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ABSTRACT

ENDEAVOUR (http://www.esat.kuleuven.be/endeavour
web; this web site is free and open to all users
and there is no login requirement) is a web resource
for the prioritization of candidate genes. Using
a training set of genes known to be involved in
a biological process of interest, our approach
consists of (i) inferring several models (based on
various genomic data sources), (ii) applying each
model to the candidate genes to rank those
candidates against the profile of the known genes
and (iii) merging the several rankings into a global
ranking of the candidate genes. In the present
article, we describe the latest developments of
ENDEAVOUR. First, we provide a web-based user
interface, besides our Java client, to make
ENDEAVOUR more universally accessible. Second, we
support multiple species: in addition to Homo
sapiens, we now provide gene prioritization for
three major model organisms: Mus musculus,
Rattus norvegicus and Caenorhabditis elegans.
Third, ENDEAVOUR makes use of additional data
sources and is now including numerous databases:
ontologies and annotations, protein–protein inter-
actions, cis-regulatory information, gene expression
data sets, sequence information and text-mining
data. We tested the novel version of ENDEAVOUR on
32 recent disease gene associations from the
literature. Additionally, we describe a number of
recent independent studies that made use of
ENDEAVOUR to prioritize candidate genes for obesity
and Type II diabetes, cleft lip and cleft palate, and
pulmonary fibrosis.

BACKGROUND

With the recent improvements in high-throughput tech-
nologies, many organisms have seen their genomes
sequenced and, more importantly, annotated. This process
leads to the generation of a large amount of genomic data
and the creation and maintenance of corresponding
databases. However, converting genomic data into bio-
logical knowledge to identify genes involved in a
particular process or disease remains a major challenge.
Nevertheless, there is much evidence to suggest that
functionally related genes often cause similar phenotypes
(1–3). To identify which genes are responsible for which
phenotype, association studies and linkage analyses are
often used, resulting in large lists of candidate genes. In
many cases, the list of candidates can be narrowed down
to a few dozen. However, it is generally too expensive and
time-consuming to perform experimental validation for all
these candidates. Therefore, these candidates may be
prioritized to first validate the best ones. Given the
amount of genomic data publicly available, it is often
prohibitive to perform the prioritization manually and
consequently, there is a need for computational
approaches.
During the past 5 years, the bioinformatics community

has developed several strategies to address this question,
and several tools are available online (4,5). To our
knowledge, all the tools use the concept of similarity. It
is based on the assumption that similar phenotypes are
caused by genes with similar or related functions (1–3).
However, the tools differ by the strategy they adopt in
calculating the similarity (either between the candidate
genes and the phenotypes or between the candidate
genes and the training genes) and by the data sources
they use. The most commonly used data sources are text-
mining data, gene expression data and sequence informa-
tion. Additionally, phenotypic data, protein–protein
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interactions, ontologies and cis-regulatory information
are sometimes included. However, most of the existing
approaches mainly focus on the combination of few data
sources. For instance, the combining gene expression and
protein interaction data method proposed by Ma et al. (6)
combines expression and interaction data. Several meth-
ods only rely on literature and ontologies: BITOLA (7),
POCUS (8) Gentrepid (9), G2D (10) and the method
defined by Tiffin et al. (11). In contrast, systems that use
more data sources have recently been designed, such as
CAESAR (12), GeneSeeker (13), SUSPECTS (14), TOM
(15) and ENDEAVOUR (16). For a more detailed description
of the available tools, see the reviews by Oti and Brunner
(5) or by Zhu and Zhao (4).
We previously presented the concept of gene prioritiza-

