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Abstract
Finding the most promising genes among large lists of candidate genes has been defined as the gene prioritization
problem. It is a recurrent problem in genetics in which genetic conditions are reported to be associated with
chromosomal regions. In the last decade, several different computational approaches have been developed to
tackle this challenging task. In this study, we review 19 computational solutions for human gene prioritization that
are freely accessible as web tools and illustrate their differences.We summarize the various biological problems to
which they have been successfully applied. Ultimately, we describe several research directions that could increase
the quality and applicability of the tools. In addition we developed a website (http://www.esat.kuleuven.be/gpp) con-
taining detailed information about these and other tools, which is regularly updated.This review and the associated
website constitute together a guide to help users select a gene prioritization strategy that suits best their needs.
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BACKGROUND
One of the major challenges in human genetics is to

find the genetic variants underlying genetic disorders

for effective diagnostic testing and for unraveling the

molecular basis of these diseases. In the past decades,

the use of high-throughput technologies (such as

linkage analysis and association studies) has permitted

major discoveries in that field [1, 2]. These technol-

ogies can usually associate a chromosomal region

with a genetic condition. Similarly, one can also

use expression arrays to obtain a list of transcripts

differentially expressed in a disease sample with re-

spect to a reference sample. A common characteristic

of these methods is usually the large size of the

chromosomal regions returned, typically several

megabases [3]. The working hypothesis is often

that only one or a few genes are really of primary

interest (i.e. causal). Identifying the most promising

candidates among such large lists of genes is a chal-

lenging and time consuming task. Typically, a biolo-

gist would have to go manually through the list of

candidates, check what is currently known about
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each gene, and assess whether it is a promising can-

didate or not. The bioinformatics community has

therefore introduced the concept of gene prioritiza-

tion to take advantage of both the progress made in

computational biology and the large amount of

genomic data publicly available. It was first intro-

duced in 2002 by Perez-Iratxeta etal. [4] who already

described the first approach to tackle this problem.

Since then, many different strategies have been de-

veloped [5–34], among which some have been im-

plemented into web applications and eventually

experimentally validated. A similarity between all

strategies is their use of the ‘guilt-by-association’

concept: the most promising candidates will be the

ones that are similar to the genes already known to

be linked to the biological process of interest

[35–37]. For example, when studying type 2 diabetes

(T2D), KCNJ5 appears as a good candidate through

its potassium channel activity [38], an important

pathway for diabetes [39], and because it is known

to interact with ADRB2 [40], a key player in dia-

betes and obesity. This notion of similarity is not

restricted to pathway or interaction data but rather

can be extended to any kind of genomic data.

Recently, initial efforts have been made to experi-

mentally validate these approaches. For instance, in

2006, two independent studies used multiple tools in

conjunction to propose new meaningful candidates

for T2D and obesity [41, 42]. More recently, Aerts

et al. [43] have developed a computationally sup-

ported genetic screen whose computational part is

based on gene prioritization (Figure 1).

With this review, we aim at describing the current

options for a biologist who needs to select the most

promising genes from large candidate gene lists. We

have selected strategies for which a web application

was available, and we describe how they differ from

each other and, when applicable, how they were suc-

cessfully applied to real biological questions. In add-

ition, since it is likely that novel methods will be

proposed in the near future, we have also developed

a website termed ‘Gene Prioritization Portal’ (avail-

able at: http://www.esat.kuleuven.be/gpp/) that

represents an updatable electronic review of this field.

SELECTINGTHEGENE
PRIORITIZATION TOOLS
In this study, we review 19 gene prioritization tools

that fulfill the two following criteria. First, the strategy

should have been developed for human candidate

disease gene prioritization. Notice that predicting

the function of a gene or its implication in a genetic

condition are two closely related problems.

Moreover, several gene function prediction methods

have indeed been applied to disease gene prioritization

with reasonable performance [5]. However, it has

been shown that gene prioritization is more challen-

ging than gene function prediction since diseases often

implicate a complex set of cascades covering different

molecular pathways and functions [44]. Besides, to our

knowledge, none of the existing gene function pre-

diction methods includes disease-specific data. Thus,

these methods were excluded from the present study.

