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ABSTRACT

Motivation: Computational gene prioritization methods are useful
to help identify susceptibility genes potentially being involved in
genetic disease. Recently, text mining techniques have been applied
to extract prior knowledge from text-based genomic information
sources and this knowledge can be used to improve the prioritization
process. However, the effect of various vocabularies, representations
and ranking algorithms on text mining for gene prioritization is still an
issue that requires systematic and comparative studies. Therefore,
a benchmark study about the vocabularies, representations and
ranking algorithms in gene prioritization by text mining is discussed
in this article.
Results: We investigated 5 different domain vocabularies, 2 text
representation schemes and 27 linear ranking algorithms for
disease gene prioritization by text mining. We indexed 288 177
MEDLINE titles and abstracts with the TXTGate text profiling
system and adapted the benchmark dataset of the Endeavour
gene prioritization system that consists of 618 disease-causing
genes. Textual gene profiles were created and their performance
for prioritization were evaluated and discussed in a comparative
manner. The results show that inverse document frequency-based
representation of gene term vectors performs better than the
term-frequency inverse document-frequency representation. The
eVOC and MESH domain vocabularies perform better than Gene
Ontology, Online Mendelian Inheritance in Man’s and London
Dysmorphology Database. The ranking algorithms based on 1-SVM,
Standard Correlation and Ward linkage method provide the best
performance.
Availability: The MATLAB code of the algorithm and benchmark
datasets are available by request.
Contact: shi.yu@esat.kuleuven.be
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Genome-wide experimental methods to identify disease-causing
genes, such as linkage analysis and association studies, are often
overwhelmed by large sets of candidate genes produced by high
throughput techniques for which the low-throughput validation of
candidate disease genes is time consuming and expensive (Risch,
2000). Computational prioritization methods can rank candidate
disease genes from these gene sets according their likeliness of
being involved in a certain disease. Moreover, a systematic gene
prioritization approach that integrates multiple genomic datasets
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provides a comprehensive in silico analysis on the basis of
multiple sources of existing knowledge. Several computational gene
prioritization applications have been previously described.

1.1 Previous approaches
Freudenberg and Propping prioritize disease relevant human genes
by measuring similarities among GO annotations and validate
the results in OMIM database (Freudenberg and Propping, 2002).
GeneSeeker (Van Driel et al., 2005) provides a web interface
that filters candidate disease genes on the basis of cytogenetic
location, phenotypes and expression patterns. DGP (disease gene
prediction) (Lopez-Bigas and Ouzounis, 2004) assigns probabilities
to genes based on sequence properties that indicate their likelihood
to the patterns of pathogenic mutations of certain monogenetic
hereditary disease. PROSPECTR (Adie et al., 2005) also classifies
disease genes by sequence information but uses a decision tree
model. SUSPECTS (Adie et al., 2006) integrates the results of
PROSPECTR with annotation data from Gene Ontology (GO),
InterPro and expression libraries to rank genes according to the
likelihood that they are involved in a particular disorder. G2D
(candidate genes to inherited diseases) (Perez-Itratxeta et al., 2005)
scores all concepts in GO according to their relevance to each
disease via text mining. Then, candidate genes are scored through
a BLASTX search on reference sequence. POCUS (Turner et al.,
2003) exploits the tendency for genes to be involved in the same
disease by identifiable similarities, such as shared GO annotation,
shared InterPro domains or a similar expression profile. eVOC
annotation (Tiffin et al., 2005) is a text mining approach that
performs candidate gene selection using the eVOC ontology as a
controlled vocabulary. It first associates eVOC terms and disease
names according to co-occurrence in MEDLINE abstracts, and then
ranks the identified terms and selects the genes annotated with the
top-ranking terms. In the work of Franke et al. (Franke et al., 2006),
a functional human genetic network was developed that integrates
information from KEGG, BIND, Reactome, human protein reference
database, GO, predicted-protein interaction, human yeast two-
hybrid interactions and microrray coexpressions. Gene prioritization
is performed by assessing whether genes are close together within
the connected gene network. Endeavour (Aerts et al., 2006) takes
a machine learning approach by building a model on a training
set, then that model is used to rank the test set of candidate
genes according to the similarity to the model. The similarity is
computed as the correlation for vector space data and BLAST score
for sequence data. Endeavour incorporates multiple genomic data
sources (microarray, InterPro, BIND, sequence, GO annotation,
Motif, Kegg, EST and text mining) and builds a model on each
source of individual prioritization results. Finally, these results are
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combined through order statistics into a final score that offers an
insight on how related a candidate gene is to the training genes on
the basis of information from multiple knowledge sources. More
recently, CAESAR (Gaulton et al., 2007) has been developed as
a text mining-based gene prioritization tool for complex traits.
CAESAR ranks genes by comparing the standard correlation of
term-frequency vectors (TF profiles) of annotated terms in different
ontological descriptions and integrates multiple ranking results by
arithmetical (min, max and average) and parametric integrations.

