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Abstract

In this paper, a toolbox LS-SVMlab for Matlab with implementations for
a number of LS-SVM related algorithms is presented. The core of the
toolbox is a performant LS-SVM training and simulation environment
written in C-code. The functionality for classication, function approx-
imation and unsuperpervised learning problems as well time-series pre-
diction is explained. Extensions of LS-SVMs towards robustness, sparse-
ness and weighted versions, as well as different techniques for tuning of
hyper-parameters are included. An implementation of a Bayesian frame-
work is made, allowing probabilistic interpretations, automatic hyper-
parameter tuning and input selection. The toolbox also contains algo-
rithms of xed size LS-SVMs which are suitable for handling large data
sets. A recent overview on developments in the theory and algorithms of
least squares support vector machines to which this LS-SVMlab toolbox
is related is presented in [1].

1 Introduction

Support Vector Machines (SVM) [2, 3, 4, 5] is a powerful methodology for solving prob-
lems in nonlinear classication, function estimation and density estimation which has also
led to many other recent developments in kernel based methods in general. Originally, it
has been introduced within the context of statistical learning theory and structural risk min-
imization. In the methods one solves convex optimization problems, typically by quadratic
programming. Least Squares Support Vector Machines (LS-SVM) are re-formulations to
the standard SVMs [6, 7]. The cost function is a regularized least squares function with
equality constraints, leading to linear Karush-Kuhn-Tucker systems. The solution can be
found efciently by iterative methods like the Conjugate Gradient (CG) algorithm [8]. LS-
SVMs are closely related to regularization networks, Gaussian processes [9] and kernel
sher discriminant analysis[10], but additionally emphasize and exploit primal-dual in-
terpretations. Links between kernel versions of classical pattern recognition algorithms
and extensions to recurrent networks and control [11] and robust modeling [12, 13] are
available. A Bayesian evidence framework has been applied with three levels of inference

http://www.esat.kuleuven.ac.be/sista/lssvmlab
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Figure 1: Schematic illustration of the organization of LS-SVMlab. Each box contains
the names of the corresponding algorithms. The function names with extension “lssvm”
are LS-SVM method specic. The dashed box includes all functions of a more advanced
toolbox, the large grey box those that are included in the basic version.

[14], allowing for probabilistic interpretations, automatic hyper-parameter selection, model
comparison and input selection. Recently, a number of methods [1] and criteria are pre-
sented for the extension of LS-SVM training techniques towards large datasets, including a
method of xed sise LS-SVM which is related to a Nyström sampling with active selection
of support vectors and estimation in the primal space.

This paper is organized as follows. In Section 2 we present the main ideas behind LS-
SVMlab. For the exact syntax of the function calls, we refer to the website and the Matlab
help. Section 3 illustrates the principles of xed size LS-SVM for large scale problems.
This paper concludes with some nal remarks. References to commands in the toolbox are
made in the typewriter font.

2 A birds eye view on LS-SVMlab

The toolbox is mainly intended for use with the commercial Matlab package. However, the
core functionality is written in C-code. The Matlab toolbox is compiled and tested for dif-
ferent computer architectures including Linux, Windows and Solaris. Most functions can
handle datasets up to 20.000 data points or more. LS-SVMlab’s interface for Matlab con-
sists of a basic version for beginners as well as a more advanced version with programs for
multi-class encoding techniques and a Bayesian framework. Future versions will gradually
incorporate new results and additional functionalities.

The organization of the toolbox is schematically shown in Fig.1. A number of functions
are restricted to LS-SVMs (these include the extension “lssvm” in the function name),
the others are generally usable. A number of demos illustrates how to use the different
features of the toolbox. The Matlab function interfaces are organized in 2 principal ways:
the functions can be called either in a functional way or using an object alike structure
(referred to as the model) as e.g. in Netlab [15], depending on the user’s choice. For other
implementations of kernel related techniques, see 1.

1http://www.kernel-machines.org/software.html
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Figure 2: (Left) Indication of the performance for the different training implementations
of LS-SVMlab; (Right) LS-SVM multiclass example with one-versus-one encoding;

2.1 Classification and Regression: trainlssvm, simlssvm, plotlssvm

The Matlab toolbox is built around a fast LS-SVM training and simulation algorithm. The
corresponding calls can be used for classication as well as for function estimation. The
function plotlssvm displays the simulation results of the model in the region of the
training points.