For gene function prediction methods, readers are

referred to the reviews by Troyanskaya et al. [45] and

Punta et al. [46]. Our second criterion is that a func-

tional web application should be available for the pro-

posed strategy. Since the end users of these tools are

not expert in computer science, approaches only pro-

viding a set of scripts, or some code to download have

been discarded. Furthermore, we focus our analysis on

the noncommercial solutions and thus require the web

tools to be freely accessible for academia. Using these

criteria, we were able to retain a total of 19 applica-

tions that still differ by (i) the inputs they need from the

user, (ii) the computational methods they implement,

(iii) the data sources they use and (iv) the output they

present to the user. The thorough discussion of these

characteristics has allowed us to create a decision tree

(Figure 2) that supports users in their decision process.

In the following section, we summarize the gene

prioritization tools that we have retained. The corres-

ponding references and the URL of their web appli-

cations are presented in Table 1. Several approaches

combine different data sources. SUSPECT ranks

candidate genes by matching sequence features,

gene expression data, Interpro domains, and GO

terms [6]. CANDID uses several heterogeneous data

sources, some of them chosen to overcome bias [7].

Endeavour is, however, using training genes known

to be involved in a biological process of interest and

ranks candidate genes by applying several models

based on various genomic data sources [8].

Among the tools using different data sources,

ToppGene, SNPs3D, GeneDistiller and Posmed in-

clude mouse data within their algorithms, but in a

different manner. ToppGene combines mouse

phenotype data with human gene annotations and

literature [9]. SNPs3D identifies genes that are can-

didates for being involved in a specified disease based

on literature [10]. GeneDistiller uses mouse
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Figure 1: A major challenge in human genetics is to unravel the genetic variants and the molecular basis that
underlay genetic disorders. In the past decades, geneticists have mainly used high-throughput technologies (such as
linkage analysis and association studies).These technologies usually associate a chromosomal region, possibly encom-
passing dozens of genes, with a genetic condition. Identifying the most promising candidates among such large lists
of genes is a challenging and time consuming task. The use of computational solutions, such as the ones reviewed
in that paper, could reduce the time and the money spent for such analysis without reducing the effectiveness of
the whole approach.

Figure 2: Decision tree that categorizes the19 gene prioritization tools according to the outputs they use and the
outputs they produce. This tree is designed to support the end users in their decision so that they can choose the
tools that suit best their needs. By starting from the first question on the top and by going down, the user can de-
termine a list of tools that can be used; in addition, the Figure 3 that describes the data sources used by the tool
can also be used to support the decision.
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phenotype to filter genes [11] and Posmed utilizes

among other data sources orthologous connections

from mouse to rank candidates [12].

G2D uses three algorithms based on different pri-

oritization strategies to prioritize genes on a chromo-

somal region according to their possible relation to

an inherited disease using a combination of

data mining on biomedical databases and gene se-

quence analysis [4]. TOM efficiently employs func-

tional and mapping data and selects relevant

candidate genes from a defined chromosomal

region [13, 14].

Tools that are mainly based on literature and text

mining are PolySearch, MimMiner, BITOLA,

aGeneApart and GenePropector. PolySearch extracts

and analyses relationships between diseases, genes,

mutations, drugs, pathways, tissues, organs and me-

tabolites in human by using multiple biomedical text

databases [15]. MimMiner analyses the human phe-

nome by text mining to rank phenotypes by their

similarity to a given disease phenotype [16] and

BITOLA mines MEDLINE database to discover

new relations between biomedical concepts [17].

aGeneApart creates a set of chromosomal aberration

maps that associate genes to biomedical concepts by

an extensive text mining of MEDLINE abstracts,

using a variety of controlled vocabularies [18].

GeneProspector searches for evidence about human

genes in relation to diseases, other phenotypes and risk

factors, and selects and prioritizes candidate genes by

using a literature database of genetic association stu-

dies [19].

Finding associations between genes and pheno-

types is the focus of Gentrepid and PGMapper.