1.2 Gene prioritization in imbalanced datasets
The performance of the training–testing approach of gene
prioritization can be evaluated by checking the positions of real
relevant genes in the ranking of a test set. A perfect prioritization
should rank the gene with the strongest causal link to the biomedical
concept, represented by the training set, at the highest position (at
the top). The interval between the real position of that gene with the
top is regarded as the error. For a prioritization model, minimizing
this error is equal to improving the ranking position of the most
relevant gene and in turn it reduces the number of irrelevant genes
to be investigated in biological experimental validation. So a model
with smaller error is more efficient and accurate to find disease
relevant genes and that error is also used as a performance indicator
for model comparison.

A potential problem for this training–testing approach is that
ranking candidate genes in the whole genome is a class-imbalanced
problem because the majority of genes are not related to the
biomedical concept represented by the training set. In a class
imbalanced dataset, standard discriminant algorithms are often
biased towards the majority class. Hence, they are more likely to
cause a high false positive rate when the majority is labeled as
negative samples. For this imbalance problem, a strategy of one-
class classification is often proposed to reduce the error rate on the
majority class (Estabrooks et al., 2004; Tax, 2002). The problem
of one-class classification can be easily transformed to one-class
prioritization as an information retrieval problem since classification
is often based on ranking of distances to the density of class samples.
Asimple one-class prioritization model is to rank the candidate genes
by their distances to the center of training genes, which is equal to
the similarity value obtained by standard correlation on data with
the same norm. Another complex model looks for a small coherent
subset of genes, which can be achieved by finding a small-radius
ball that covers as many training genes as possible (Tax and Duin,
1999). Obviously, the genes lying within the ball are more likely to
be relevant than those lying outside. Thus, prioritization is performed
by ranking the distance of candidate genes to the center of the ball.
In a similar problem, one class Support Vector Machines (De Bie
et al., 2007; Scholkopf et al., 2001) is applied to separate most of the
training genes from the origin using a hyperplane and prioritization
can be achieved by ranking the distance to the hyperplane. The
prioritization model can also be extended by clustering methods
and vary by different criteria of clustering and distance measures.
Most of these formulations are similar in the way assigning a
convex score function on the basis of Euclidean distance. The global
minimum of this score function is at the center of the training
samples (or the ball), then it increases linearly towards the outside.
If the number of training genes is large, the score function can be
further regularized by penalizing outliers among the training genes.

After regularization, some outliers in the training set are regarded as
irrelevant samples. Hence, a ball with smaller radius is obtained and
it might improve the precision of prioritization. In this article, we
will regard gene prioritization as an imbalanced learning problem
and employ several one-class prioritization algorithms and compare
their performance.