tion through genomic data fusion and its implementation
called ENDEAVOUR (16). This tool requires two inputs: the
training genes, already known to be involved in the
process under study, and the candidate genes to prioritize.
ENDEAVOUR produces one output: the prioritized list of
candidate genes, along with the rankings per data source.
The algorithm is made up of three stages, called the
training, scoring and fusion stages. In the training stage,
ENDEAVOUR uses the training genes provided by the user to
infer several models, one per data source. For example,
with ontology-based data sources, genes are annotated
with several terms and reciprocally one term can be
associated to several genes. The algorithm selects only the
significant terms, the ones that are over-represented in the
training sets compared to the complete genome. Hence,
the model consists of these significant terms together with
their corresponding P-values that reflect the significance of
the enrichment. In the scoring stage, the model is used to
score the candidate genes and rank them according to
their score. For ontologies, the algorithm scores each
candidate independently by combining the P-values of its
associated terms that are, at the same time, present in the
model. The scores are then used to rank the candidates
based on this one data source. In the final stage, the
rankings per data source are fused into one global ranking
using order statistics. Among the existing methods, the
order statistics has the advantage of avoiding penalizing
genes that are absent from a given data source. Indeed, the
genomic data sources are almost always incomplete. For
instance, some genes do not have any ontology annota-
tions, while other genes do not have their corresponding
probes spotted on the microarray platform for which data
is available. The order statistics allows us to combine the
rankings per data source, taking missing values into
account. Thus, the use of ‘unbiased’ data sources (e.g.
gene expression data, cis-regulatory motifs and protein
sequences), together with the use of the order statistics,
allows us to obtain results that are not overly biased
towards the most studied genes (16). The use of several
data sources is indeed an important strength of our
approach: combining two data sources, although possibly
incomplete, can be more powerful than either individual
data source, as shown by our validation experiments (16).
The fact that our approach does not rely only on a single
data source also reinforces its robustness to noisy data
sources like microarray data. More details about the

training and scoring methods, the data sources and the
order statistics can be found in Supplementary Tables 1
and 2 and in Supplementary Note 1.

In the present article, we describe a novel intuitive web
interface in addition to the original Java client.
Furthermore, three major model organisms have been
added to the application: M. musculus, R. norvegicus and
C. elegans (Danio rerio and Drosophila melanogaster
versions will be made available in 2008). Finally, novel
data sources have been integrated including numerous
protein–protein interaction databases and large species-
specific expression data sets, bringing the number of
available data sources to 26. Apart from our extensive
validation (16), other recent independent publications
confirm that ENDEAVOUR is efficient in identifying novel
disease genes. Indeed, ENDEAVOUR was recently applied to
analyze the adipocyte proteome (17) and to propose novel
genes involved in Type II diabetes (18), cleft lip and cleft
palate phenotypes (19), and pulmonary fibrosis (20).

OUTLINE OF THE ENDEAVOUR WEB SERVER

ENDEAVOUR was first implemented as a Java client appli-
cation interacting with a SOAP server and a MySQL
database. To make it more universally accessible, we have
developed a PHP web-based interface that runs with the
most common web browsers, without the need for Java to
be installed. It is freely accessible and there is no login
requirement.

A four-step wizard guides the user through the pre-
paration of the prioritization (Figure 1). The first step is to
choose the organism: human, rat, mouse or worm. The
second step is to specify the training set. The user can
input a mixture of chromosomal bands, chromosomal
intervals, gene symbols, EnsEMBL (21) gene identifiers,
KEGG (22) identifiers, Gene Ontology (23) identifiers or
OMIM (24) disease names. Each input has to be prefixed
according to its type. The rules are explained in the
Supplementary material and in the online manual. The
genes corresponding to the input are retrieved and loaded
into the application. The third step is to select the data
sources to be used. The data sources available depend on
the organism chosen in the first step. Some of these are
species specific (e.g. gene expression data sets) while others
are more generic (e.g. Gene Ontology annotations). The
last step lets the user specify the candidate genes applying
the same rules as in the second step. The user launches the
prioritization by using a dedicated button. The computa-
tion time is dependent on the number of data sources
used, the number of candidates and the load on our
servers. The application can handle the prioritization of
hundreds of genes (e.g. the average computation time for
400 candidates using 10 data sources is 19.14 s over 100
repeats). Warnings and errors, such as unrecognized gene
identifiers, are displayed in the console located in the
middle of the main windows. The results are displayed at
the bottom of the main page in three panels. The first
panel contains the sprint plot, a graphical representation
of the rankings with one column per data source plus an
additional one for the global ranking. The genes are
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represented as boxes and the top ranking boxes are
coloured for better interpretation of the results. The
second panel contains the raw scores and ranks for each
gene in each data source. The user can sort the columns
according to the global ranking or to any ranking per data
source. The third panel allows one to export the results as
a TSV spreadsheet or as an XML file. The user can also
save the sprint plot using several picture formats (i.e.
PNG, JPG and GIF).