Whereas Gentrepid predicts candidate disease

genes based on their association to known disease

genes of a related phenotype [20], PGMapper

matches phenotype to genes from a defined

genome region or a group of given genes by com-

bining the mapping information from the Ensembl

database and gene function information from the

OMIM and PubMed databases [21].

Tools, such as GeneWanderer, Prioritizer,

Posmed and PhenoPred, make use of genomewide

networks. GeneWanderer is based on protein–pro-

tein interaction and uses a global network distance

measure to define similarity in protein–protein inter-

action networks [22]. PhenoPred uses a supervised

algorithm for detecting gene–disease associations

based on the human protein–protein interaction net-

work, known gene–disease associations, protein

sequence and protein functional information at the

molecular level [23]. Instead of using a human pro-

tein–protein interaction network, Posmed is based

on an artificial neural network-like inferential pro-

cess in which each mined document becomes a

neuron (documentron) in the first layer of the net-

work and candidate genes populate the rest of layers

[12].

Although we have limited our analysis to the tools

freely accessible via a web interface, we are aware of

other gene prioritization methods that were

excluded of the present analysis but that still repre-

sent important contributions to the field. First,

Table 1: Overview of the 19 tools reviewed in the current study with their corresponding publications and website

Tool References Website

SUSPECT [6] http://www.genetics.med.ed.ac.uk/suspects/
ToppGene [9] http://toppgene.cchmc.org/
PolySearch [15] http://wishart.biology.ualberta.ca/polysearch/index.htm
MimMiner [16] http://www.cmbi.ru.nl/MimMiner/cgi-bin/main.pl
PhenoPred [23] http://www.phenopred.org
PGMapper [21] http://www.genediscovery.org/pgmapper/index.jsp
Endeavour [8, 32] http://www.esat.kuleuven.be/endeavour
G2D [33, 34] http://www.ogic.ca/projects/g2d_2/
TOM [13, 14] http://www-micrel.deis.unibo.it/�tom/
SNPs3D [10] http://www.SNPs3D.org
GenTrepid [20] http://www.gentrepid.org/
GeneWanderer [22] http://compbio.charite.de/genewanderer
Bitola [17] http://www.mf.uni-lj.si/bitola/
CANDID [7] https://dsgweb.wustl.edu/hutz/candid.html
PosMed [12] http://omicspace.riken.jp
GeneDistiller [11] http://www.genedistiller.org/
aGeneApart [18] http://www.esat.kuleuven.be/ageneapart
GeneProspector [19] http://www.hugenavigator.net/HuGENavigator/geneProspectorStartPage.do
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several gene prioritization methods, such as

CAESAR [24], GeneRank [25] and CGI [26] pro-

pose interesting alternatives (e.g. natural language

processing based disease model [24]), however,

they only provide a standalone application to install

and run locally. We believe that a web application is

essential since it does not require an extensive IT

knowledge to be installed and used. Second, there

are methods that were once pioneers in that field and

for which web applications were provided in the

past, but are not accessible any more (e.g. TrAPSS

[27], POCUS [28], Prioritizer [29]). Prioritizer

recently moved from a living web application to a

program to download and was therefore excluded

prior to publication. Third, several studies also pre-

sent case specific approaches tailored to answer a spe-

cific problem [30, 47–53]. For instance, Lombard

et al. [47] have prioritized 10 000 candidates for

the fetal alcohol syndrome (FAS) using a complex

set of 29 filters. Their analysis reveals interesting

therapeutic targets like TGF-�, MAPK and members

of the Hedgehog signaling pathways. Another ex-

ample is the network-based classification of breast

cancer metastasis developed by Chuang et al. [48].

These approaches are, however, case specific and

cannot be easily ported to another disease. Last,

alternative techniques to circumvent recurrent prob-

lems in gene prioritization are currently under devel-

opment. As an illustration, Nitsch et al. [31] have

proposed a data-driven method in which knowledge

about the disease under study comes from an expres-

sion data set instead of a training set or a keyword set.

