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Abstract—Many real-life signals can be described in terms of
much fewer parameters than the actual number of samples. Such
compressible signals can often be represented very compactly
with low-rank matrix and tensor models. The authors have
adopted this strategy to enable large-scale instantaneous blind
source separation. In this paper we generalize the approach
to the blind identification of large-scale convolutive systems. In
particular we apply the same idea to the system coefficients of
finite impulse response systems. This allows us to reformulate
blind system identification as a structured tensor decomposition.
The tensor is obtained by applying a deterministic tensorization
technique called segmentation on the observed output data.
Exploiting the low-rank structure of the system coefficients
enables a unique identification of the system and estimation of
the inputs. We obtain a new type of deterministic uniqueness
conditions. Moreover, the compactness of the low-rank models
allows one to solve large-scale problems. We illustrate our method
for direction-of-arrival estimation in large-scale antenna arrays
and neural spike sorting in high-density microelectrode arrays.

Index Terms—Blind system identification, higher-order tensor,
tensor decomposition, low-rank approximation, big data

I. INTRODUCTION

IN blind system identification (BSI) one wishes to identify
an unknown system using only the measured output val-

ues [1]. In this paper we specifically limit ourselves to the
blind identification of finite impulse response (FIR) systems.
Hence, the outputs are convolutive mixtures of the inputs in
contrast with instantaneous blind source separation (BSS) [2].
Also, we define the goal of BSI to be both the estimation of
the system coefficients and the reconstruction of the inputs; we
do not make a distinction. In order to make the BSI problem
feasible, additional assumptions have to be imposed on the
inputs or the system coefficients. The choice of a particular
assumption typically depends on the application; examples are
independent inputs, finite alphabet, and constant modulus [1].
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BSI is an important problem with a variety of applications in
(biomedical) signal processing, image processing, and sensor
array processing [3], [4], [5].

Recently, there is a trend to more sensors and larger sensor
density in several domains. Biomedical examples include high
density surface electromyogram (sEMG) and wireless body
area networks (WBANs) based on electroencephalography
(EEG) and electrocorticography (ECoG) [3], [6], [7]. BSS
and BSI are typical problems in these applications [8]. For
example, the separation of action potentials of the muscle’s
motor units in sEMG recordings is typically modeled us-
ing BSI [3]. In array processing and telecommunications,
an increase in the number of antennas is seen, known as
massive MIMO [9]. Here, BSI using FIR models can be
used to determine the direction-of-arrivals (DOAs) of narrow-
band signals impinging on uniform linear arrays (ULAs) and
rectangular arrays (URAs) from the far-field [10].

The key idea to tackle such large-scale problems is known
from compressive sensing: there is often an excessive number
of entries compared to the actual amount of information
contained in the system coefficients [11]. In other words, there
is some structure and/or sparsity in the system coefficients
that allows one to model it much more compactly [12]. Such
signals are called compressible and they can typically be
represented by parsimonious models such as low-rank higher-
order tensor models. This approach is known from tensor-
based scientific computing in high dimensions [13], [14]. The
compactness of these models, especially in the case of higher-
order tensors, has allowed one to solve problems in a number
of unknowns that exceeds the number of atoms in the universe.
The authors have adopted this particular strategy to enable
large-scale BSS [8], [15]. In this paper, we extend the strategy
to the system coefficients in convolutive BSI.

The proposed method tensorizes the measured output val-
ues using a particular tensorization technique called seg-
mentation [8], [16]. We show that large-scale convolutive
BSI reduces to a structured decomposition of the resulting
tensor. In general, the decomposition is a generalization of
a particular block term decomposition (BTD) [17] called a
flower decomposition that was first introduced in [8], [15].
The latter has a block-Toeplitz structure in this case due to the
convolutive nature of the FIR model that is used. The above
approach allows us to exploit the underlying compactness
of the system coefficients using low-rank models, enabling
a unique identification of both the system and the inputs of
large-scale BSI problems. Segmentation can be interpreted as a
compact version of Hankel-based tensorization [18]. As such,
one can show that the approach is exact for system coefficients
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that can be modeled as exponential polynomials but also a
much broader class of signals [8]. Moreover, one can show
that our method works well for system coefficients that admit
a good polynomial approximation.

To best of the authors’ knowledge, our segmentation-based
method is the first method for (very) large-scale BSI, using
a similar philosophy as in tensor-based scientific computing.
The contributions of this paper include a discussion of the
uniqueness conditions for the flower decomposition and a
new algebraic method to compute it. Also, we provide novel
uniqueness conditions for the BSI problem with and without
exploiting the block-Toeplitz structure. Furthermore, we prove
a new result for the low-rank approximation of periodic signals
of which the period may have been estimated inaccurately.
Additionally, we perform a parameter analysis and especially
investigate the influence of the FIR system order and the
low-rank model parameters. Finally, our method allows to
accurately estimate the direction-of-arrivals (DOAs) in large-
scale uniform rectangular arrays (URAs). Moreover, it enables
DOA estimation in non-uniform arrays and can handle broken
antennas. We also illustrate our method for spike sorting
in high-density microelectrode arrays. First results of our
approach were briefly discussed in [19].