NEW MODEL ORGANISMS AND MORE DATA
SOURCES

ENDEAVOUR is designed as a generic prioritization tool and
is equally useful for the prioritization of candidate disease
genes as for candidate members of biological pathways and
processes. This is illustrated in our previous publication
(16) where we used ENDEAVOUR to identify downstream
genes of myeloid differentiation. Since the fundamental
study of biological processes is predominantly performed
in model organisms, we decided to extend our framework
to several model organisms. Currently, gene prioritization
can be performed for M. musculus, R. norvegicus and
C. elegans, and we are also developing the versions for
D. rerio and D. melanogaster. We have designed the web
server so that the organism-specific versions use the same
method for each generic data source (e.g. Gene Ontology
annotations).

The key strength of ENDEAVOUR resides in the fact that
a lot of data sources are available and the user can
select the ones that best correspond to the biological
question under study. There are 8, 11, 12 and 20 data
sources available, respectively, for R. norvegicus,

C. elegans, M. musculus and H. sapiens, which, in total,
result in 26 distinct data sources. They can be classified
into six categories: ontologies, interactions, expression,
regulatory information, sequence data and text-mining
data. Ontologies are structured vocabularies that are used
to describe the function of the gene products. Ontologies
give more insight on the molecular functions performed
[Gene Ontology (23) and SwissProt (25)], on the biological
processes involved in [Gene Ontology and KEGG (22)],
on the cellular components in which the gene products
are active (Gene Ontology) and on the active domains of
the proteins [InterPro (26)]. Interaction data come from
databases that collect pairs of proteins that interact either
physically or genetically. BIND (27) and DIP (28) curate
the experimentally determined interactions collected from
large-scale interaction and mapping experiments done
using yeast two hybrid, mass spectrometry, genetic
interactions and phage display. MINT (29) and MIPS
(30) mine the literature, either manually or automatically,
to find experimentally verified protein interactions. HPRD
(31) does the same with an emphasis on domain archi-
tecture, post-translational modifications, interaction net-
works and disease association. IntAct (32) and BioGrid
(33) collect physical and genetic interactions by combining
analysis of high-throughput experiments and literature
curation. STRING (34) and IntNetDb (35) are large
databases that contain all kinds of interactions. They
rely on a statistical framework to integrate data coming
from numerous experiments and databases (including
several databases described above), and, additionally,
the interactions are transferred across the different
organisms, when applicable. Regarding the expression
data, the preferred studies are the ones that include
a large number of tissues and a large number of genes.

Figure 1. ENDEAVOUR: the algorithm behind the wizard. Once the organism of interest is chosen (Step 1), the user can specify the training genes
(Step 2). Step 3 lets the user select the data sources that will be used to build the models. The models summarize the training gene information. The
candidate genes specified by the user in Step 4 are then scored against the model. This produces one ranking per data source plus one global ranking
obtained by fusion of the rankings per data source. The global ranking together with the rankings per data source are returned to the application and
can be viewed in the ‘Results’ panel.
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Two sets are available for H. sapiens [Su et al. (36) and
Son et al. (37)], three for M. musculus [Su et al. (36),
Hovatta et al. (38) and Lindsley et al. (39)] and one for
R. norvegicus and C. elegans, respectively from the Walker
et al. paper (40) and the Baugh et al. study (41). Addition-
ally, anatomical expression sequence tags (EST) expres-
sion data from EnsEMBL (21) are available for human.
Regarding the cis-regulatory data, we only have informa-
tion for H. sapiens currently. Using the TOUCAN toolbox
(42) and the upstream sequence of the genes, the algorithm
looks for putative motifs and modules (combination of
five motifs). There are two data sources that are based on
sequences: the protein sequence similarities and the disease
probabilities. For the latter, Lopez-Bigas et al. (43) and
Adie et al. (44) (ProspectR) used sequence features (e.g.
length of the sequence, length of the UTRs, number of
introns, length of the introns) and a statistical framework
to discriminate the human disease causing genes from the
rest of the genome. Next, they associated to every gene a
probability of being a disease causing gene, a priori. As for
sequence similarity, an all-against-all similarity search is
performed for all organisms using the NCBI BLAST (45).
The data source based on literature mining relies on the
TxtGate framework (46). The strategy is to screen the
abstracts from PubMed (47) with a manually curated
vocabulary based on Gene Ontology. Similarly to the
ontologies described above, it provides more information
on the molecular functions and biological processes of the
genes. It is important to notice that, except for the
regulatory information category, each organism is pro-
vided with at least one data source per category.
As an alternative to the novel web-based application,