1.3 Gene prioritization in high dimensional datasets
Current genomic datasets are usually high dimensional. As known,
high-dimensional data is a double-edged sword for statistical
analysis (Donoho, 2000). For the task of gene prioritization the
high dimensionality of the dataset influences two aspects: First,
discriminating relevant genes from irrelevant ones is more likely
to be a linear problem because it is often easier to find a
separating hyperplane in higher dimension. Second, processing
high-dimensional data with parametric methods is difficult because
these methods require an appropriate ratio of samples and
variables. Moreover, the complexity of estimation, optimization
and integration of these methods grows exponentially with the
dimension. The second problem is also known as the curse of
dimensionality (Bellman, 1961). For these reasons, in this aricle
we will focus on several non-parametric ranking methods for
high-dimensional data.

1.4 Approach and motivation
We adopted a high-dimensional benchmarking dataset generated
by the biomedical literature mining system TXTGate (Glenisson
et al., 2004). TXTGate indexes titles and abstracts of MEDLINE
with different vocabularies and weighting schemes. Then, the
documents × terms matrix is transformed into genes × terms
matrix according to the curated gene-to-doc mapping in EntrezGene.
These gene-by-term vectors, denoted as textual profiles, represent
existing expert knowledge about genes from free text and have been
successfully applied in text-based gene clustering (Glenisson et al.,
2004) and gene prioritization (Aerts et al., 2006) applications. We
could also use other non-textual profiles, such as microarray data. In
Endeavour (Aerts et al., 2006), the similarity of genes is measured
by standard correlation and the prioritization performance on textual
gene profiles is higher than for other data sources [Supplementary
Fig. 1 of (Aerts et al., 2006)]. This is partly because results
on textual profiles are biased towards existing knowledge, since
evaluation of prioritization is obtained by benchmarking disease
related genes that are already known. On the other hand, the low
performance on some other datasets might be caused by several
factors, for example, the pre-processing methods of original data, the
influence of normalization methods, etc., so they are not suitable for
benchmark datasets in our problem. In text mining approaches, the
effect of different vocabularies and representations is still an open
question and they have been mostly selected empirically in previous
approaches. The importance of text mining in gene prioritization
makes its optimization an important issue. In this article, we will
focus on these implied problems: (1) choice of vocabularies in text
mining, (2) choice of representations for text-based data vectors and
(3) comparison of different linear ranking algorithms in unbalanced
datasets.
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2 DATASETS AND METHODS

2.1 Datasets
2.1.1 Textual profiles of genes We created 10 groups of textual gene
profiles on the text mining platform TXTGate. Various literature indices were
created based on title text and abstract text of MEDLINE publications and
linked MEDLINE information presented in EntrezGene. Five vocabularies
(Table 1) derived from public resources act as perspective on the textual
information with different levels of detail. The first vocabulary is derived
from GO. The names of all GO terms are retrieved from the online repository,
then processed by different kind of filters. Through these filters, the terms
are stemmed (Porter, 1980), the stopwords and punctuations are removed.
After this treatment, we obtained a GO domain vocabulary of 23 857 terms.

The second vocabulary is based on the Medical Subject Headings (MeSH),
the National Library of Medicine’s controlled vocabulary thesaurus. After
the same pre-processing procedures as for the GO vocabulary, we obtained
30 136 terms for MeSH vocabulary.

The third vocabulary is retrieved from the online mendelian inheritance
in man’s (OMIM) morbid map, the cytogenetic location of all disease genes
present in OMIM and their associated diseases and consists of 5576 terms.

The fourth vocabulary is based on the London Dysmorphology Database
(LDDB), which contains information on dysmorphic and neurogenetic
syndromes. We extracted dysmorphology concepts as vocabulary terms and
935 terms were obtained after pre-processing.

The fifth domain vocabulary is drawn from eVOC, an ontology consisting
of four orthogonal controlled vocabularies (anatomical system, cell type,
pathology and developmental stage) subsuming the domain of human gene
expression data. After filtering, we obtained 1788 eVOC terms.

