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Identification of Stable Models in Subspace Identification
by Using Regularization

T. Van Gestel, I. A. K. Suykens, P. Van Dooren, and B. De Moor

Absfract—In subspace identification methods, the system mafrices are
usually estimated by least squares, based on estimated Kalman filter state
sequences and the observed inputs and outputs. For a finite number of data
points, the estimated system matrix is not guaranteed to be stable, even
when the true linear system is known to be stable. In this note, stabifity is
imposed by using regularization, The regularization term used here is the
trace of a matrix which involves the dynamical systen: matrix and a positive
(semi) definite weighting matrix, The amount of regularization can be de-
termined from a generalized eigenvalue problem, The data augmentation
methed of Chui and Maciejowski is obiained by using specific choices for
the weighting matrix in the regularization term.

Index Terms—Regularization, stability, subspace identification.

I. INTRODUCTION

The linear combined deterministic—stochastic identification problem
is concerned with systems and models of the form!

Erp1 =Axg + Buy + wi €}
i =Cap + Dug + v )

) " )
E([l::][w; vg]):[;%- R]cﬁmz(}. 3)

The vectors ur € R™ and g € B wilh discrete-time index & denote
the m inputs and { outputs of the system respectively. The r states at
the time index k of the system with order n are denoted by the state
vector 21 € R". The process noise wir € R™ and the measurement
noise v € R' are assumed to be zero mean, white Gaussian with
covariance matrices as given by (3). The model matrices 4, B, C, D
and the covariance matrices Q, S, R have appropriate dimensions. Both
the deterministic and stochastic identification problem are special cases
of the combined identification problem, without noise inputs wy. = 0
and v = 0in (§)-(3) and no deterministic inputs v = 0, respectively.

In the last decade, so-called subspace identification methods {13]
have been developed to determine the system order 7i of the unknown

with
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TE denotes the expected value operator and ¢, the Kronecker delta. It is
assumed that the process is stationary and ergodic: the equality E {a 1 =
lim; o [1/7 301, ;b7 holds with probabitity 1.
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system (1)+3) and the estimates ,_ai, B, C, D (up to a similarity trans-
fom:latio'n) together with the estimated noise covariances maltrices Q,
S, It, froma latge number of observations of the input ux and the cor-
responding output yr. generated by the unknown system (1)-(3). Typ-
ically, in ahﬁr_st step, Kalman filter state sequences X € R™™ and
Xie1 € ™) of the syslem are estimated using geometric operations
of subspaces spanned by the column or row vectors of biock Hankel
malrices formed by inpul-output data. The system order # typically
has to be estimated by the user from a singular value plot, where j is
related to the number of data points, see [13] for details.

The system matrices (f[, B, G, f)) of the combined stochastic—de-
terministic identification problem are identified in the second step by a

least squares problem
Xea] [A B] [ X
Y ¢ D Ui

with the input sequence Uy = fui, tigr, ..o i j—1] € R™*7 and
the output sequence Yi; = [yi, #id1q-- -, Yivj—1] € R {13} Moti-
vated by consistency results [13} for j — oo, this optimization problem
is solved in a least squares sense. However, when identifying on a fi-
nite number of data points (finite j), the least squares estimate does not
always yield a stable system [2], while often the true linear system is
known to be stable. For a finite number of data points, this may, e.g.,
occur in the presence of high noise levels or when overparameterizing
the system by overestimating the system order. A discrete time linear
system is called stable when it has all its poles inside the unil disk or
when there exists a positive—definite matrix P = PT > 0 of appro-
priate dimension such that APAT - P <.

In this note, stability of the system is imposed by adding a regulariza-
tion term to (4). Usually, regularization is obtained by adding the norm
[8]j2 of the parameter vector 8 to the cost function J{#} of the opti-
mization problem {11, {41, [10], [11]. The resulting # is then obtained as
the solution of the minimization problem ming J(8) + cf|f{|2. In this
nole, a new and specific type of regularization term is used: stability
is obtained by adding the trace of the product of the system matrix, a
positive—scimidefinite matrix 1¥ = 1V T > 0, and the transpose of the
system matrix, Tr( AW AT), to the cost function (4). Upper bounds for
the spectral radius are obtained and it is shown that the calculation of
the amount of regularization needed to obtain a specific spectral rading
boils down to solving a generalized eigenvalue problem.