We conclude this section with an overview of the notation
and basic definitions. Next, we discuss the flower decomposi-
tion in Section II. We reformulate convolutive BSI as a flower
decomposition using segmentation in Section III. Simulations
and applications are presented in Section IV and Section V.

A. Notation and definitions

Vectors and matrices are denoted by bold lowercase and
bold uppercase letters, e.g., a and A, respectively. Tensors are
a higher-order generalization of the former and are denoted
by calligraphic letters, e.g., A. We denote index upper bounds
by italic capitals, e.g., 1 ≤ i ≤ I . The (i1, i2, . . . , iN )th entry
of an N th-order tensor A ∈ KI1×I2×···×IN (with K meaning
R or C) is denoted by ai1i2...iN . An element of a sequence is
indicated by a superscript between parentheses, e.g., the nth
matrix A(n). The matrix transpose is indicated by •T. The unit
vector ei has a one in the ith row. The I × I identity matrix
is denoted by II . The entries of the nth compound matrix of
A ∈ KI×J , denoted by Cn (A) ∈ K(In)×(Jn), equal the n× n
minors of A ordered lexicographically.

The rows and columns of a matrix can be generalized for
higher-order tensors to mode-n vectors, which are defined by
fixing every index except the nth. A mode-n matrix unfolding
of A is a matrix A(n) with the mode-n vectors as its columns
following the ordering convention in [20]. Vectorization of A,
denoted as vec(A), maps each element ai1i2···iN onto vec(A)j
with j = 1 +

∑N
k=1(ik − 1)Jk and Jk =

∏k−1
m=1 Im. The

kth frontal slice Xk of a third-order tensor X ∈ KI×J×K is
obtained by fixing only the last index. We denote the outer and
Kronecker product as ⊗ and ⊗, respectively. They are related
through a vectorization: vec (a ⊗ b) = b ⊗ a. We denote the
Khatri–Rao product as �.

B. Tensor decompositions

The rank of a tensor equals the minimal number of rank-1
tensors that generate the tensor as their sum. A rank-1 tensor
is defined as the outer product of nonzero vectors. The rank
of a mode-n unfolding of a tensor is the mode-n rank. The
multilinear rank is defined as the tuple of these mode-n ranks.
Definition 1. A polyadic decomposition (PD) writes an N th-
order tensor A ∈ KI1×I2×···×IN as a sum of R rank-1 terms:

A =

R∑

r=1

u(1)
r

⊗ u(2)
r

⊗ · · · ⊗ u(N)
r . (1)

The columns of the factor matrices U(n) ∈ KIn×R are equal
to the factor vectors u

(n)
r for 1 ≤ r ≤ R. The PD is called

canonical (CPD) when R is equal to the rank of A. The mode-
n matrix unfolding of the PD defined in (1) is given by:

A(n) = U(n)(U(N)� · · ·�U(n+1)�U(n−1)� · · ·�U(1))T.

The CPD is essentially unique if it is unique up to trivial
permutation of the rank-1 terms and scaling and counter-
scaling of the factors in the same term. The decomposition
is unique under rather mild conditions which is a powerful
advantage of tensors over matrices in many applications. See
[21], [22], [23], [24], [25] and references therein for state-of-
the-art uniqueness conditions. The CPD has been used in many
applications within signal processing, biomedical sciences,
data mining and machine learning, see [20], [26], [27].
Definition 2. A block term decomposition (BTD) of a third-
order tensor X ∈ KI×J×K in multilinear rank-(Pr, Pr, 1)
terms for 1 ≤ r ≤ R is a decomposition of the form:

X =

R∑

r=1

(ArB
T
r) ⊗ cr =

R∑

r=1

(
Pr∑

p=1

apr ⊗ bpr

)
⊗ cr, (2)

in which Ar ∈ KI×Pr and Br ∈ KJ×Pr have full column
rank Pr and cr is nonzero. Also, we define R′ =

∑R
r=1 Pr.

The mode-3 unfolding X(3) ∈ KK×IJ of (2) is given by

X(3) = C
[
vec
(
A1B

T
1

)
· · · vec

(
ARB

T
R

)]T
.

Decomposition (2) can be interpreted as a CPD with
proportional columns in the last factor matrix. Define the
following factor matrices A =

[
A1 A2 · · · AR

]
∈

KI×R′ , B =
[
B1 B2 · · · BR

]
∈ KJ×R′ , and C(ext) =[

1T
P1

⊗ c1 · · · 1T
PR

⊗ cR
]
∈ KK×R′ . As such, we have a

rank-R′ CPD with the following mode-3 unfolding:

X(3) = C(ext)(B�A)
T
. (3)

The BTD is essentially unique if it is unique up to trivial
permutation of the rth and r′th term, if Pr = Pr′ , and scaling
and counter-scaling of (ArB

T
r) and cr in the same term. We

repeat a uniqueness result for this particular decomposition
that will be used later in Section III [17, Theorem 4.1]:
Theorem 1. Consider a BTD in multilinear rank-(Pr, Pr, 1)
terms of X ∈ KI×J×K as in (2) with I, J ≥ R′. The decom-
position is essentially unique if A =

[
A1 A2 · · · AR

]

and B =
[
B1 B2 · · · BR

]
have full column rank and
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= ⊗

flower (rank-Pr tensor)

stem (vector)

+ · · ·+ ⊗

petal (factor matrix)

Fig. 1. Decomposition of a fourth-order tensor X in (rank-Pr ⊗ vector)
terms. One can see each factor matrix of the rank-Pr tensor as a petal of the
flower and the vector as the stem, hence, “flower” decomposition.

