
LARGE-SCALE AUTOREGRESSIVE SYSTEM IDENTIFICATION
USING KRONECKER PRODUCT EQUATIONS
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ABSTRACT

By exploiting the intrinsic structure and/or sparsity of the sys-
tem coefficients in large-scale system identification, one can
enable efficient processing. In this paper, we employ this
strategy for large-scale single-input multiple-output autore-
gressive system identification by assuming the coefficients
can be well approximated by Kronecker products of smaller
vectors. We show that the identification problem can be refor-
mulated as the computation of a Kronecker product equation,
allowing one to use optimization-based and algebraic solvers.

Index Terms— system identification, autoregressive,
Kronecker product, higher-order tensor, large-scale problems

1. INTRODUCTION

System identification is an important engineering problem in
various applications [1]. Recently, there is a growing interest
in large-scale system identification because of an increasing
number and density of antennas or sensors in fields such as ar-
ray processing, telecommunications, and (biomedical) signal
processing [2–4]. In order to tackle such large-scale prob-
lems, the intrinsic structure and/or sparsity of the data can be
exploited by means of parsimonious models.

Large-scale data is often compressible, or, in other words,
it can often be described in terms of much fewer parameters
than the total number of values [5]. Well-known examples
are (exponential) polynomials, rational functions, and smooth
and periodic functions [6–12]. Explicitly exploiting the in-
trinsic compactness of this type of data, enables efficient pro-
cessing in large-scale applications. Popular compact models
are low-rank matrix and tensor decompositions; see [13–15]
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Fig. 1. Low-rank matrix or tensor models can often provide a
parsimonious and accurate representation for smooth data.

and references therein. A well-known approach consists of re-
shaping a large-scale vector or matrix into a tensor which can
then be modeled using a low-rank approximation [16]; this is
illustrated for a sigmoid1 in Figure 1. This approach has suc-
cessfully allowed one to handle various large-scale applica-
tions in tensor-based scientific computing and (blind) system
identification [6, 7, 11, 17–20].

We adopt a similar strategy for autoregressive (AR) sys-
tem identification [1,21], enabling large-scale applications. In
this paper, we limit ourselves to single-input multiple-output
(SIMO) AR models with Kronecker product constrained co-
efficients. Although this particular structure corresponds to a
rank-1 model, as we will explain later, it can already provide
an accurate and compact model while allowing us to explain
the basic principles within the space restrictions of this pa-
per. More specifically, we show that by explicitly exploiting
the Kronecker structure, AR system identification can be re-
formulated as a type of Kronecker product equation (KPE).
By the latter we mean a linear system of equations with a
Kronecker product constrained solution, which has already
been applied successfully in various applications [22–24]. A
generic framework for this type of problems was developed
in [24], allowing us to use optimization-based and algebraic
solvers and formulate generic uniqueness conditions.

1We evaluated a sigmoid of the form f(ξ) = 1/(1 + e−20(ξ−1/2))
in 100 equidistant samples in [0, 1] and then reshaped the vector of length
100 containing the values into a (10× 10) matrix. We computed a low-rank
model by truncating the singular value decomposition and the reconstructions
are obtained by vectorizing the resulting rank-1 and rank-2 matrices.



In the remainder of this section we give an overview of the
notation that is used in this paper, several basic definitions,
and KPEs. We derive our method for large-scale SIMO AR
system identification using KPEs in Section 2. In Section 3,
we analyze our method via several numerical experiments.
We conclude the paper and discuss future work in Section 4.

1.1. Notations and basic definitions

Vectors, matrices, and tensors are denoted by bold lower-
case, bold uppercase, and calligraphic letters, respectively.
The vectorization of an N th-order tensorA ∈ KI1×I2×···×IN

(K meaning R or C), denoted as vec(A), maps each element
ai1i2···iN onto vec(A)j with j = 1 +

∑N
k=1(ik − 1)Jk and

Jk =
∏k−1
m=1 Im. The inverse operation of vec(·) is ten(·).

We indicate the nth element in a sequence by a superscript
between parentheses, e.g., {A(n)}Nn=1. The outer and Kro-
necker product are denoted by ⊗ and ⊗, respectively. They
are related through a vectorization: vec(a ⊗ b) = b⊗a.