Also for the stochastic identification problem, the solution A of the
least squares problem

2
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is not always stable. Since the stochastic identification least squares
estimate is a special case of the combined estimate (4) with Uy = 0,
we restrict ourselves to the more generatl case of stability of (4).

This note is organized as follows. In Section II, the use of regular-
ization to impose stability is explained. In the companion paper [12],
the use of regularization is motivated by simulation results which are
compared with the results of [2]. The following notation is uscd. The
cigenvalues and singular values of a square matrix A € R" ** are de-
noted by A;(A) and o {A) respectively, fori = 1,. .., n. The spectral
radius of A is denoted by p{A) = maxi=y,. ., [A:{A)}. The minimal
and maximal singular value of A is denoted by o (A) and (A}, respec-
tively. The trace of the matrix A is denoted by Tr(4) and the matrix
norm @(MAM 1), with A € 8"*" a nonsingular matrix of appro-
priate dimensions, is denoted by || A|[as. The Kronecker product of two
matrices X and Z is denoted by X ® Z.

0018-9286/01$10.00 © 2001 IEEE
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II. STABILITY BY USING REGULARIZATION

The estimation problem that we consider is the following: given the
matrices 4\,+1 R ilis X ¢ and Uy); from the first siep, estimate the model
matrices A, B, €, D. The least squares estimale (4) does not guarantee
astable A matrix for given finite data, while often the true linear model
(133} is known to be stable,

The least squares problem (4) can be separated into two least squares
problems, with solutions

(A4 Bl=Xu - |XT UL)-£30

[C D)=y [X] Uf)- 53 )
where
$ew — [\\7; X U,lT: } _ ©
UieX{ Uiy,

For a finile number of data points, the estimates of X; and Xy, may
result in an unstable estimate of the system matrix A in (5).

Stability of the model can be imposed by adding a regularization
term to the cost function from which (5) is determined, i.¢.,

}"JJ(A \B) = JHAB) + eJa(A) )
with
PO T 2
BiA, By = |Xepe — (4 B) (X7 07 ”F (®)
J(A) =||AQI% = Tr (AIVAT) ) ©)

The amount of regularization is characterized by the positive real scalar
¢ and by the positive semidefinite matrix W = Q@7 > 0.The optimal
solution to (7) is then given by?

[Ac Be]l=[Xip XF X UL Exv + ei)™!

={Ad BlSxu(Syu + i)™ (10)
where S xu is defined in (6) and ¥, as
i Oﬁxnl
. = ; 11
i [Omxﬁ Om ] ( )

in [3] and [4], regularization is used to obtain a reduction in the
variance of the estimate, while allowing for a {(small) bias. The reg-
wlarization parameter ¢ is chosen in such a way that a cross-validation
weighted square error is minimized. In subspace identification, this ap-
rroach is less appropriate, since the stale sequences are calculated by
QR-decompositions and an SVD. Therefore, the assumptions on the
noise distribution used in {3), {4] may not hold. A second motivation is
that stabilily is not proven. In this note, the regularization parameter ¢
is chosen such that a stable system matrix is obtained, i.e., A <1
or such that A, has a spectral radius p{ A.) smaller than  or
ALPAT - P <0 (12)
with P = P¥ > 0 and  a positive-real constant.
The use of regularization to obtain a stable system matrix estimate
A, is motivated by the following inequality:

ATV V2E =1 (AE;.If,;g) _ Z (Ui'([icwl,g))z
> ijzﬂ*’) (o:tde))" 2 em) Z iAo,

?In the remainder of this note, estimates from (5) are denoted by A and esti-
mates from (7) by A, The subscript ¢ is used to denote the dependency of the

solution A, as a function of c.
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Let Ac = A xu(Exu + ¢i.) ™ denote the solution A, of (7) fora
given ¢, it follows from the optimality of the least squares estimate {10)
that JQ(ACQ} < Jz(Acl Yorey < cg,i.c., the regularization term eval-
uated at the corresponding solutions for ¢ is a nonincreasing function
of ¢. However, the spectral radius p(A ) is nol always a monotonically
decreasing function for increasing c,

In what Follows, this behavior is characterized in more detail by de-
riving an upper bound for p{A. ) and by calculating the amount of reg-
ularization needed to obtain p(Ae) = v < 1. The relation between A
and A. is given by (10). By defining the {extended) square matrices