C =
[
c1 c2 · · · cr

]
does not have proportional columns.

The BTD allows one to model more complex phenomena
because of the more general block terms in comparison to the
rank-1 terms of the CPD in (1) [18], [28], [29]. Other types of
BTDs and uniqueness conditions can be found in [17], [18].

II. DECOMPOSITION IN (RANK-Pr ⊗ VECTOR) TERMS

In this paper we introduce a new method for convolutive
BSI. We show in Section III that our method reformulates
BSI as a (structured) decomposition of a higher-order tensor in
(rank-Pr ⊗ vector) terms. This decomposition was first intro-
duced in [8], [15] and is also called the flower decomposition.
One can see the rank-Pr part as the petals and the vector as
the stem of a flower, see Figure 1. The decomposition can
be interpreted as a higher-order generalization of the BTD in
multilinear rank-(Pr, Pr, 1) terms as defined in Subsection I-B.
In Subsection II-A and II-B we define the decomposition and
discuss uniqueness properties, respectively. We propose a new
algebraic method for its computation in Subsection II-C.

A. Definition

We generalize the BTD in multilinear rank-(Pr, Pr, 1) terms
of a third-order tensor from Subsection I-B. The decomposi-
tion is called a decomposition in (rank-Pr ⊗ vector) [8], [15].

Definition 3. A flower decomposition is a decomposition of
an (N + 1)th-order tensor X ∈ KI1×I2×···×IN×K in (rank-Pr
⊗ vector) terms for 1 ≤ r ≤ R of the form:

X =

R∑

r=1

(
Pr∑

p=1

u(1)
pr

⊗ u(2)
pr

⊗ · · · ⊗ u(N)
pr

)
⊗ sr (4)

with factor matrices U(n) =
[
U

(n)
1 U

(n)
2 · · ·U(n)

R

]
∈ KIn×R′

and S ∈ KK×R in which U
(n)
r =

[
u

(n)
1r u

(n)
2r · · ·u

(n)
Prr

]
∈

KIn×Pr and R′ =
∑R
r=1 Pr.

Note that each term is an outer product of a rank-Pr
tensor and a vector. Hence, it is clear that this decomposition
boils down to a BTD in multilinear rank-(Pr, Pr, 1) terms
for third-order tensors, i.e., when N = 2. In that case,
however, the factor matrices Ar and Br are not unique
without additional assumptions (but their products are) because

ArBr
T = (ArD

−1
r )(BrDr

T)
T for any square nonsingular

matrix Dr. This is not the case for N > 2 because essential
uniqueness is guaranteed under mild conditions, see Subsec-
tion I-B. Finally, if Pr = 1, 1 ≤ r ≤ R, then (4) reduces to a
PD as defined in (1).

B. Uniqueness

Uniqueness conditions for a decomposition of an (N+1)th-
order tensor in (rank-Pr ⊗ vector) terms can be obtained by
reworking the decomposition into a set of coupled BTDs in
rank-(Pr, Pr, 1) terms and assuming the common factor matrix
has full column rank [30]. This is possible by keeping one
factor matrix in a common mode and combining the remaining
modes in the first and second mode while ignoring the Khatri–
Rao structure. Doing this for N possible combinations, leads
to a coupled decomposition equivalent to the original one,
as we will explain here. The former is unique up to trivial
permutation of the coupled multilinear rank-(Pr, Pr, 1) terms
as well as scaling and counterscaling of the matrices and
vectors within the same term. We call the coupled decom-
position essentially unique when it is only subject to these
indeterminacies.

Consider a tensor X ∈ KI1×I2×···×IN×K that admits a
flower decomposition with mode-(N + 1) unfolding given by

X(N+1) = S

(
vec

(
Pr∑

p=1

u
(1)
p1

⊗ u
(2)
p1

⊗ · · · ⊗ u
(N)
p1

)
+ · · ·+

vec

(
Pr∑

p=1

u
(1)
pR

⊗ u
(2)
pR

⊗ · · · ⊗ u
(N)
pR

))T

,

or equivalently,

X(N+1) = S(ext)
(
U(N) �U(N−1) � · · · �U(2) �U(1)

)T

(5)
with S(ext) =

[
1T
P1
⊗ s1 · · · 1T

PR
⊗ sR

]
∈ KK×R′ . Consider

N different partitionings of the N factor matrices U(N) into
two sets. The factor matrices in each set can be collected in
factor matrices A(w) and B(w). As such, we obtain several
matrix representations of the tensor X of the form:

X(w) = S(ext)
(
B(w) �A(w)

)T

for 1 ≤ w ≤ N (6)

with S(ext) acting as a common factor for all N possibilities.
Clearly, every decomposition in (6) is a mode-3 unfolding of
a BTD in rank-(Pr, Pr, 1) terms, see (3). Mathematically, we
have that X(w) ∈ KK×I′ , A(w) =

⊙
γ∈Γw

U(γ) ∈ KI′w×R′

and B(w) =
⊙

υ∈Υw
U(υ) ∈ KJ′w×R′ with I ′w =

∏
γ∈Γw

Iγ ,
J ′w =

∏
υ∈Υw

Iυ , and I ′ =
∏N
n=1 In. The sets Γw and Υw

satisfy Γw ∪Υw = {1, . . . , N} and Γw ∩Υw = ∅.
The Khatri-Rao products in A(w) and B(w) are ignored.