DESCRIPTIONOF THEGENE
PRIORITIZATIONMETHODS
The genomic data are at the core
We have defined a data source as a type of data that

represents a particular view of the genes (see Box 1—

‘Gene view’) and thus can correspond to several

Box1: Glossary
Gene prioritization
Thegeneprioritization problemhasbeen defined as the identification of themostpromising candidate genes from a
large list of candidates with respect to a biological process of interest.
Data sources
Data sources are at the core of the gene prioritization problem since the quality of the predictions directly correl-
ateswith the quality of the data used tomake these predictions.The different genomic data sources can be defined
as different views on the same object, a gene. For instance, pathway databases (such as Reactome [58] and Kegg
[59]) define a ‘bio-molecular view’ of the genes, while PPI networks (such as HPRD [60] and MINT [61]) define an
‘interactomeview’. A single data typemightnotbepowerful enough to predict the disease causing genes accurately
while the use of several complementary data sources allow much more accurate predictions [8, 29].
SupplementaryTable1contains the list of the12 data sources we have defined.
Inputs
Two distinct types of inputs canbe distinguished: theprior knowledge about the genetic disorder of interest and the
candidate search space.On the one hand, the prior knowledge represents what is currently known about the dis-
ease under study, it canbe represented either as a set of genes known to play a role in the disease or as a set of key-
words that describe the disease. On the other hand, the candidate search space defines which genes are
candidates.For instance, a locus linked to a genomic conditiondefines a quantitative trait locus (QTL), the candidates
are therefore the genes lying in that region. Another possibility is a list of genes differentially expressed in a tissue
of interest that are not necessary from the same chromosomal location. Alternatively, the whole human genome
can be used. An overview of the inputs requiredby the applications can be found in Table 2.
Outputs
For the 19 selected applications, the output is either a ranking of the candidate genes, the most promising genes
being ranked at the top, or a selection of the most promising candidates, meaning that only the most promising
genes are returned. Several tools areperformingboth at the same time (Gentrepid, Bitola, PosMed), that is first se-
lecting the most promising candidates and then ranking only these. Several tools benefit from an additional
output, a statistical measure, often a P-value, which estimates how likely it is to obtain that ranking by chance
alone.The statisticalmeasure is often of crucial importance since therewill always be a gene ranked in first position
even if none of the candidate genes is really interesting.Notice then that a selection canbe obtained from a ranking
byusing the statisticalmeasure (e.g. by choosing a threshold abovewhich all the genes are considered as promising).
You can find an overview of the outputs produced by the different applications inTable 2.
Textmining
It is the automatic extraction of information aboutgenes, proteins and their functionalrelationships from textdocu-
ments [62].
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related databases. Data sources are at the core of the

gene prioritization problem since both high coverage

and high quality data sources are needed to make

accurate predictions. In total, we have defined 12

data sources: text mining (co-occurrence and func-

tional mining), protein–protein interactions, func-

tional annotations, pathways, expression, sequence,

phenotype, conservation, regulation, disease prob-

abilities and chemical components. Using these cate-

gories, we have built a data source landscape, which

describes for each tool which data sources it uses

(Supplementary Table 1). We can observe from the

data source landscape map that text mining is by far

the most widely used data source since 14 out of the

19 tools are using co-occurrence or functional text

mining. Most of the approaches make use of a wide

range of data sources covering distinct views of the

genes, but four tools rely exclusively on text mining

(PGMapper, Bitola, aGeneApart and

GeneProspector), however their use of advanced

text mining techniques still allow them to make

novel predictions. At the other end of the spectrum,

conservation, regulation, disease probabilities and

chemical components are poorly used and only by

two tools at most although they describe unique fea-

tures that might not always be captured by the other

data sources. However, the rule should not be to

include as many data sources as possible but rather

to reach a critical mass of data beyond which accurate

predictions can be made.

Inputs and outputs of the methods
The tools also differ in the inputs they require and

the outputs they provide. Two types of inputs have

been distinguished: the prior knowledge about the

genetic disorder of interest and the candidate search

space. We furthermore consider two possibilities for

the prior knowledge as it can be defined by a set of

genes or by a set of keywords. The retrieval of a

training set requires the knowledge of, at least, one

disease causing gene, but preferably more than one.