Among these vocabularies, four of them are also used in TXTGate system.
Using these controlled vocabularies, we indexed 288 177 MEDLINE titles
and abstracts with reference to the mapping of EntrezGene. The terms
from the domain vocabulary are regarded as a bag-of-words hence the
indexed documents are represented as vectors in the space spanned by these
terms. Based on the gene-to-doc mappings in EntrezGene, multiple linked
documents of a same gene were combined as a single averaged gene profile
and all gene profiles are normalized to obtain gene vectors on a unit space. For
each domain vocabulary we investigated representation schemes to calculate
the value of terms in vectors: inverse document frequency (IDF) and term-
frequency × inverse document frequency (TFIDF). Apart from these, we had
also implemented a binary scheme as a simplest baseline of representation.
However, the performance of binary scheme is not comparable with IDF and
TFIDF ones so it is not presented in this article. After combining different
vocabularies and representations, we obtained 10 groups of textual profiles.
The overview of the size and overlapping terms of vocabularies after indexing
is presented in Table 1. In Table 2 some highest ranking terms and lowest
ranking terms are listed as examples. To compare the effect of vocabularies
in text-based gene prioritization, we also created a group of special profiles
that uses no controlled vocabulary in the text mining procedure, denoted as
no-voc profile. When no vocabulary is used, all the terms once appearing once

in the referenced MEDLINE titles and abstracts in EntrezGene are regarded
as useful annotations for text mining. The conceptual overview of obtaining
textual gene profiles and the formulations for computing IDF and TFIDF
representations are available in the Supplementary Material. The details of
profiling genes using textual information is presented in the TXTGate paper
(Glenisson et al., 2004).

2.1.2 Benchmark dataset of disease relevant genes We used the
benchmark dataset of Endeavour (Aerts et al., 2006), which consists
of 618 relevant genes from 29 diseases. Genes from the same disease
were constructed as a disease-specific training set used to benchmark the
prioritization performance. The name of diseases and the number of genes
related to the diseases are shown in Table 1 of the Supplementary Material.

2.2 Prioritization algorithms
We implemented 27 models of non-parametric prioritization algorithms
categorized in three different types: regularized one-class Support Vector
Machines, k-nearest neighbor method and clustering method, which is
implemented as k means clustering and hierarchical clustering.

2.2.1 One-class SVM The one-class SVM method, suggested by
Scholkopf (Scholkopf et al., 2001), extends the binary SVM classification
scheme into one-class learning by mapping the training data that contains just
one class into a high-dimensional Hilbert space via a kernel function. The
algorithm iteratively finds the maximal margin hyperplane that best separates
the training data from the origin. In the present article, we only use linear
kernels because the dimensionality of the data is very high. In prioritization
task, the decision function of one-class SVM in (Scholkopf et al., 2001) is
extended to a prioritization function by dropping the sign function and the
constant value ρ solved by one-class optimization.

2.2.2 k-nearest neighbor The nearest neighbor methods we used in this
article are proposed by (Tax, 2002). In the present article, we tried three
different k values (k =1,2,3). When k≥2, three varieties of nearest neighbor
algorithms were implemented, denoted as κ , δ and γ , according to the
differences of averaging the distance of test data to the k nearest neighbors.

2.2.3 K-means clustering The objective function of K-means is

min
�ck

∑
i

(‖�xi −�ck‖2). (1)

The prioritization is achieved by ranking the distance of the test gene to
the centroid(s). In this article we tried three different K values (K =1,2,3).
Notice that when K =1 and if all data have the same norm, the K-means
algorithms is equivalent to the standard correlation (Pearson correlation)
method, which directly measures the angular separation of candidate gene
between averaged vectors of training genes around the origin. If the data is
clustered into more than one clusters, there is a choice to select the maximum,
minimum or average distance of a test gene to multiple centroids as the
prioritization score.

Table 1. Overview of the sizes of domain vocabularies, the number of overlapping terms among vocabularies and the number of indexed human genes through
textual profiling

Domain vocabulary Number of terms Number of overlapping terms Number of indexed human genes

GO MeSH OMIM eVOC LDDB

GO 10 249 – 23 875
MeSH 17 201 2812 – 23 875
OMIM 3462 526 1587 – 23 875
eVOC 1496 277 772 339 – 23 865
LDDB 933 65 331 206 103 – 16 212

i121



[16:32 8/8/03 Bioinformatics-btn291.tex] Page: i122 i119–i125

S.Yu et al.