Nevertheless, the matrix representation in (5) and the coupled
decomposition represented in (6) are equivalent [30]. Hence,
the full decomposition in (rank-Pr ⊗ vector) terms of the (N+
1)th-order tensor X corresponds to a coupled decomposition
in rank-(Pr, Pr, 1) terms of third-order tensors in which part
of the structure has been ignored. As such, the uniqueness
results derived in [30] can be used. For example, if one of the
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BTDs is unique and S has full column rank, then the (rank-
Lr ⊗ vector) decomposition is unique. This example is in fact
trivial; the uniqueness results in [30] go further than that.

Let us illustrate the approach for a 4th-order tensor X ∈
KI1×I2×I3×K that admits the following decomposition

X =

R∑

r=1

(
Pr∑

p=1

u(1)
pr

⊗ u(2)
pr

⊗ u(3)
pr

)
⊗ sr.

This decomposition can be written as three decompositions
in multilinear rank-(Pr, Pr, 1) terms that are coupled via the
factor matrix in the fourth mode S(ext). Hence, one obtains





X(1) =
((
U(1) �U(2)

)
�U(3)

)
S(ext)T,

X(2) =
((
U(1) �U(3)

)
�U(2)

)
S(ext)T,

X(3) =
((
U(2) �U(3)

)
�U(1)

)
S(ext)T.

The matrices U(n), 1 ≤ n ≤ 3 are combined in the first
and second mode in three different ways. Ignoring the Khatri-
Rao structure in the first mode, the coupled decomposition of
third-order tensors X(n), 1 ≤ n ≤ 3, is equivalent with the
decomposition of the fourth-order tensor X .

C. Algebraic method

Often, algebraic methods for computing a tensor decom-
position provide a good initialization for optimization-based
methods. In this paper we present an algebraic method for
the flower decomposition defined in (4). We do this by
generalizing an algebraic method for computing a BTD in
multilinear rank-(Pr, Pr, 1) terms that was proposed in [17].
This method assumes that the BTD satisfies Theorem 1 and
reduces the computation to the computation of a generalized
eigenvalue decomposition (GEVD). The algorithm is available
in Tensorlab as ll1_gevd [31].

A BTD in multilinear rank-(Pr, Pr, 1) terms can be inter-
preted as a CPD with proportional columns in the third factor
matrix as explained in Subsection I-B. As such, it can be
shown that the algebraic method of [17] boils down to the fol-
lowing three steps. First, we compute a solution of (2) using an
algebraic method for a rank-R′ CPD such as cpd_gevd from
Tensorlab obtaining C(ext). Next, we cluster the R′ columns
of C(ext) into R clusters of size Pr. We use the k-lines method
for clustering in order to accommodate for scaling and sign
invariance. The rth cluster center then serves as an estimate for
the rth column of C. Finally, we compute the factor matrices
Ar and Br for 1 ≤ r ≤ R by reshaping the rth column of(
C†X(3)

)T
=
[
(B1 �A1)1P1 · · · (BR �AR)1PR

]
into

a (I × J) matrix and computing a rank-Pr approximation
of this matrix. This approach can be generalized to the
flower decomposition as it can be interpreted as a higher-
order generalization of the BTD in multilinear rank-(Pr, Pr, 1)
terms. Hence, we also interpret the decomposition as a CPD
with proportional columns in the last factor matrix and apply
the same scheme as above. The resulting method is called
lvec_gevd, and is outlined in Algorithm 1.

III. LARGE-SCALE BSI USING SEGMENTATION

In large-scale applications, signals and systems often admit
a compact representation. In this section we present a new

Algorithm 1: Algebraic method for a decomposition of
an (N + 1)th-order tensor X in (rank-Lr ⊗ vector) terms

1 Compute a CPD of X with R′ terms using a GEVD
obtaining S(ext);

2 Cluster the R′ columns of S(ext) into R clusters. Use the
cluster centers as an estimate for S;

3 Obtain the rth factor matrix U
(n)
r for 1 ≤ n ≤ N by

reshaping the rth column of
(
S†X(N+1)

)T
=[

(U
(N)
1 � · · · �U

(1)
1 )1P1 · · · (U(N)

R � · · · �U
(1)
R )1PR

]

into an (I1 × I2 × · · · × IN ) tensor and computing a
rank-Pr approximation of this tensor algebraically.

method for large-scale convolutive BSI that exploits this, by re-
formulating the problem as a block-Toeplitz structured flower
decomposition. We show that this approach allows one to
uniquely identify both the coefficients and the inputs of large-
scale systems. We define the BSI problem in Subsection III-A.
Next, we motivate the working hypothesis of low-rank system
coefficients in Subsection III-B and derive our method in
Subsection III-C. We also consider uniqueness properties in
Subsection III-D. Finally, we investigate the block-Toeplitz
structure of the decomposition in Subsection III-E.