In addition, the set needs to be homogeneous,

meaning that it usually contains between 5 and 25

genes that, together, describe a specific biological

process. When no disease gene can be found, mem-

bers of the pathways disturbed by the diseases are also

an option (Thienpont et al., manuscript in prepar-

ation). Alternatively, several tools accept text as

input, text is either a disease name, selected from a

list, or a set of user defined keywords that describe

the disease under study. In the second case, the

expert should define a complete set of keywords

that covers most aspects of the disease (e.g. to

obtain reliable results, ‘diabetes’ should be used in

conjunction with ‘insulin’, ‘islets’, ‘glucose’ and

others diabetes related keywords but not alone).

Regarding the candidate search space, we have

distinguished between a locus, a differentially

expressed genes (DEG) list, and the whole

genome. A locus is a set of neighboring genes

(e.g. all genes from the cytogenetic band 22q11.23)

while the genes in a DEG list are not necessarily

located at the same locus. Although these two

options are similar, the distinction we made is im-

portant since several tools allow the definition of a

locus but not of DEG list and vice versa.

Alternatively, nine tools allow the exploration of

the full genome, in case no candidate gene set can

be defined beforehand.

Regarding the outputs, two types were con-

sidered, a ranking and a selection of the candidate

genes. In a ranking scenario, all the candidates are

ranked so that the most promising candidate can be

found at the top, while for a selection, a subset of the

original candidate set, containing only the most pro-

mising candidates, is returned. From the 19 tools,

four perform a selection of the candidates and

three of these four perform a selection followed by

a ranking. In addition, we record which tools further

measure the significance of their results via any stat-

istical method. Of interest, a selection can then be

obtained from a ranking by using a threshold on this

statistical measure. Table 2 shows an overview of the

input data required by the tools as well as the output

they produce. Also, a clustering of the tools regard-

ing to their inputs and outputs is presented in

Figure 3. In addition, we have created a decision

tree to help users to choose the most suitable tools

for their biological question. The tree is based on

three basic questions that users should ask themselves

before selecting the tools they want to use. By an-

swering these questions, users define first, which

genes are candidate; second, how the current know-

ledge is represented; and third (when necessary),

what is the desired output type.

The importance of biological validation
Since the methods we are interested in are predictive,

an important criterion for selection is the perform-

ance. The tools reviewed here were all originally

published together with the results of a benchmark

analysis as a proof of concept. It is however difficult to
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Figure 3: Repartition of the19 tools according to the data sources they use. The four data sources most common-
ly used areText (functional and interactions mining), protein^protein interactions, functional annotations and path-
ways and are therefore represented as large ellipses. The additional seven data sources are represented with
symbols.

Table 2: Description of the inputs needed by the tools and the outputs produced by the tools

Tool Inputs Output

Training data Candidate genes Ranking Selection of
candidates

Test
statistic

KnownGenes Keywords Region DEG Genome

SUSPECT x x x x
ToppGene x x x x
PolySearch x x x x
MimMiner x x x
PhenoPred x x x
PGMapper x x x x
Endeavour x x x x x x x
G2D x x x x x
TOM x x x
SNPs3D x x x
GenTrepid x x x x x
GeneWanderer x x x x x
Bitola x x x x x
CANDID x x x
aGeneApart x x x x
GeneProspector x x x
PosMed x x x x x x
GeneDistiller x x x x

Wedistinct two types of inputs: theprior knowledge about the genetic disorder of interest and the candidate search space.Theprior knowledge can
be represented either as a set of genes known to play a role in the disease or as a set of keywords that describe the disease.The candidate search
space is either a locus linked to a genomic condition or a list of genes differentially expressed in a tissue of interest (DEG) or the whole human
genome.The output is either a ranking of the candidate genes or a selection of the most promising candidates. In addition, a statistical measure
that estimates how likely it is to obtain that result by chance alone.More details about the inputs and outputs can be found in the Box1.
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compare the performance of these benchmarks dir-

ectly since their setups are different (different diseases,

different genes). Although a rigorous comparison is

still missing, various studies that compare several gene

prioritization tools by analyzing their performance on

a particular disease have been performed (e.g. on T2D

[41, 42, 54]). An overview is presented in

Supplementary Table 2. Although it is of primary

importance, the performance obtained through a

benchmark analysis represents more a proof of con-

cept than a critical performance assessment.