To avoid failures and ensure performance of the implementation, three different implemen-
tations are included. The most performant is the CMEX implementation (lssvm.mex*),
based on C-code linked with Matlab via the CMEX interface. More reliable is the C-
compiled executable (lssvm.x) which passes the parameters to/from Matlab via a buffer
le. Both use the fast conjugate gradient algorithm to solve the set of linear equations
[8]. The C-code for training takes advantage of previously calculated solutions. Less per-
formant but stable, exible and straightforward coded is the implementation in Matlab
(lssvmMATLAB.m) based on the Matlab matrix division backslash command . Func-
tions for single and multiple output regression and classication are available. Training
and simulation can be done for each output separately by passing different kernel func-
tions, kernel and/or regularization parameters as a column vector. It is straightforward to
implement other kernel functions in the toolbox.

The performance of a model depends on the scaling of the input and output data. An
appropriate algorithm detects and appropriately rescales continuous, categorical and binary
variables (prelssvm, postlssvm).

2.2 Classification Extensions: codelssvm, code, deltablssvm, roc

A number of additional function les are available for the classication task. The Re-
ceiver Operating Characteristic curve (roc) can be used to measure the performance of a
classier. Multiclass classication problems are decomposed into multiple binary classi-
cation tasks [16]. Several coding schemes can be used at this point: minimum output,
one-versus-one, one-versus-all and error correcting coding schemes. To decode a given re-
sult, the Hamming distance, loss function distance and Bayesian decoding can be applied.
A correction of the bias term can be done, which is especially interesting for small data
sets.
Example 1: multiclass coding (Fig.2.right)
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Figure 3: Experiments on a noisy sinc dataset with 15% outliers. (Left) Application of
the standard training and hyperparameter estimation techniques; (Right) Application of a
weighted LS-SVM training together with a robust crossvalidation score function, which
enhances the test set performance.

>> % load multiclass data X and Y...
>> [Ycode,codebook,oldcodebook] = code(Y, ’code_OneVsOne’);
>> [gam,sig2] = tunelssvm({X,Ycode,’class’,1,1});
>> [alpha,b] = trainlssvm({X,Ycode,’class’,gam,sig2});
>> Ytest_coded = simlssvm({X,Ycode,’class’,gam,sig2},{alpha,b},Xtest);
>> Ytest = code(Ytest_coded, oldcodebook, codebook, ’codedist_hamming’);

2.3 Tuning, Sparseness, Robustness:tunelssvm,validate,
crossvalidate, rcrossvalidate, leaveoneout,
weightedlssvm, prunelssvm

A number of methods to estimate the generalisation performance of the trained model are included.
The estimate of the performance based on a xed testset is calculated by validate. For clas-
sication, the rate of misclassications (misclass) can be used. Estimates based on repeated
training and validation are given by crossvalidate and leaveoneout. The implementation
of those include a bias correction term. A robust crossvalidation score function [13] is called by
rcrossvalidate. These performance measures can be used to tune the hyper-parameters (e.g. the
regularization and kernel parameters) of the LS-SVM (tunelssvm). Reducing the model complex-
ity of a LS-SVM can be done by iteratively pruning the less important support values (prunelssvm)
[12]. In the case of outliers in the data or non-Gaussian noise, corrections to the support values will
improve the model (weightedlssvm) [12].

2.4 Bayesian Framework: bay lssvm, bay optimize, bay lssvmARD,
bay errorbar, bay modoutClass

Functions to calculate the posterior probability of the model and hyper-parameters at different levels
of inference are available (bay_lssvm). Errors bars are obtained by taking into account model-
and hyper-parameter uncertainties (bay_errorbar). For classication [14], one can estimate the
moderated output (bay_modoutClass). The Bayesian framework makes use of the eigenvalue
decomposition of the kernel matrix. The size of the matrix grows with the number of data points.
Hence, one needs approximation techniques to handle large datasets. It is known that mainly the
principal eigenvalues and corresponding eigenvectors are relevant. Therefore, iterative approximation
methods as the Nyström method [17, 18] are included, which is also frequently used in Gaussian
processes. Input selection can be done by Automatic Relevance Determination (bay_lssvmARD)
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Figure 4: (Left) Moderated output of the LS-SVM classier on the Ripley data set. Shown
are lines of equal posterior class probability. (Right) Santa Fe chaotic laser data (-); itera-
tive prediction using LS-SVMs (- -).

[19]. In this backward variable selection, the third level of inference of the Bayesian framework is
used to infer the most relevant dimensions of the problem.
Example 2: LS-SVM classier on the Ripley data set (Fig.4.left)
>> % load dataset X and Y...
>> [gam,sig2] = tunelssvm({X,Y,’class’,1,1},...