A. Blind system identification

The goal of convolutive blind system identification (BSI) is
to identify the coefficients of the system and/or the inputs
using only the output data. More specifically, we consider
discrete linear time-invariant systems with M outputs, R
inputs, and system order L. The mth output of the finite
impulse response (FIR) system is described by:

xm[k] =

R∑

r=1

L∑

l=0

gmr[l]sr[k − l] + nm[k], 1 ≤ k ≤ K. (7)

The FIR coefficients from the rth input to the mth output are
denoted by gmr[l] for 0 ≤ l ≤ L. The rth input is denoted
as sr[k] and the additive noise on the mth output as nm[k].
Equation (7) can be expressed in matrix form as

X =

L∑

l=0

G(l)S(l)T
= GST (8)

with X ∈ KM×K the output data matrix and the matrices
G(l) ∈ KM×R and S(l) ∈ KK×R defined element-wise as
g

(l)
mr = gmr[l] and s(l)

kr = sr[k− l] for 0 ≤ l ≤ L, respectively.
Also, G =

[
G(0) G(1) · · · G(L)

]
∈ KM×R(L+1) and

S =
[
S(0) S(1) · · · S(L)

]
∈ KK×R(L+1) has a block-

Toeplitz structure as illustrated in Figure 2. Note that BSI
reduces to BSS if L = 0. We ignore noise for notational
convenience in the derivation of our method. Its influence will
be examined in Subsection IV-B by means of simulations.

The proposed method reshapes the columns of X, i.e., the
observed outputs at time k are put into matrices which are
subsequently stacked in a tensor, as shown in Figure 2. In
general, the columns can be reshaped into N th-order tensors
which are then stacked in a tensor of order N + 1. If the
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system coefficients admit a low-rank model, the BSI problem
can be reformulated as a structured flower decomposition of
the tensorized observed output data. We will now discuss the
different aspects of the method in more detail.

B. Low-rank coefficient vectors

In large-scale applications vectors and matrices are often
compressible, meaning that they can be described in terms of
much fewer parameters than the total number of values [12].
Often, the tensor representation of such a vector or matrix
allows a low-rank approximation, enabling a possibly very
compact model when using higher-order tensors [8], [13], [32].
We denote vectorized low-rank tensors as low-rank coefficient
vectors. Importantly, the system coefficients in large-scale BSI
can often be represented or well approximated by such low-
rank tensor models. We show that the exploitation of this low-
rank structure in large-scale convolutive BSI enables a unique
identification of both the system coefficients and the inputs.

Mathematically, we reshape coefficient vector g
(l)
r in (8)

into a (I × J) matrix G
(l)
r such that vec(G

(l)
r ) = g

(l)
r with

M = IJ . Our working hypothesis states that the matricized
coefficient vectors admit a low-rank representation, hence,

G(l)
r =

P (l)
r∑

p=1

a(l)
pr

⊗ b(l)
pr = A(l)

r B(l)
r

T
(9)

with a
(l)
pr ∈ KI and b

(l)
pr ∈ KJ . This is equivalent with

assuming g
(l)
r can be written as a sum of Kronecker products

g(l)
r = vec(G(l)

r ) =

P (l)
r∑

p=1

b(l)
pr ⊗ a(l)

pr .

This strategy clearly enables a compact representation of the
coefficients as we need only P (l)

r (I + J − 1) parameters. For
example, the number of parameters is one order of magnitude
lower than the total number of values M when I ≈ J . Even
more compact representations can be obtained by reshaping
the coefficients into higher-order tensors, as we will see later.

Exponential polynomials can be used to model a wide
variety of signals in many applications. For example, the
autonomous behavior of linear systems can be described
by (complex) exponentials and, permitting coinciding poles,
exponential polynomials. Importantly, the working hypothesis
of low-rank coefficient vectors holds exactly for exponential
polynomials [8]. We can show this by linking our approach to
Hankelization which is a deterministic tensorization technique
for BSS [16], [18]. Consider, e.g., an exponential f(ξ) = zξ

evaluated in 0 ≤ ξ ≤ 7. Construct the (4× 5) Hankel matrix
H of the resulting vector. Clearly, this matrix has rank one:

H =




1 z z2 z3 z4

z z2 z3 z4 z5

z2 z3 z4 z5 z6

z3 z4 z5 z6 z7


 =




1
z
z2

z3



[
1 z z2 z3 z4

]
.

The (4× 2) matrix G, obtained by reshaping the same vector
consists of a subset of the columns of the Hankel matrix H:

G =




1 z4

z z5

z2 z6

z3 z7


 =




1
z
z2

z3



[
1 z4

]
.

Clearly, G also has rank one. This idea can be generalized as
follows. Consider a vector f ∈ KM and its matricized version
G ∈ KI×J . Consider also the Hankelized version H ∈ KI×Jh
of f defined element-wise as hijh = fi+jh−1 with M = I +
Jh− 1. Clearly, we have that G = HQ with Q ∈ KJh×J the
selection matrix defined by qj = e(j−1)I+1 for 1 ≤ j ≤ J ,
meaning that the columns of G form a subset of the columns
of H. It is well-known that H has low rank if the underlying
functions are exponential polynomials [8], [18]. It is clear that
if H has low rank then G has low rank as well, while G
offers a more compact representation than H.