ﬁe:[Ac Bc] Aez[ A OB}

Om wai Om Om X fi
we oblain that the eigenvalues A(A.) and )\(A) of A, and A are equal
to the #t eigenvalues with largest modulus of A, and A., respectively.
Given (10), the influence of ragulanzatlon on the eigenvalues of 4, js
given by the relation 4, = A, Ty U(S\U + ¢i¥.) 7!, However, the
increase in dimensionality from #i {o # - m can be avoided.
Lemma 1: Let 3, be defined as

(13)

- P oy —1 .
8= XX - & U-p( nliUﬁa') Ui X[ (14)

then the eigenvalucs of zic are equal to
MAc) = A (fif)s(i:s +CW)""I)_ (15)

Proof: The it largest eigenvalues of A are the eigenvalues of
Ac. The cigenvalues A(A ) are also the eigenvalues of the generalized
eigenvatue problem M A. L xy, Bxy + eV, }. By applying a transfor-

mation
+ I "Ta
T. =
[ o]

with T, = X U (U.|,U,',) ! we obtain

MAZxv Exv + V)
EA(TSAEEA-",\'UTsTTs(E,\'U + CH’C)T‘;F)

-1 /‘i B )js }{ U'l' ﬁs + cly 0
- 0 0 0 U.|,U,|, 6 U|,U,|,
At least i eigenvalues are zero and the 72 eigenvalues of largest mod-

ulus are the eigenvalues of A (ﬁf);(f)s +cl V}“). a
By using the QR-decomposition

[rl-lx] [Q:]Q2] [R“ ﬁ;j

it is easity shown that B, = BhRpor®, = X y\ , with X, =
Xi- X U,|l(U ],U,,,) 'U;yi and where we assume that Ry; is non-
singular. This assumption is related (o a form of persistent excitation
in subspace methods, see [7] for a discussion. An upper bound for the
spectral radius p(A ) can be formulaied as follows.

Theorem 1: Let W = Q@QT > 0, then the following upper bound
holds for p(A.):

7 (17 ARE)
M) Sy (T WRY (o)
From this upper bound, it follows that:
(a(n TarT,) 1)
T .
PlAc) < yfore 2 eu = : (17

o (RyTW IRy
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i :
] E Proof: By use of Lemma 1, we have that We  now use the following  ecquivalence  relations
BE A a2
-~ . N _ P P s P RH Xhi .
1 f p(A) =p(AL, (B, + W)™ ( 250 € )
P -1
=p AR22R22 (RQQ (In + CR2 ”'rRQQ ) Rzz) . det-(C2P2 + el + PO) =
‘ . L & det{c(cPe + Py + ) =0
' Since p(Ac) = p (RQ“QTACR%';,) and p{Af) < (M) for any square Iiz 042 052 —1li2
matrix Af, we also have that  det (C [0,;2 P } + [ P P ]) =0.
- —1
p(A) =p (Rzz AR, (In + eR;TW R, ) ) Then by identifying P, Py and Py from (20), we obiain (18). Hence,
. the solutions ¥ of the generalized eigenvalue problem (19) correspond
(322 ARzg) ((Iu + eRFW Ry, ) ) to values for ¢ for which A, has a pole on the circle with radius v or
have symmetric pole pair with respect to this circle. This is true for all
— ( RZTA 123;) 7 ( R;;‘ A R'{Q) real and positive ;. Hence, by a continuity argument it follows that
(A, ) = 7, with ey = max;g,en+ #7 and that p{Ac) < v for

To(Ii +eRy WRY') 1t co (R WRG') A
The proof of (17) follows directty by putting this upper bound equal to Indeed, we already know from Theorem 1 that for ¢ > ¢, with ¢y
T 3  defined by (17), we have that plA:) < 7. Fore = ¢, there are two
In Theorem 2, conditions are derived to obtain p(ﬁc) < 7, with  possibilities: 1) A, has a pole pair symmetric to the circle with radius
4 > 0 a positive-real scalar. v, and 2} A, has at least one pole on the circle with radius . We will
Theorem 2: Given Xiq1, XU [i» Yi)i and W, Let the matrix ﬁs be  now show that 1) is impossible, Observe that assuming 1) imphies that
defined by (14). Let v > 0 be a positive real scalar and fet Aand A be p(Ac,. ) > v A continuity argument and the definition of ¢, being

estimated as in (4) and (10). Let the matrices P, Py and Fy € R =A% the largest real cigenvalue U; of (19), tell us that that for ¢ > ey, there
be defined as follows: is no crossing of the poles A(A.} of A, with the circle with radius .