The rank of a tensor is equal to the minimal number of
rank-1 tensors that generate the tensor as their sum. A rank-1
tensor is defined as the outer product of non-zero vectors.

1.2. Kronecker product equation

A KPE is a linear system of equations with a Kronecker prod-
uct constrained solution that has been applied successfully in
various domains [22–24]. In this paper, we limit ourselves to
problems with the following Kronecker product structure:

Ax = b with x = v⊗u, (1)

in which A ∈ KK×Q, x ∈ KQ, and b ∈ KK . The solution x
can be expressed as a Kronecker product v⊗u with u ∈ KI
and v ∈ KJ such that Q = IJ . More generally, x can be
constrained by a Kronecker product of N non-zero vectors:

Ax = b with x =

N⊗
n=1

u(n),

in which u(n) ∈ KIn and Q = I1I2 · · · IN . Importantly, a
KPE is a special case of a linear system of equations with a
tensor-decomposition constrained solution [24]. This type of
problems could be solved by first solving the system without
structure and subsequently computing a rank-1 model of the
tensorized version of the solution. This approach works well
if A has full column rank, but, in contrast to the methods
in [24], fails when A is rank deficient or when K < Q, i.e.,
in the underdetermined case. The methods in [24] compute
the least-squares (LS) solution of (1).

2. LARGE-SCALE SIMO AUTOREGRESSIVE
SYSTEM IDENTIFICATION USING KPES

By exploiting the intrinsic structure or sparsity of a model,
one can enable large-scale system identification. Here, we

show that large-scale SIMO AR system identification can be
reformulated as a particular type of KPE by exploiting the
hypothesized Kronecker product structure of the coefficients.
First, we define AR system identification and Kronecker con-
strained coefficients in Subsection 2.1 and Subsection 2.2, re-
spectively. Next, we derive our KPE-based method for large-
scale SIMO AR system identification in Subsection 2.3.

2.1. Autoregressive system identification

Consider a MIMO ARX model with Q outputs, P exogenous
inputs, and system orderL, that relates the outputs yq[k] using
the following discrete difference equation:

L∑
l=0

Q∑
q=1

gpq[l] yq[k − l] = xp[k] + np[k] for 1 ≤ k ≤ K

(2)
The AR coefficients are given by gpq[l] for 0 ≤ l ≤ L, the pth
exogenous input is denoted by xp[k] and the additive white
noise is given by np[k]. Assuming we have K + L samples,
the model in (2) can be expressed in matrix form as follows:

L∑
l=0

G(l)Y(l) = X+N (3)

with G(l) the lth (P ×Q) coefficient matrix and Y(l) the lth
(Q × K) output matrix, which are defined element-wise as
g
(l)
pq = gpq[l] and y(l)qk = yq[k− l], respectively, for 0 ≤ l ≤ L.

The input and noise matrix X and N both have dimensions
(P × K). Note that one typically assumes P = Q when
considering the MIMO case; see, e.g., [1, 21] and references
therein. The formulation in (3), however, is more general be-
cause we allow that P 6= Q. In this paper, we limit ourselves
to single-input multiple-output systems, i.e., we have P = 1
and Q > 1. In that case, the ARX model in (3) reduces to:

L∑
l=0

g(l)T
Y(l) = xT + nT

with coefficients g(l) ∈ KQ and input and noise x,n ∈ KK .
The noise is omitted in the derivation of our method for nota-
tional convenience, but its influence is examined in Section 3.

2.2. Kronecker constrained system coefficients

Large-scale data can often be compactly modeled because of
some intrinsic structure or sparsity of the data. In this paper,
we take a similar approach as in [6, 7]: we assume the (large-
scale) AR coefficients admit, or, can be well approximated
by, a Kronecker product of N non-zero vectors, enabling a
possibly very compact representation for large N . Consider
the following Kronecker product structure for g(l) ∈ KQ:

g(l) = b(l)⊗a(l), for 0 ≤ l ≤ L, (4)



with non-zero vectors a(l) ∈ KI(l) and b(l) ∈ KJ(l)

such
that Q = I(l)J (l), for 0 ≤ l ≤ L. Clearly, this approach
allows for a compact representation of the coefficients: we
need only (I(l) + J (l) − 1) values instead of Q = I(l)J (l)

to represent g(l). Interestingly, constraint (4) corresponds to
a rank-1 assumption on a matricized version of g(l), i.e., we
have: mat