Table 2. Examples of the most frequent terms and the least frequent terms in different vocabularies

GO MeSH OMIM LDDB eVOC

Highest Rank

1 Cell Protein Cell Growth Cell
2 Protein Express Protein Brain Human
3 Express Cell Express Liver Associ
4 Gene Gene Gene Muscl Induc
5 Activ Activ Activ Kidnei Factor
6 Function Result Function Lung Type
7 Regul Suggest Specif Heart Depend
8 Specif Function Bind Calcium Develop
9 Sequenc Studi Factor Skelet Famili
10 Induc Human Associ Lipid Site

Lowest Rank (freq = 1)

1 Coniferin Abelmoschu Meleda diseas Arpal bone fusion Spermatozoid
2 Protein autoubiquitin Tyrpcidin Mast syndrom Muscular build 66 yr
3 Acid ammonia Intern agenc Lindau Enchondromata Myofibrobast
4 Prenol Brain injuri chronic Leydig cell adenoma Absent parathyroid Toddler
5 Phenylserin Integrin alphaxbeta2 Kina Flat face Superior vestibular nuclei
6 Adenin metabol Mytilida Kappa light chain defici Enlarg lymph gland Hensen cell
7 Class iii pi3k Myofasci Bradyopsia Abnorm scar format Ag 86
8 Nutrient import Enoxaprain Woud Cowlick Peptic cell
9 Ey antenn disc develop Nasal provoc test Zlotogora Septum pellucidum Endoth
10 Liga activ Celliprolol Anisomastia Point chin Medial accessori

2.2.4 Hierarchical clustering Similarly, the data can also be clustered
by linkage methods. In this article, we tried four different linkage methods
(Single linkage, complete linkage, average linkage and Ward linkage) to
cluster training genes into two clusters and ranked the candidate gene
according to its distance to the clustering centroids either by max, min or
average function. In total 12 different hierarchical clustering methods are
used in this article.

Details about the prioritization algorithms used in this article are available
in the Supplementary Material.

2.3 Evaluation of prioritization
2.3.1 Leave one out (LOO) validation The performance of algorithms
was evaluated by LOO prioritization. In each experimental test on a disease
gene set, which contains K genes, one gene, termed the ‘defector’ gene, was
deleted from a set of training genes and added to M randomly selected test
genes, denoted as the test set. We used the remaining K −1 genes, denoted
as the training set, to train our prioritization model. Then, we prioritized the
test set, which contains M +1 genes by the trained model and determined
the ranking of that defector gene in test data. The prioritization performance
was evaluated by the error between the perfect ranking and the combined
ranking position of all defector genes in the disease set with the following
equation

Error =1− M

M −1

[
1− 1

K

K∑
i=1

ri

M

]
, (2)

where ri is the ranking position of the i-st gene in the disease set, K is the
number of genes in the disease set, M

M−1 is a normalization term to make the
perfect ranking equal to 1 and leads the Error to 0. In order to benchmark
algorithms in a class imbalanced dataset, we set the number of random genes
M to 9999.

2.3.2 Similarity of prioritization We used Spearman’s rank correlation to
compare the ranking order of two prioritization results P1 and P2 obtained

on identical n genes,

ρ =1− 6
∑

d2
i

n(n2 −1)
, (3)

where di is the difference between rankings in P1 and P2 on corresponding
genes. For each disease set, we randomly selected 99 genes and calculated a
Spearman correlation matrix when each defector gene is left out. Then, we
averaged the Spearman matrices for all the genes in one disease set. For all
disease sets, 29 Spearman matrices were further averaged and the final matrix
was used to compare the similarity of all algorithms on ranking results.