This implies that for ¢ > ¢, ﬂ(fi.:) > v, which is in contradiction with

B=-2"WoW, P=-7"Wei -+, oW Theorem 1. Hence, A, has at least one pole on the circle with radius

Py =AS, 0 AD, - ¥*5. @ 5,. (i8) 7. Also p(fic) < 7y fore > e, because the contradiction implies

. . ) another crossing of the circle with radius -y, which is again impossible

Define the set of eigenvalues 7 of the generalized eigenvalue problem by the definition of cy. 0
9 =A ([0'_‘2 —ls2 ] — [Iﬁ"’ 052 }) (19) Observe that p(fi.:) =p (fii,(ﬁ, + cﬂ’)*l) is a nonlinear func-

P Pl Op2 2 ’ tion of ¢. Theorem 2 says that the value ¢y, is determined by the gen-

Then p(A.) < 7, fore 2 cm = max;|g,gpt ¥i, With plAe, ) =7. f:i:zsd e;.genvaluci)roblem {19) such that p(A;) .S, v forec > Cm,
i ) < quality for ¢ = ¢y.. However, the Theorem gives no further in-

Proof: First we will show that p(Ac,.) = 7, for formation on the evolution of p(zic), which may be a nonmonotonous

em = maxggep+ Ui We start from Lemma It p(Ac) = g cion of e, Theorem 2 only tells us that the cigenvalues A(A.) re-

(AEJ (E 4+ elyy! ) All solutions of ¢ for which the mapping  main inside the disk with radius v for ¢ > cun.

For high-order systems, alarge generalized eigenvalue problem (19)
of dimension 212 has to be solved, hence requiring (%) operations.
When 7 is large, we propose instead an ilerative algorithm to determine
the value of cp,. From (17) of Theorem 1, a starting value co = cu is

P - A PAT — 42P is singular, correspond to solutions with a
pole on the circle with radius v or a pole pair that is symmetric
with respect to the circle with radius v {a symplectic pole pair if
v = 1) [8]. By applying the vec-operation and using the property

vee{ XY Z7) = (Z ® X)vec(Y)[8], we obtain obtained such that p(A.) < 5 for ¢ > co. From this starting value co,
i m N N ) . we will now decrease ¢ in each iteration step until p{A.) = 7. This is
vee (ACPAC -5 P) = (Ac ®A:— VI ® fﬁ) vec(P). done by using the following (hree relations between the spectral radius
; . Lo n and matrix norms [61: 1) p(A) < l|A|las, for any regular matrix M;
G Therefore the mapping is P — AP A; — o P singular  2) for a diagonalizable matrix A with eigenvalue decomposition A =
3 iff det{A. @AY ® I;) = 0. By using (15) and VDV™! wehave p(A4) = }|A||lv; for a nondiagonalizable matrix A,
N (XY ZoT)=XZ®YT,this is equivalent to there cxists a nonsingular matrix V' such that p(4) = [|Ally + ev,
i o o with ey arbitradly small; 3) let [|Allar < 1, then [[{T — A)"'Yar <
i det(AB (L. + o)™ @ AT, (£, + W) (1~ Al
il AN Let A. be defined by Ac = AB(E, + ¢I)™", then, by use of
I -7 ﬁ?) =0 Lemma 1, we have that p{A.) = p(A.). To aveid the calculation of
g fe - - -1 e - the inverse (£ + elV) ™! for a new value ¢ in each iteration step, 2,
j & det ((AES ® A%.) ((E“‘ V)T @ (5 + eW) ) and W can be simultaneously diagonalized
| - 7'*’1;,2) =0. £,k W = QuDyg, + cli)QT 21
! Since (X@X)*l = X '@X ' (whenX is ihvertible) and det(fﬁs +  where Qg can be ca[culatcd as
; cW) # 0, we obtain’
§ . A . = UwSi{?Us, 22
! det (A%, © A2, = * (S, + W) @ (s + ) = Qi = Ui Uy, @
ity
: with the SVD of W = Uwa Ul and the SVD of

& det (—cz(vﬂf @YY — c(v*W @ 55 + 7' 5. © W)

o . X A SW” UWEJUWSWI = Ug Dy U . 'This yields p{Ac, ;) =
+ (A, @ A2, — Y, ®72,)) = 0. 20)  p(Q7" Aeryr Qa) = 2(Q5" Ac.Qd(D +c,1.,)(D e da) .
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Let ¢; be the value of ¢ after ¢ iteration steps such that oA <™
with Ac = AZ, (5, +c W)_', and let the eigenvalue decomposnilon
of Q7' Ac;Qu be given by Q7 A, Qq = ViDiV;"', then we can
calculate Acy = ¢ — i > Osuchthat p(dige) < yor
<[00 1.00 (D ) (3, 5 i) ],
<fles A0y,
s, et 0, + i)