(
g(l)
)
= a(l)

T
b(l) = a(l) ⊗ b(l). More generally,

one can consider a Kronecker product of N non-zero vectors:

g(l) =

N⊗
n=1

u(n,l), for 0 ≤ l ≤ L, (5)

with u(n,l) ∈ KI(l)n such that Q =
∏N
n=1 I

(l)
n , for 0 ≤ l ≤

L. Increasing N , enables even more compact representations
because we need only

∑N
n=1 I

(l)
n − N + 1 values instead of

Q =
∏N
n=1 I

(l)
n to represent g(l). For example, if I(l)n = I for

1 ≤ n ≤ N and 0 ≤ l ≤ L, the number of unknown variables
reduces fromO(LIN ) toO(LNI). ForN > 2, constraint (5)
corresponds to a rank-1 assumption on a tensorized version of
g(l), i.e., we have: ten

(
g(l)
)
= u(1,l) ⊗ u(2,l) ⊗ · · · ⊗ u(N,l).

A detailed analysis on how to choose the dimensions of the
vectors in the Kronecker product can be found in [6, 7].

2.3. Large-scale AR system identification as a KPE

By explicitly exploiting the Kronecker structure in the model,
one can reformulate AR system identification as the computa-
tion of a (structured) KPE, allowing one to use optimization-
based and algebraic solvers and formulate (generic) unique-
ness conditions; see [24]. We illustrate this as follows.

Assuming the AR coefficients g(l), for 0 ≤ l ≤ L, can be
modeled by a simple Kronecker product as in (4), we obtain:

L∑
l=0

(
b(l)⊗a(l)

)T

Y(l) = xT. (6)

By taking the transpose, one can see that (6) reduces to:

L∑
l=0

Y(l)T
(
b(l)⊗a(l)

)
= x. (7)

For L = 0, this model reduces to a KPE of the form (1). For
L > 0, the model in (7) is a straightforward generalization
where the right-hand side equals a sum of L+1 matrix-times-
Kronecker-product terms. More generally, one can consider a
Kronecker product ofN non-zero vectors as in (5), obtaining:

L∑
l=0

Y(l)T

(
N⊗
n=1

u(n,l)

)
= x,

which enables higher compression rates, as explained before.
As such, large-scale AR system identification is reformulated
as the computation of a particular KPE. Additionally, the ma-
trix Ỹ =

[
Y(0)T

,Y(1)T
, · · · ,Y(L)T

]
∈ KK×(L+1)Q has a

delay 0

delay 1

delay 2

Original coefficients Reconstruction

Fig. 2. By exploiting the rank-1 structure, the autoregressive
coefficients are perfectly reconstructed (in the noiseless case).

block-Toeplitz structure due to the convolutive nature of the
ARX model. This structure can be exploited to speed up KPE
algorithms and relax uniqueness conditions; see [24].

3. EXPERIMENTS

We illustrate our method for various scenarios: 1) a proof-
of-concept experiment in which we use exponentials as co-
efficient vectors, 2) an analysis of the influence of noise and
sample size on the accuracy, and 3) an analysis of under- or
overestimating the system order. For each experiment, we
simulate a random SIMO ARX system by fixing both the
coefficients and the outputs, and then constructing an input
that satisfies the model in (3). We use i.i.d. zero-mean unit-
variance Gaussian random outputs for each experiment and
we further specify the particular coefficient definition in each
experiment description. When considering the noisy case, we
use Gaussian additive noise. We define the relative error εA as
the relative difference in Frobenius norm ‖A − Â‖F/‖A‖F.
We use an adapted version of the non-linear LS algorithms
with random initialization from [24] in order to solve KPEs.