General periodic signals can also be reshaped into low-
rank matrices. Consider a nonzero signal with period T , i.e.,
f(ξ) = f(ξ + T ). Collect M samples in a vector f ∈ KM
such that fξ = f(ξ) for 1 ≤ ξ ≤M . Assume M = TW with
W the number of periods. If we reshape f into a (T ×W )
matrix G, then the rank of G equals one regardless of the
type of signal (e.g., discontinuities are allowed). Analogously,
if we reshape f into a (T2 × 2W ) matrix, i.e., each column
contains one half of a period, then the rank is at most two.
Hence, the rank is in general at most R if we reshape f
into a (TR ×RW ) matrix, meaning that each column contains
1
R -th of a period. Conversely, if we obtain a (RT × W

R )
matrix, each column contains a multiple of the period, and
the rank is one. In practice, however, the period is typically
unknown or may have been estimated inaccurately. Hence, it
is interesting to investigate how this influences the rank of G.
For example, reshape f into a ((T − 1) × b M

T−1c) matrix G.
In that case, the transpose of G is a submatrix of the circulant
matrix C constructed from f , denoted as C = circ(f), i.e., we
have GT = C1:b M

T−1 c,1:T−1 in MATLAB-like notation. This is
illustrated in Figure 3. We now use the following property of
circulant matrices [33]:

Property 1. Consider a circulant matrix C̃ = circ(c) ∈ KT×T
with c ∈ KT one period of a T -periodic signal f ∈ KM such
that M = TW . The matrix C̃ has full rank if c contains
T nonzero frequency components. The circulant matrix C =
circ(f) ∈ KM×M has rank T because C = 1W×W ⊗ C̃.

From Property 1 it follows that the rank of G equals T −1.
Let us now consider the more general case where the estimate
for the period T̂ is given by l(T − k).

Theorem 2. Consider the (I×J) reshaping G of a T -periodic
signal f ∈ KM such that M ≥ IJ . Assume one period c ∈ KT
contains T nonzero frequency components. Consider also two
integers k and l with l > 0. If I = l(T−k) and J = b M

l(T−k)c,
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X = G(0) G(1) · · · G(L)

R



 S(0)

S(1)

0
...
0

...

S(L)

0 · · · 0
...

...
0 · · · 0

Block Toeplitz

L

R R(L+ 1)







X =
R∑

r=1

L∑
l=0

G
(l)
r

s
(l)
r

Segmentation

=
R∑

r=1

L∑
l=0

A
(l)
r

B
(l)
r

s
(l)
r

Fig. 2. Illustration of segmentation applied to BSI: each column of the output data matrix X is reshaped into a matrix and then stacked into a third-order
tensor X . The reshaped system coefficients appear in the first and second mode, while the inputs appear in the third mode. The latter has a block-Toeplitz
structure due to the convolutive nature of the system. Hence, this particular tensorization reformulates BSI as a structured tensor decomposition. In this
particular example the decomposition is a BTD in multilinear rank-(P (l)

r , P
(l)
r , 1) terms.

then the rank of G equals one if k = 0. If k 6= 0, we have

r(G) ≤





T
gcd(T,kl) if gcd(T, kl) > 1,

T
gcd(T,l) if gcd(T, l) > 1,

T
gcd(T,k) if gcd(T, k) > 1,

min(T, I, J) else.

Proof. As mentioned earlier, we have r(G) = 1 if k = 0 and
l > 0. For k > 0 it can be verified that GT is a submatrix of
the circulant matrix C = circ(f) ∈ KM×M , i.e., we have that

GT = C1:kl:klb M
l(T−k)c,1:l(T−k), (10)

similar to the example above that was illustrated in Figure 3.
From Property 1 we know that r(C) = T , i.e., C contains T
linearly independent rows. However, we only select the first
l(T − k) values of each row, meaning that the rows of GT

are not necessarily linearly independent. First, take l = 1. In
that case one can see that in (10) we select every kth row of
C. Hence, if gcd(T, k) > 1, the rank of G equals at most

T
gcd(T,k) . If gcd(T, k) = 1, we select T − k = I rows, hence,
the rank is bounded by the minimal dimension of G, i.e.,
r(G) ≤ min(I, J). Next, take l > 1. In that case we select
every klth row of C, hence, the rank of G equals at most

T
gcd(T,kl) if gcd(T, kl) > 1. If gcd(T, kl) = 1, but gcd(T, l) >

1 or gcd(T, k) > 1, then r(G) ≤ T
gcd(T,l) or r(G) ≤ T

gcd(T,k) ,
respectively. Finally, if gcd(T, kl) = gcd(T, k) = gcd(T, l) =
1, then r(G) ≤ min(T, I, J) because we select at most T
linearly independent rows of C or the rank is bounded by the
dimensions. If k < 0, GT is a submatrix of the left circulant
matrix and one can make a similar derivation as above.

Corollary 1. Consider a T -periodic signal f ∈ KM that
satisfies Property 1. The rank of the (I × J) reshaped version
G is bounded by 1 ≤ r(G) ≤ T for any choice of I and J .