=(p(d;) + €v;) ”(Iﬁ - Aei (D, + Ci—[ﬁ)—I)

plAc,) + ey,
Tl - Ac “(Dgs + c.-I;,)““‘,‘_ '

—1
'v,-

(23)

Putting this upper bound (23) for ﬁ(fir.H,[ Y equal to v yields

1—(p{ A Hey,)

Ay = = T - .
[RECRN

(24)

Since p(.iei) < 4 and ey, can be made arbitrarily snall, it is easily
verified that for this value of Ae; > 0 the last step in (23) is valid. Also
notice that p( A, , } < . This yields the following iterative algorithm:

Input: A, f)s, W, « and tolerance g, > 0.
Qutput: ¢y .

Initialization: ¢ = 0, determine cg
from {17) in Theorem 1, calculate

Dy and Qu as described in (21)
and {22}, compute AQd = leAQd and

Q; ACOQ‘; = AQ‘! (I +('0D ) ; and

compute the eigenvalue decomp081t10n

Q7 Ay Qu = VoDoVy ' (or a W, such that

v, € 71— Qg A Qa))

while v — p(i}) > €

determine Ac¢; from (24) and put ciji1 =
— Ae¢; and ¢ = gigg

. -1
ompute QEIACHIQJ = Ag, (Iﬁ + c;+1Dg:)
and compute the eigenvalue decomposition
leAc‘HQd = ,+1D,+;T!+i {or a Vi;; such that
Vs <y - plQ7 Ay, Qa))
=1+ 1
endwhlle

The initialization results in ¢o < ey,. Since Ag; > § by construc-
tion, the algorithm decreases the amount of regularization in each it-
eration step, i.e., cip1 < i, with equality iff p(A.,) + ey, = v and
where €y, can be made arbitrarily small. Hence, ¢; converges (o the
largest ¢ such that ﬂ(A } == . This value is equa! 10 ey, as follows
from Theorem 2. The algorithm requires O(#") operations per itera-
tion step and the simuiation results in {12] indicate lincar convergence.
More advanced algorithms like biscction algorithms may speed up the
convergence, but onc looses the guarantced convergence to Cm, 88 itis
not guaranteed that p{ A..) is a monotonous function of ¢. The problem
can also be formulated as a real stability radius problem with one re-
peated block for which a fast algorithm exists [9], but this atgorithm

1419

requires more complex computations (an LMI prdblem) per iteration
step and faster convergence has not been proven.

Now, we show that the so-called data augmentation method of Chui
and Maciejowski [2] corresponds {o adding regularization terms to the
least squares cost function with specific choices for the weighting ma-
trix 1V, In [2], the nonsteady Kalman filter state sequences X z\l+1
are iteratively augmented by appending /e, 1 and 0 x5 (\/_[‘ 7]
and 0, x2) respectively, for each unstable po!e Ap {pole pair (Aq, A ))
wilh corresponding normalized right cigenvector V% (right eigcnveclor
1, and its conjugate V). The inputs Uy|; and outputs Y;|; are extended
by appending null vectors of appropriate dimensions. The constant ¢,
(c4 for a complex pole pair) is determined such that the magnitude of
the stabilized pole is M, with Al > 0 chosen by the user. The other
eigenvalues are not changed.

For the case of one real unstable pole, this method corresponds
to minimizing the following cost function in Iewst squares scnse

Xipr — dean Xy = Bea Uy l +ep [[AearV “

with  the  regularization  term cp||Ac~Ml 17 =
c-c,uTr(xicuVVTAEM). More regularization terms are iteratively
added for each other pole or pole pair with amplitude larger than 4.
Hence, the data augmentation method of Chui and Maciejowski [2]
corresponds to the following weighting matrix in the regularization
term {7}

min g
AcaBon

Ty (/‘L.IVAE)

- 5

unstable poles p

o

unstable pole pairs ¢

epTr (A ISAREY

e, T (A({rq ey, T AZ)

oreli” = zp_c,,v,,t;,’u Yo Ve Vo] [V 174]", which is a special
case of cJa{A).