one can use the original Java Web Start client, which is
also extended to include the other model organisms. This
application includes a few additional features, such as a
full description of the models created, a full genome
screening service in which the whole genome of the given
organism can be prioritized and the possibility for users to
make use of their own microarray data sets. A SOAP
service is also available to allow integration in workflows
[e.g. when using Taverna (48) or Kepler (49)].

SOFTWARE DOCUMENTATION

ENDEAVOUR comes with an online manual. A subsection
describes the concept of gene prioritization through
genomic data fusion. Another subsection contains the
answers to frequently asked questions and gives more
details on how to perform a prioritization and how to
interpret the results. Finally, a step-by-step example is
given together with the corresponding screenshots.
The application is provided with three use cases taken

from the literature. The user can run the examples by
clicking on the corresponding buttons situated above the
wizard that cause the training genes, the data sources
and the candidate genes to be loaded automatically into
the application. Then, the user can quickly go through the
four steps and launch the prioritization process. The three
use cases can be used as a first step to understand the
mechanisms of ENDEAVOUR. The first example is derived

from our previous publication in which we studied the
DiGeorge syndrome (16). This example shows why
YPEL1 was first selected for wet lab experiments that
eventually confirmed the phenotypic association in zebra-
fish. The second example is taken from the Elbers et al.
(18) review on obesity and Type II diabetes. They have
prioritized five susceptibility loci to reveal a molecular link
between the two disorders. ENDEAVOUR uncovered the
susceptibility loci located on chromosome 11 for this
example. It contains KCNJ5, a homolog of KCNJ11 that
is known to contribute to the risk of Type II diabetes. We
have built the last example after Ebermann et al. (50)
published their discovery of a novel Usher gene, DFNB31,
that encodes the whirlin protein. By using data six months
prior to the publication, we made sure that the association
was not yet present in the databases. Among the 32
candidates of the chromosomal band 9q32, DFNB31
ranked first, showing that, retrospectively, it was indeed a
good candidate.

VALIDATION

Similarly to our previous work (16), we statistically
validate the approach with a standard leave-one-out
cross-validation using known gene sets. We produced
the corresponding receiver operating characteristic (ROC)
curves and measured the performance by calculating the
area under the curve (AUC) (Figure 2). Here, we focused
on the pathway gene prioritization for the newly added
species by applying this scheme to three signalling
pathways taken from the Gene Ontology database (23).
These pathways are common to the four organisms and
involve, respectively, 193, 170, 126 and 44 genes for
H. sapiens, M. musculus, R. norvegicus and C. elegans. We
performed both a fair validation and a complete valida-
tion. For the fair validation, we excluded the data sources
that might contain explicitly the gene-pathway association
(i.e. Gene Ontology, Kegg, String and Text) while all data
sources were used for the complete validation. The first
observation is that the performance of the four control
validations stays close to the theoretical expectation of
50% (respectively, 48, 39, 45 and 51%). This means that
when using randomly generated gene sets for training, we
obtain random results. In contrast, the performance of
biologically meaningful sets is much higher (respectively,
88, 92, 90 and 86% for the fair validation and 99, 99, 99
and 98% for the complete validation). An analysis per
data source of the fair validation reveals that the global
performance (e.g. 88% for human) is always higher than
the best performing data source performance (e.g. 78%
for human InterPro). It shows that our data fusion
approach is scientifically sound and that it is crucial to
make use of complementary data sources. Altogether, this
indicates that our approach based on the assumption that
functionally related genes often cause similar phenotypes
can be applied successfully.

