c (see Eqs. (A.8) and (A.9)) were changed,
we would still "nd the same cost function (A.14). The cost
function (A.14) is scaling invariant in the parameter vec-
tor [a	 b	 c	]	 (this is easily veri"ed by noting the quad-
ratic dependence of B

�
(a) on a, B

�
(b) on b and B

�
(c) on c),

implying that we have to impose extra constraints on the
parameter vectors in order to single out a solution. Note
that this scaling invariance property only holds if none of
the mis"t terms is missing. If we write down (A.14) e.g. for
an ARMAX model (i.e. a special case of our new frame-
work), it becomes obvious that (A.14) no longer is scaling
invariant, because the terms containing B

�
(a) and B

�
(b)

have disappeared. In those cases, the cost function is no
longer scaling invariant and the constraints that we im-
pose do not just single out one of the solutions along
a line of solutions, but they can lead to solutions lying in
di!erent directions. To obtain the same results as in our
mis"t versus latency framework, we also impose the
constraints a



"1 and c



"1. Summarizing, we have

derived an optimization formulation that yields the same
solution as the model selection procedure (8):

min
�����

[a	 b	]�	�
B
�
(a)

�
#

B
�
(b)

�
#

B
�
(c)

� �
��

��
a

b�,

such that a


"1, c



"1,

where �"[> !;].

Appendix B

Proof of property 4.1. Using (A.4), the de"nition of
P
�

and (A.2), we "nd

w� 	(w� !u� )"w� 	P
�
(b)	l/�"b	=	l/�"0,

thereby proving the "rst orthogonality property.

Proof of property 4.2. Consecutive application of (A.5),
the de"nition of P

�
, (A.1) and (A.8) yields:

z� 	(�I
��������

)(z� !y� )"!z� 	P
�
(a)	l

"!a	Z	l"	. (B.1)
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On the other hand, using (A.6), the de"nition of P
�
,

(A.3) and (A.9), we obtain:

e� 	(�I
��������

)e� "e� 	P
�
(c)	l"c	E	l"
. (B.2)

Multiplying (A.1) with a	 to the left, (A.2) with b	 to the
left and (A.3) with c	 to the left and adding the results, we
"nd by using (A.7) that !	a



"
c



or by taking (A.8)

and (A.9) into account: 
"!	. Since 	"!
 the
property follows by adding (B.1) and (B.2).

Proof of property 4.3. First note that the following prop-
erties are readily checked if n

�
"n

�
, simply by using the

de"nitions of P
�

and P
�
:

P
�
"P

�
, (B.3)

P
�
(b(n

�
#1 : !1 : 1))P

�
(a)	

"P
�
(a(n

�
#1 : !1 : 1))P

�
(b)	. (B.4)

Using (A.4), (A.5), (B.3) we "nd

�P
�
(a(n

�
#1 : !1 : 1))(w� !u� )

"P
�
(a(n

�
#1 : !1 : 1))P

�
(b)	l

and

�P
�
(b(n

�
#1 : !1 : 1))(z� !y� )

"!P
�
(b(n

�
#1 : !1 : 1))P

�
(a)	l.

From the latter 2 equations, the de"nition of P
�

and (B.4)
we obtain:

!�(=!;)a(n
�
#1 : !1 : 1)

"�(Z!>)b(n
�
#1 : !1 : 1).

Similarly, if n
�
"n

�
the following is easily veri"ed by

using the de"nitions of P
�

and P
�
:

P
�
"P

�
, (B.5)

P
�
(c(n

�
#1 : !1 : 1))P

�
(a)	

"P
�
(a(n

�
#1 : !1 : 1))P

�
(c)	. (B.6)

Combining (A.5), (A.6), (B.5) it is clear that

!�P
�
(c(n

�
#1 : !1 : 1))(z� !y� )

"P
�
(c(n

�
#1 : !1 : 1))P

�
(a)	l

and

�P
�
(a(n

�
#1 : !1 : 1))e�

"P
�
(a(n

�
#1 : !1 : 1))P

�
(c)	l.

Using the latter 2 equations, the de"nition of P
�

and (B.6)
we "nd:

!�(Z!>)c(n
�
#1 : !1 : 1)"�Ea(n

�
#1 : !1 : 1).

To obtain the third LTI dynamic system of this property,
note that if n

�
"n

�
straightforward application of the

de"nitions of P
�

and P
�

gives:

P
�
"P

�
, (B.7)

P
�
(c(n

�
#1 : !1 : 1))P

�
(b)	

"P
�
(b(n

�
#1 : !1 : 1))P

�
(c)	. (B.8)

Using (A.4), (A.6), (B.7) yields:

�P
�
(c(n

�
#1 : !1 : 1))(w� !u� )

"P
�
(c(n

�
#1 : !1 : 1))P

�
(b)	l,

�P
�
(b(n

�
#1 : !1 : 1))e�

"P
�
(b(n

�
#1 : !1 : 1))P

�
(c)	l.

Combining the latter 2 equations, the de"nition of
P
�

and (B.8), it follows that:

�(=!;)c(n
�
#1 : !1 : 1)"�Eb(n

�
#1 : !1 : 1).
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