In the companion paper [12], Monte Carlo simulations were con-
ducted 1o compare the performances of a stable reduced order modet
(obtained without regularization) with two full order models, forced to
be stable by applying regularization 1) with W = I, corresponding to
ridge regression [3], [4], and 2) with the data augmentation method [2].
The simulation results, conducted on a finite number of data points in
the presence of noise, illustrate that the use of regutarization allows to
identify stable high order models with better performance than the re-
duced order model. The main conclosions of the comparison between
the two choices for the weighting matrix are that ridge regresston gen-
erally yields (slightly) better results than data augmentation [2], white
ridge regression achieves a much lower variance on the elements of Ae.
These results can also be understood from regularization theory [1],
{3]-{5], where the choice of the identity matrix for the weighting ma-
trix is motivated by the maximum entropy principle, equally penalizing
all directions of the solution. We refer to {12} for a detailed discussion
of the simulation results,

IIl. Concrusion

Subspace methods for the identification of linear time-invariant sys-
tems are known to be asymptotically unbiased. The system matrices are
usually estimated from least squares, based on estimated Kalman filter
stale sequences and the observed inputs and outputs. However, {or a
finite number of data points, it is not guaranteed that the least squares
estimate yields a stable system, even when it is known that the true
linear system is stable. In this note, stability of the estimated system is
imposed by adding a regularization term to the least squares cost func-
tion. The regularization term used here is the trace of a matrix which
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involves the system malrix and a positive (semi) definite weighting ma-
trix. The amount of regularization is calculated by solving a generalized
eigenvalue problem. The data augmentation method proposed by Chui
and Maciejowski can be interpreted as iteratively applying regulariza-
tion with specific choices for the weighting matrix. Different choices
for the weighting matrix can result into different solutions. In ridge re-
gression the identity matrix is used for the weigthing matrix, which
has been motivated by the maximum entropy principle in regulariza-
tion theory.
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A New Bounded Real Lemma Representation for the
Continuous-Time Case

U. Shaked and V. Suplin

Abstraci—A differential linear matrix inequality (DLMI) approach is
introduced for (he solution of various lincar continuous-time control prob-
fems. The proposed method permits the application of linear malrix in-
equalities (LMIS) to the solution of control design problems under uncer-
tainty. These problems are solved for finite horizon linear systems while
considerably reducing the overdesign inherent in previous methods. The
new approach also allows for the solution of the output-feedback centrol
problem for systems belonging to « finite set of uncertain plants with hardly
any overdesign. Four examples are given fo demonstrate the applicability
of the new method.

Index Terms—Differential linear matrix inequality (DLMI), recursive
linear matrix inequalities (LMIs), robust control.

I. INFRODUCTION

Linear matrix inequalities (LMIs) are now widely used to solve var-
ious linear control and filtering problems. The main advantage of the
LMTs He in their ability to tackle multiple objectives and to deal with
polytopic type uncertainties [1]. In the past they were used mainly to
solve stationary problems. The algebraic nature of the Riccati equa-
tions to which these problems cormespond, enables the construction of
equivalent LMIs by applying the Schur comptements formula (2},

Unfortunately, in cases where the systems involved are time-varying
or when the time-horizon is finite, differential or difference LMIs ap-
pear. The degree of freedom that is entailed in solving these incqualities
at each instant of time should be exploited to derive the best solution
that will enable the optimal solution at future instances of time. In the
discrete-time case, recursive sets of LMIs are obtained, and the ques-
tion which was raised in [5} was how to find a sotution for a given set
of difference LMISs at, say, the k-th instant which enables (he best solu-
tion to these EMIs at instances 7 > &, The method developed in [5] was
used to solve robust control and filtering problems and the relationship
between the proposed solutions and the corresponding central’ solu-
tions was discussed.

Tn this note we adopt a similar approach for continuous-time systens
by discretizing the time scale and developing LMIs that resembie the
ones oblained in [5] for the discrete-time case. The results we obtain
here enable the solution of the stale and output-feedback control prob-
lems for time-varying systems over a finite horizon. They also provide
an efficient means for solving the control problem for multiple oper-
ating points and, by an appropriate gridding of the uncertainty intervals,
for the robust control of systems with polytopic uncertainties.

If. SOLUTION OF THE BRI, VIA DISCRETIZATION
Given the following system S{A, B, C):
d=Ar+Bw 2=Czx 200)=0 )

where
x e Rli
w € £1[0, T

syslem state vector,;
exogenous disturbance signal;
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