A difficulty of validating gene prioritization methods is
the fact that known data are used for the ranking. In other
words, for every disease or pathway gene, the link between
the disease and the gene is described in the literature and
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sometimes evidence is also present in the ontologies or in
the interaction information. Therefore, we excluded in the
above analysis the data sources that contain explicit
information about the similarity of the true positive to the
training set. To assess the full performance of ENDEAVOUR

to solve real biological cases, using all data sources, we
therefore focused on genetic disorders for which associa-
tions were reported very recently in the literature, so that
the explicit information is not yet present in our data.
Particularly, we used gene–disease associations that were
reported in Nature Genetics after 1 January 2008 (Table 1),
32 in total. For each disorder, we built a training set
containing all the genes already known to play a role
in that disorder according to the OMIM and Gene
Ontology databases (both downloaded in August 2007).
As candidate genes to be ranked we used the true positive
gene together with 99 genes that flank the true positive in
the genome. These regions were then prioritized with
ENDEAVOUR using all data sources and their specific
training sets. The results are presented in Table 1.
Interestingly, BANK1, CTRC and SORT1 rank first out
of their region and GDF5, RGS1 and SH2B3 rank second.

All genes but four are within the top 20% and half of them
are within the top 9%.
Others have used our gene prioritization tool as well.

Elbers et al. (18) have used ENDEAVOUR in combination
with other prioritization tools to define the best strategy to
search for common obesity and Type II diabetes genes.
They suggest a list of genes indicated as potential
candidates by at least two of the six tools. Tzouvelekis
et al. (20) have used ENDEAVOUR to prioritize a list of genes
differentially expressed in idiopathic pulmonary fibrosis.
They consistently find that among the top candidates, five
and seven genes are targets of, respectively, tumor necrosis
factor (TNF) and transforming growth factor (TGF).
Osoegawa et al. (19) applied ENDEAVOUR to propose novel
genes associated with cleft lip and cleft palate phenotypes.
They analysed 83 syndromic cases and 104 non-syndromic
cases and concluded that estrogen receptor 1 (ESR1) and
fibroblast growth factor receptor 2 (FGFR2) were the most
likely candidates, respectively, from region 6q25.1-25.2
and region 10q26.11-26.13. Using mass spectrometry and
bioinformatics, Adachi et al. (17) explored the proteome
of the adipocyte, a central player in energy metabolism.

Figure 2. Results of the leave-one-out cross-validation. For each organism, the leave-one-out cross-validation was performed on three pathways sets
from Gene Ontology (23), and, as a control, on five sets of 20 randomly selected genes. The ROC curves of the random (dotted green) and pathway
validation (solid red and dashed blue) are plotted for (a) H. sapiens, (b) M. musculus, (c) R. norvegicus and (d) C. elegans. Notice that for the fair
validation (dashed blue), Gene Ontology, KEGG, Text and String were excluded while all data sources were used for the complete validation (solid
red). The AUC of the control validations are respectively 48, 39, 45 and 51% indicating a random performance. On the opposite, the AUC of the
pathway validations are respectively 88, 92, 90 and 86% for the fair validation and 99, 99, 99 and 98% for the complete validation showing the
validity of our approach.
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Using ENDEAVOUR, they were able to associate a number of
factors with vesicle transport in response to insulin
stimulation, which is a key function of adipocytes.

CONCLUSION

ENDEAVOUR is a web server that allows users to prioritize
candidate genes with respect to their biological processes
or diseases of interest. It is provided with an intuitive four-
step wizard and an online manual. It is available for four
organisms (H. sapiens, M. musculus, R. norvegicus and
C. elegans). ENDEAVOUR relies on the similarity between
the candidates and the models built with the training
genes. The approach has been validated experimentally
(16), by extensive leave-one-out cross-validations, and by
analysis of recently reported cases from the literature.
Additionally, several independent laboratories have used
ENDEAVOUR to propose novel disease genes [Elbers et al.
(18) and Osoegawa et al. (19)] or to optimize the analysis
of medium-throughput experiments [Tzouvelekis et al.
(20) and Adachi et al. (17)]. Importantly, the cross-
validation revealed the added value of combining several
complementary data sources. With 26 distinct data

sources (51 in total) covering most aspects of the knowl-
edge available on genes and gene products (functional
annotations, protein interactions, expression profiles,
regulatory information, sequence-based data and litera-
ture mining), ENDEAVOUR exploits the most comprehensive
collection of publicly available knowledge.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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