3.1. Proof-of-concept experiment

Perfect reconstruction of the AR coefficients can be obtained
in the noiseless case by exploiting the intrinsic rank-1 struc-
ture. We illustrate this for a large-scale SIMO ARX system
of order L = 2 with Q = 2500 outputs and sample size
K = 600. The coefficients g(l) are defined as exponentials of
length Q; more specifically, we have g(0)(ξ) = 1

10 exp
−3ξ/2,

g(1)(ξ) = 1
10 (0.5)

ξ/2, and g(2)(ξ) = 1
10 exp

(ξ/2) uniformly
sampled in [0, 1]. It is well-known that exponentials can be
exactly represented by a rank-1 structure [6–8], validating the
model in (7). We choose N = 2 and I(l)1 = I

(l)
2 = I = 50,

for 0 ≤ l ≤ L. Hence, we need only (2I − 1) = 99 val-
ues to model an AR coefficient vector instead of 2500, which
amounts to a compression rate of 1− I1+I2−1

P = 96.04%. The
original coefficients and their reconstruction, up to machine
precision, are shown in Figure 2.
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Fig. 3. While our method obtains accurate results with respect
to the signal-to-noise ratio, increasing the number of samples
further improves the accuracy of the coefficient estimates.

3.2. Influence of noise and sample size on the accuracy

While increasing the sample size K improves the accu-
racy of the estimates, even a small number of samples can
lead to accurate results. Also, the accuracy is quite high
in comparison to the signal-to-noise ratio (SNR). We il-
lustrate this for a large-scale SIMO ARX system of order
L = 5 with Q = 500 outputs. We construct the rank-1
coefficient vectors as vectorized third-order rank-1 tensors
using i.i.d. zero-mean unit-variance Gaussian random fac-
tor vectors. We use the following dimensions for the co-
efficient vectors: (I

(0)
1 , I

(0)
2 , I

(0)
3 ) = (I

(1)
1 , I

(1)
2 , I

(1)
3 ) =

(20, 5, 5), (I(2)1 , I
(2)
2 , I

(2)
3 ) = (I

(3)
1 , I

(3)
2 , I

(3)
3 ) = (25, 5, 4),

and (I
(4)
1 , I

(4)
2 , I

(4)
3 ) = (I

(5)
1 , I

(5)
2 , I

(5)
3 ) = (50, 5, 2). We

choose K = 1210 and 12100, which is equal to five and fifty
times the number of unknown coefficients (242 values), and
use an SNR equal to 10, 20, or 30 dB. The median results
across fifty random experiments are illustrated in Figure 3.

3.3. Influence of the system order on the accuracy

Although the accuracy of the estimates slightly reduces, over-
estimating the system order L is not so critical. However, un-
derestimating the order fails to give accurate results. We illus-
trate this for a large-scale SIMO ARX system of order L = 2
with Q = 100 outputs. We construct the rank-1 coefficient
vectors as vectorized rank-1 matrices using i.i.d. zero-mean
unit-variance Gaussian random factor vectors. We use the fol-
lowing dimensions for the coefficient vectors: I(l)1 = 20 and
I
(l)
2 = 5, for 0 ≤ l ≤ L. We choose K = 50, which is equal

to twice the number of unknown coefficients. We use an SNR
of 10, 20, or 30 dB. While estimating the coefficients, we vary
the system order between zero and four. The median results
across fifty random experiments are shown in Figure 4.

4. CONCLUSION AND FUTURE WORK

We have presented a method for AR system identification that
enables large-scale applications by explicitly exploiting the
hypothesized structure/sparsity of the system coefficients. In
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Fig. 4. While overestimation slightly reduces the accuracy,
underestimating the system order fails to give accurate results.

this paper, we have shown that the identification problem can
be reformulated as the computation of a KPE, allowing one to
use optimization-based solvers. Numerical experiments have
shown that our method performs well in noisy conditions and
that over-estimation of the system order is not so critical.

In a follow-up paper, we will address 1) the multiple-input
multiple-output case, 2) the explicit exploitation of the block-
Toeplitz structure in the computation and the uniqueness con-
ditions, and 3) sum-of-Kronecker-products constrained coef-
ficients. The latter means that we approximate a matricized
or tensorized version of the coefficient vectors by a low-rank
model instead of rank-1 model as explained in this paper.
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