Therefore, it is only an estimation of the real perform-

ance (e.g. for a real biological application) and it is

also most likely benchmark specific. That is the rea-

son why we believe that the definition of the

desired inputs/outputs and data sources, and the

knowledge of real biological applications are also

crucial.

Beside these benchmarks, several biological appli-

cations have been described in the literature.

Supplementary Table 3 gives an overview of these

applications. Interestingly, three of them analyzed

T2D associated loci and are using several gene pri-

oritization tools in conjunction [41, 42, 54]. Elbers

et al. [42] analyzed five loci previously reported to be

linked with both T2D and obesity that encompass

more than 600 genes in total. The authors used six

gene prioritization tools in conjunction and reported

27 interesting candidates. Some of them were already

known to be involved in either diabetes or obesity

(e.g. TCF1 and HNF4A, responsible for maturity

onset diabetes of the young, MODY) but some can-

didates were novel predictions. Among them, five

genes were involved in immunity and defense (e.g.

TLR2, FGB) and it is known that low-grade inflam-

mation in the visceral fat of obese individuals causes

insulin resistance and subsequently T2D. Also, 10

candidate genes were so-called ‘thrifty genes’ because

of their involvement in metabolism, sloth and glut-

tony (e.g. AACS, PTGIS and the neuropeptide Y

receptor family members). Using a similar strategy,

Tiffin et al. [41] prioritized T2D and obesity asso-

ciated loci and proposed another set of 164 promis-

ing candidates. Of interest, 4 of the 27 candidates

reported by Elbers et al. were also reported by

Tiffin et al. (namely CPE, LAMA5, PPGB and

PTGIS). Although there is an overlap between the

predictions, some important discrepancies remain

and can be explained by the fact that the two studies

do not focus on the same set of loci and do not use

the same gene prioritization tools. This indicates that

several gene prioritization tools can be applied in

parallel to strengthen the results. Teber et al. [54]

compared the finding from recent genome-wide as-

sociation studies (GWAS) to the predictions made by

eight gene prioritization methods. Of the 11 genes

associated with highly significant SNPs identified by

the GWAS, eight were flagged as promising candi-

dates by at least one of the method. Another inter-

esting validation is a computationally supported

genetic screen performed by Aerts et al. [43] in fruit

fly. The aim of a genetic screen is to discover in vivo
associations between genotypes and phenotypes. A

forward genetic screen is usually performed in two

steps: in the first step, the loci associated to the

phenotype under study are identified and in a

second step, the genes from these loci are assayed

individually. Aerts et al. have introduced a computa-

tionally supported genetic screen in which the

associated loci found in the first step are prioritized

using Endeavour and then only the genes ranked in

the top 30% of every locus are assayed in a secondary

screen. Additionally, it was shown that 30% is a

conservative threshold since all the positives were

ranked in the top 15%. This shows that gene priori-

tization tools, when integrated into such

workflows, can increase their efficiency for a

decreased cost.

Intuitive interfaces
Beside the data, the inputs/outputs and the perform-

ance, what is critical for a tool to be used is its

interface. Ideally, it has to be an intuitive interface

that accepts simple inputs and provides detailed

outputs. A past success and reference in bioinformat-

ics is basic local alignment search tool (Blast) for

which only a single sequence needs to be provided

[55]. In return, Blast provides the complete detailed

alignments together with cross-links to sequence

databases so that the user can fully understand

why the input sequence matches to a given database

sequence. We, as a community, should develop tools

that answer the end users’ needs and that probably

corresponding to the simple input—detailed

output paradigm described above. Besides, the

presence of an advanced mode that allows users

to fine tune the analysis is also clearly an

advantage (e.g. defining a threshold for the Blast

e-value).

Several gene prioritization tools such as

MimMiner, PhenoPred, aGeneApart and

GeneProspector can already be fed with a single
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disease name that represents the simplest training

input possible. However, an advanced mode to fine

tune the analysis is missing for these applications. The

outputs generated by the tools are very detailed and

almost always contain cross-references to external

databases (e.g. Hugo, EnsEMBL, RefSeq).