3 RESULTS AND DISCUSSION
We compared the performance of the prioritization algorithms and
textual gene profiles by LOO cross-validation on 9999 random
genes. Some significant results are shown in Figures 2 and 3.
The complete table of overall benchmark result is shown in the
Supplementary Material (Table 2). The performance obtained on
IDF profiles is significantly better than for TFIDF profiles. When
IDF profiles are used, eVOC and MeSH domain vocabularies are
significantly better than GO, LDDB and OMIM. Generally, the
errors of ranking algorithms based on 1-SVM, standard correlation
and average ward linkage are smaller than other algorithms.

3.1 Representation schemes: IDF performs better than
TFIDF

The comparison of errors on the textual representation schemes of
terms shows that IDF is generally better than TFIDF in text mining-
based gene prioritization. In Figure 1, we compared the errors of
two representation schemes on all domain vocabularies and three
best ranking algorithms. The minimal error obtained by IDF profile
is (eVOC, 1SVM, 0.0477) while the minimal one by TFIDF is (GO,
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Fig. 1. Errors of LOO prioritization results on different vocabularies,
representations and ranking algorithms. The figure shows the prioritization
results obtained by three best ranking algorithms. The top three figures
compare the performance of different vocabularies and representation
schemes. The figure on the fourth row compares three ranking algorithms.
Since the validations use 9999 random genes, the deviations of all
prioritization errors are smaller than 0.0001 so they are not mentioned
explicitly in the figures.

1SVM, 0.0916), which means the error of best IDF profile is almost
50% less than the TFIDF one. Moreover, when the same domain
vocabulary and same ranking algorithm is used, error with IDF
is always smaller than with TFIDF. This is mainly because some
rare terms play an important role in distinguishing the term vectors
of genes from disease to disease, and through IDF representation,
these rare discriminative terms get large values and dominate the
prioritization results. In contrast, TFIDF tries to balance the effects
of IDF and TF by multiplying them, which in fact weakens the
discriminative effect for gene prioritization.

3.2 Domain vocabularies: eVOC and MESH perform
better than LDDB, GO and OMIM

When the same algorithm and representation are applied, the errors
obtained on eVOC and MESH vocabulary are much smaller than
other vocabularies. For example, using 1-SVM and IDF, the errors
on eVOC (0.0477) and MESH (0.0497) are much better than LDDB
(0.0877), GO (0.0758) and OMIM (0.0714). The same situation
happens for other algorithms as well (see Supplementary Material
Table 1). This result is interesting since the size of the MESH
vocabulary is almost 10 times larger than that of eVOC. The actual
reason of why they outperform others is an issue requiring further
investigation. According to our experimental results obtained from
a random vocabulary, the size of the random vocabulary directly
determines the error of prioritization result (Fig. 2). The larger the
random vocabulary the smaller the error in prioritization. However,
the size of domain vocabulary does not impact the performance
directly, it is the semantic content of the vocabulary that matters.
This also raises an open question about the existence of an optimal
vocabulary for the problem of gene prioritization. Discussion about
this topic would also be important but it is beyond the scope of this
article.

3.3 Prioritization algorithms
In the beginning of the article, we proposed the strategy of one-
class prioritization and the effect of regularization with respect to
the issue of class imbalancing. According to the benchmark result
of 27 different linear non-parametric ranking algorithms, 1-SVM,
correlation and ward average linkage are the three best algorithms.

These three ranking algorithms are similar in the sense that their
ranking scores are almost equal to the distance toward the density
center of the training genes. In standard correlation, the ranking
score is equal to the distance from the candidate gene to the center
of all training genes. In 1-SVM, the score is the distance to the
center of the ball that covering the training genes by regularization.
During regularization, some training genes that are far from the
original center are removed and the new center is recalculated.
The ward linkage method is also a well-known agglomerative
hierarchical clustering method and it is reported with good results in
many information retrieval and pattern detection applications. In the
implementation of ward average linkage in this article, the number
of clusters is set to 2 and the average distance towards the 2 ward
linkage clustering centroids is used as ranking score.