C =




1 2 3 4 1 · · · 4
4 1 2 3 4 · · · 3
3 4 1 2 3 · · · 2
2 3 4 1 2 · · · 1
1 2 3 4 1 · · · 4
...

...
...

...
...

. . .
...

2 3 4 1 2 · · · 1




GT

Fig. 3. Consider a reshaping of a T -periodic signal f into a matrix G with
dimensions (T̂ ×bM

T̂
c). The transpose of G equals a submatrix of the circu-

lant matrix C = circ(f). This is illustrated for f = [1 2 3 4 1 · · · 4] ∈ KM

with T = 4, W = 3, and M = TW using T̂ = T − 1.

Note that Corollary 1 implies that the reshaped version G
of a T -periodic signal is a low-rank matrix if the period T is
small compared to the number of samples M .

So far we have discussed signals that exactly admit a low-
rank representation. However, low-rank models are powerful
models for more general compressible signals as well. This has
been thoroughly discussed in [8]. For example, Gaussians, sig-
moids, sincs, rational, and hyperbolic functions can typically
be well approximated by low-rank models. This is because
the singular value spectrum of the matricized version of such
functions is often fast decaying, meaning that only few rank-1
terms are needed for a good approximation. This is illustrated
in Figure 4. Explicit bounds on the approximation error have
been reported in [8] for functions that admit a good polynomial
approximation.

More generally, one can reshape the coefficient vectors into
a higher-order tensor instead of a matrix, allowing an even
more compact representation [8], [15]. Indeed, we only need
P

(l)
r (
∑N
n=1 In−N + 1) parameters instead of M =

∏N
n=1 In
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0 1
0

1

Sinc

0 1
0

1original
function

rank-1
model

Hyberbolic

0 1
0

1

Rational

0 1
0

1

0 1
0

1original
function

rank-2
model

0 1
0

1

Fig. 4. A low-rank approximation of a reshaped smooth function often
provides an accurate representation. Increasing the rank of the model improves
the approximation. We illustrate for a sinc, a hyperbolic tangent, and a rational
function evaluated in 100 equidistant samples in [0, 1]. We reshaped the
original vectors into (10×10) matrices and subsequently approximated them
by a low-rank matrix by truncating the singular value decomposition. The
reconstructed functions are obtained by vectorizing the resulting rank-1 and
rank-2 matrices. The rank-2 model approximately coincides with the original
function.

to model the (r, l)th coefficient vector. Clearly, the number of
parameters decreases logarithmically with the order N of the
tensor representation of g(l)

r and increases proportionally with
the number of rank-1 terms P (l)

r . Mathematically, we have

G(l)
r =

P (l)
r∑

p=1

u(1,l)
pr

⊗ u(2,l)
pr

⊗ · · ·u(N,l)
pr (11)

with u
(n,l)
pr ∈ KIn for 1 ≤ n ≤ N . The number of rank-1 terms

P
(l)
r may be different for different r and for l. Note that this is

in fact a PD as in (1). Equivalently, the tensorized coefficient
vectors can be written as sums of Kronecker products

g(l)
r = vec(G(l)

r ) =

P (l)
r∑

p=1

u(N,l)
pr ⊗u(N−1,l)

pr ⊗ · · ·⊗u(1,l)
pr . (12)

C. Segmentation and decomposition

We show how BSI can be reformulated as the computation
of a structured flower decomposition. The tensor is obtained
by using segmentation which is a deterministic tensorization
technique [8], [15], [16]. The decomposition has a block-
Toeplitz structure in the last mode which can be exploited
in order to obtain better uniqueness properties and accuracy.

Let us first explain the segmentation approach for the third-
order case as depicted in Figure 2. We will generalize for
order N > 3 afterwards. First, we reshape each column of the
output data matrix X in (8) into a (I × J) matrix Xk such
that vec(Xk) = xk and M = IJ . We will discuss the choice
of the parameters I and J in more detail in Subsection IV-D.
Next, we stack all the matricized columns in a third-order
tensor X ∈ KI×J×K such that the kth frontal slice of X is
equal to the kth matricized column of X. This tensorization
technique is called segmentation and is a linear operation. This
means that the M matricized outputs are linear combinations

of the RL shifted sources s
(l)
r using matricized coefficients

G
(l)
r ∈ KI×J . Hence, it holds that

X =

R∑

r=1

L∑

l=0

G(l)
r

⊗ s(l)
r .

Assume that the system coefficients admit a low-rank model
as in (9) in order to obtain a BTD in multilinear rank-
(P

(l)
r , P

(l)
r , 1) terms:

X =

R∑

r=1

L∑

l=0

(
A(l)
r B(l)

r

T
)

⊗ s(l)
r . (13)

The third factor matrix S of decomposition (13) has
a block-Toeplitz structure due to the convolution: S =[
S(0) S(1) · · · S(L)

]
with s(l)

kr = sr[k− l] for 0 ≤ l ≤ L.
As such, we have shown that BSI can be solved by means of
a structured tensor decomposition. We want to emphasize that
it is the working hypothesis of low-rank approximability that
has enabled the blind identification. We mentioned uniqueness
properties of this particular type of BTD in Subsection I-B.
We refer the interested reader to [34], [35] for uniqueness
properties of block-Toeplitz structured decompositions.