However, only few tools present detailed informa-

tion about the data underlying the ranking of the

candidate genes. This data is crucial for the user

who needs to determine which candidates should

be investigated further. This is probably the weakest

point of most of the current tools although several

tools like Suspects and G2D already propose prelim-

inary solutions. In addition, most of the tools benefit

from a user manual and a dedicated help section that

help users to understand how they should interact

with the interface.

FUTUREDIRECTIONS
With the use of advanced high-throughput technol-

ogies, the amount of genomic data is growing expo-

nentially and the quality of the gene prioritization

methods is also increasing accordingly. However,

several avenues need to be explored in the coming

years to increase even further the potential of these

tools. We have already mentioned the interface,

which is sometimes overlooked in the software

development process. More at the data level, some

efforts have already been made to use the huge

amount of data available for species close to human

[9–12]. Already, several tools described in the current

review include rodent data (e.g. SNPs3D,

ToppGene, GeneDistiller, Posmed). However, the

development of gene prioritization approaches com-

bining in parallel many data sources from different

organisms is still to come. Another important devel-

opment is the inclusion of clinical and patient related

data. DECIPHER [56] already represents a first step

in that direction since it includes aCGH data from

patients and allow text mining prioritization (using

the core engine of aGeneApart [18]) of the genomic

alterations, detected in the aCGH data, with respect

to the phenotype of the patient. Efforts should also

be made to include data sources that have been, so

far, rarely included such as chemical components and

miRNA data. Another important research track is to

explore different computational approaches to im-

prove once more the algorithms that are running

the gene prioritization methods. Preliminary results

have shown, for example, that kernel methods are

more efficient than simpler statistical methods

such as Pearson correlation or binomial based

over-representation [57]. The last challenge of this

field is its necessary adaptation to the shift observed

in genetics towards the study of more complex

disorders that is though to be more difficult than

the study of the Mendelian diseases.

Altogether, the methods described in this review

represent significant advances indicating that this

field is still an emerging field. It is therefore most

likely that novel methods will be developed in the

future and that the existing ones will be improved.

To overcome the limitations due to the static nature

of this review, we have developed a website whose

aim is to represent an updatable electronic version of

the present review. This web site, termed ‘Gene

Prioritization Portal’ (available at: http://www.esat

.kuleuven.be/gpp), contains, for every tool, a

detailed sheet that summarizes the necessary infor-

mation such as the inputs needed and the data

sources used. It also builds tables that describe the

general data source usage and the general input/

output usage that are equivalent to Table 2 and

Supplementary Table 1 of the current publication.

We believe that this website represents a first step to

guide users through their gene prioritization

experiments.

CONCLUSION
This review tries to clarify the world of gene priori-

tization to the final user through an exhaustive guide

of 19 human candidate gene prioritization methods

that are freely accessible through a web interface.

This taxonomy has been done according to different

characteristics of the tools, including the type of

input, data sources used during the process of priori-

tization and the desired output. We think that this

review is a useful tool not only to help the wet lab

researchers to dive into gene prioritization, but also

to guide them to select the most convenient method

for their analysis.

To keep up with the especially fast evolving

world of bioinformatics in general and gene priori-

tization in particular, we have developed a website

http://www.esat.kuleuven.be/gpp/ that contains

updated information of all the tools described in

this review. We expect our portal to become a ref-

erence point in gene prioritization where not only

users but also developers will find up-to-date infor-

mation necessary for their research.
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Key Points

� Numerous computational methods have been developed to
tackle the gene prioritization problem in human; we have col-
lected themethods that offer suchweb services freely.

� Wehave describedhow thesemethods differ fromeachotherby
the inputs they need, the outputs they produce and the data
sources they use.

� We have furthermore described some of the biological applica-
tions to which gene prioritization approaches were successfully
applied.

� Awebsite that contains information about the available genepri-
oritization methods has been developed and will be updated on
a regular basis.
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Supplementary data are available online at http://

bib.oxfordjournals.org/.
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