3.4 Clustering of prioritization algorithms
We used the Spearman correlation to measure the similarity of
gene prioritization results obtained by two different algorithms.
Similar to LOO cross-validation, in each disease benchmark set,
a ‘defector’ gene was left out and mixed with 99 random genes.
To compare the results on different algorithms, the random gene
list was kept identical when the same gene was left out. Then
the average correlation of the disease benchmark set is computed,
furthermore, the final average correlation of all 29 disease sets
is obtained and regarded as the correlation of the prioritization
algorithms. Based on the pairwise Spearman correlation matrix of
all 27 prioritization models presented in the Supplementary Material
(Table 3), we clustered these 27 models in the dendrogram by
complete linkage (Fig. 3). Standard correlation is highly similar to
ward average linkage in ranking (Spearman correlation = 0.9915).
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Fig. 2. Comparison of prioritization performance using text profiles based
on random vocabularies, domain vocabularies and no vocabulary. The
horizontal line is the error of prioritization obtained by no-voc profile, which
contains 259 815 terms resulted from text mining process without using
any vocabulary. Based on this no-voc profile, we randomly selected several
subsets of terms and created five random-voc profiles as the comparison sets
to the domain vocabulary profiles. The performance obtained by domain
vocabulary profiles is compared with the random-voc profiles that have the
same number of terms. On the X-axis, the profiles are sorted from smaller size
to larger size. As it shows, the performances of random-voc profiles increase
monotonically with the vocabularies size. On the contrary, the performance
of domain vocabulary profile does not solely depend on the size of vocabulary
but is mainly determined by its semantic content.

1-SVM is similar to several minimal distance methods. Nearest
neighbor methods and maximal distance methods are quite different
from the forementioned methods.

3.5 Selecting the best configuration in text
mining-based gene prioritization

From now on, for conciseness, we use the term configuration
to denote the triplet choice of domain vocabulary, representation
scheme and ranking algorithm. On the basis of the experimental
results and previous discussion, the configuration has a strong
impact on the quality of prioritization model. According to the
result of full benchmark experiments, the improperly selected
configuration could lead to a large error (no-voc, single max, TFIDF,
0.3757) on prioritization, which is >7 times larger than the error of

Fig. 3. A dendrogram of clustering 27 prioritization models through
Spearman correlation analysis.

a carefully selected configuration (eVOC, 1-SVM, IDF, 0.0477). If
the prioritization result is used as the reference list in biological
validation, the efficiency gained from a good configuration will be
remarkable.

3.6 Results of profile integration
According to the results on domain vocabulary-based profiles, we
picked the best two IDF profiles (eVOC and MESH), the best
two TFIDF profiles (GO and MESH) and the best of each of
them (eVOC-IDF and MESH-TFIDF) and integrated them by three
integration functions (min, max and average). Although there are
some consistent improvement by integrating text profiles, however,
the improvements are too small to be relevant so we do not discuss
it in this article. The explanation of integration methods and results
are available in the Supplementary Material (Table 4).

4 CONCLUSION
In this article, we presented an approach of comparing different
configurations to create and rank textual profiles for gene
prioritization. By integrating the TXTGate text mining profiling
system and prioritization framework from the Endeavour system,
we investigated 5 domain vocabularies, 2 text mining weighting
schemes and 27 ranking algorithms (270 configurations). Our
discussion can be mainly concluded as the following: controlled
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domain vocabulary provides an effective view to conduct text
mining for gene prioritization, moreover, the impact of the selection
of configurations on prioritization performance is significant. For
the representation of vector-based data, IDF representation of terms
causes less error than TFIDF representation. eVOC and MESH
domain vocabularies give smaller errors than the GO, OMIM
and LDDB vocabularies. Among the 27 models we benchmarked,
1-SVM, standard correlation and ward linkage method are the
better candidates for ranking algorithm. In short, the selection of
configurations is an important factor of the quality of disease-
oriented prioritization model by text mining.
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