’gridsearch’,{},’crossvalidate’,{X,Y,10,’misclass’});
>> [alpha,b] = trainlssvm({X,Y,’class’,gam,sig2});
>> plotlssvm({X,Y,’class’,gam,sig2},{alpha,b});
>> Ymodout = bay_modoutClass({X,Y,’class’,gam,sig2},Xtest);

2.5 NARX Models and Prediction: predict, windowize

Extensions towards nonlinear NARX systems for time series applications are available [1]. A NARX
model can be built based on a nonlinear regressor by estimating in each iteration the next output
value given the past output (and input) measurements. A dataset is converted into a new input (the
past measurements) and output set (the future output) by windowize and windowizeNARX for
respectively the time series case and in general the NARX case with exogenous input. Iteratively
predicting (in recurrent mode) the next output based on the previous predictions and starting values
is done by predict.

Example 3: Santa Fe laser data prediction (Fig.4.right)
>> % load timeseries X; delays = 50;
>> Xu = windowize(X,1:delays+1);
>> [gam,sig2] = tunelssvm({Xu(:,1:delays),Xu(:,end),...

’function’,1,1,’RBF_kernel’});
>> [alpha,b] = trainlssvm({Xu(:,1:delays),Xu(:,end),...

’function’,gam,sig2,’RBF_kernel’});
>> prediction = predict({Xu(:,1:delays),Xu(:,end),...

’function’,gam,sig2,’RBF_kernel’},X(1:delays),100);

2.6 Unsupervised Learning: kpca

Unsupervised learning can be done by kernel based PCA (kpca) as described by [20], for which
recently a primal-dual interpretation with support vector machine formulation has been given in [21],
which can also be further extended to kernel canonical correlation analysis [1].
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cation problems. The number of support vectors is pre-xed beforehand and the support
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tion to a Nyström sampling with selection of the support vectors according to an entropy
criterion, the LS-SVM model is estimated in the primal space.

3 Solving large scale problems with fixed size LS-SVM

Classical kernel based algorithms like e.g. LS-SVM [6] typically have a complexity of memory
and calculations larger than . Recently, work on large scale methods proposes solutions to
circumvent this bottleneck [1, 20].

For large datasets it would be advantageous to solve the least squares problem in primal weight space
as then the size of the vector of unknowns is proportional to the feature vector dimension and not to
the number of datapoints. However, the feature space mapping induced by the kernel is needed in
order to obtain non-linearity. For this purpose, a method of xed size LS-SVM is proposed [1] (see
g. 5). Firstly the Nyström method [18, 14] can be used to estimate the feature space mapping. The
link between Nyström sampling, kernel PCA and density estimation has been discussed in [22]. In
xed size LS-SVM these links are employed together with the explicit primal-dual LS-SVM inter-
pretations. The support vectors are selected according to an entropy criterion (kentropy). In a last
step a regression is done in the primal space which makes the method suitable for solving large scale
nonlinear function estimation and classication problems. A Bayesian framework for ridge regres-
sion [23, 14] (bay_rr) can be used to nd the optimal regularization parameter.
Example 4: Fixed Size LS-SVM (Fig.6.right)
>> % load data X and Y, the capapcity and the kernel parameter sig2
>> sv = 1:capacity;
>> max_c = -inf;
>> for i=1:size(X,1),

replace = ceil(rand.*capacity);
subset = [sv([1:replace-1 replace+1:end]) i];
crit = kentropy(X(subset,:),’RBF_kernel’,sig2);
if max_c<=crit, max_c = crit; sv = subset; end

end
>> features = AFE(svX,’RBF_kernel’,sig2, X);
>> [Cl3, gam_optimal] = bay_rr(features,Y,1,3);
>> [W,b, Yh] = ridgeregress(features, Y, gam_opt);

An alternative criterion for subset selection was presented by [24, 25], which is closely related to
[18] and [20]. It measures the quality of approximation of the feature space and the space induced by
the subset (featvecsel). Originally [18], the subset was taken as a independent and identiquely
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Figure 6: Illustration of xed size LS-SVM on a noisy sinc function with 20000 data points:
(Left) Fixed size LS-SVM selects a subset of the data to approximate the implicit mapping
to the feature space. The regularization parameter for the regression in primal space is
optimized here using the bayesian framework; (Right) Estimated cost surface of the xed
size LS-SVM based on repeated i.i.d. subsamples of the data, of different subset capacities
and kernel parameters. The cost is measured on a validation set.

distributed (i.i.d.) subsample from the data (subsample), which can be used for fast and rough
performance optimization.

4 Final Remarks

In this paper a Matlab/C toolbox has been proposed. It combines the exibility of Matlab with the
efciency of C-code and numerically stable algorithms suitable for solving larger scale problems.
The toolbox is offered to researchers and practitioners in LS-SVMs and the broad area of support
vector machines, regularization networks, Gaussian processes and kernel based methods, where it
may also be suitable for comparative tests.
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