We now generalize the above approach by reshaping the
coefficient vectors into tensors instead of matrices, leading
to a structured flower decomposition. First, we reshape each
column of X into an N th-order (I1×I2×· · ·×IN ) tensor Xk
such that vec(Xk) = xk and M =

∏N
n=1 In. Again we refer

to Subsection IV-D for a discussion of the choice of In. Next,
we stack the resulting tensors into a (N + 1)th-order tensor
X ∈ KI1×I2×···×IN×K such that the kth tensorized column of
X equals the kth N th-order “frontal slice” of X , hence,

X =

R∑

r=1

L∑

l=0

G(l)
r

⊗ s(l)
r .

Let us assume that the coefficients admit a low-rank model as
in (11) in order to obtain the following decomposition:

X =

R∑

r=1

L∑

l=0



P (l)
r∑

p=1

u(1,l)
pr

⊗ u(2,l)
pr

⊗ · · · ⊗ u(N,l)
pr


⊗ s(l)

r . (14)

Hence, we reformulated BSI as the computation of a block-
Toeplitz structured flower decomposition. It is clear that (14)
reduces to (13) if N = 2. We discussed uniqueness properties
of the flower decomposition in Section II-B.

The proposed method allows one to uniquely identify both
the system coefficients and the inputs of large-scale BSI
problems. The compressibility of the coefficients allowed us
to rewrite the problem as a tensor decomposition using seg-
mentation. This allows us to benefit from the mild uniqueness
properties of tensor decompositions and enables the blind
identification. We emphasize that our method is applicable
to large-scale FIR systems because of the highly compact
representation of the coefficients by means of a higher-order
low-rank model. Recall that segmentation is a deterministic
tensorization technique, meaning that our method also works
for very small sample sizes, see Section IV.

In contrast to our method, conventional techniques fall short
in the large-scale setting. For example, ICA methods that use
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Qth-order statistics are infeasible when M is large because
the number of entries in the resulting tensor is O(MQ). Our
segmentation-based method reshapes the (M×K) data matrix
into a (I1×I2×· · ·×IN×K) tensor with the same number of
entries as in the data matrix. If I1 = I2 = · · · = IN = K = I ,
the resulting tensor contains O(IN+1) entries, or equivalently
O(logN (M)M), which more or less amounts to a decrease of
complexity by Q orders of magnitude.

D. Uniqueness

We derive uniqueness conditions similar to the ones in [18],
[36] for the decomposition in (8). By ignoring the block-
Toeplitz structure on S in this subsection, we can ignore the
superscript l for simplicity and take 1 ≤ r ≤ R(L + 1).
Assume we have low-rank coefficient vectors of the form:

gr = vec(Gr) =

Pr∑

p=1

bpr ⊗ apr, (15)

with apr ∈ KI , bpr ∈ KJ , and R′ =
∑R
r=1 Pr. Note that

Gr = ArB
T
r. We now apply Theorem 1 from Subsection I-B.

Theorem 3. Consider a matrix S ∈ KK×R(L+1) that does not
have proportional columns and a matrix G ∈ KM×R(L+1) of
which the columns have structure (15). Assume the matrices
A =

[
A1 A2 · · · AR

]
and B =

[
B1 B2 · · · BR

]

have full column rank. If M ≥ R′2 then the decomposition
X = GST is essentially unique.

Proof. The constraint M ≥ R′2 allows us to reshape the
columns of X into (I × J) matrices Xr such that M = IJ
for 1 ≤ r ≤ R(L+1) with I, J ≥ R′. The matrices Xr admit
the following decomposition: Xr = ArB

T
r. The matrices Ar

and Br have full column rank by definition. The result then
follows from Theorem 1.

We can apply this result to coefficient vectors that can be
modeled as sums of exponentials. Element-wise, we have:

gr(ξ) , gξ+1,r =

Pr∑

p=1

αprz
ξ
pr,

for 0 ≤ ξ ≤M − 1 and 1 ≤ r ≤ R(L+ 1). One can see that
this is a special case of (15) as follows. Take ξ = i+ jI with
0 ≤ i ≤ I − 1, 0 ≤ j ≤ J − 1 and M = IJ . Hence, we have

gξ+1,r =

Pr∑

p=1

αprz
i+jI
pr =

Pr∑

p=1

αprz
i
prz

jI
pr .

By defining aipr = zipr and bjpr = αprz
jI
pr , we obtain (15).

We generalize Theorem 3 for coefficient vectors of the form:

gr = vec(Gr) =

Pr∑

p

u(N)
pr ⊗ u(N−1)

pr ⊗ · · · ⊗ u(1)
pr (16)

with u
(n)
pr ∈ KIn .

Theorem 4. Consider a matrix S ∈ KK×R(L+1) that
has full column rank and a matrix G ∈ KM×R(L+1)

with structure (16). Assume the matrices U(n) =[
U

(n)
1 U

(n)
2 · · · U

(n)
R

]
, for 1 ≤ n ≤ N , have full column

TABLE I
DIMENSIONS OF THE OBTAINED TENSOR X BY APPLYING SEGMENTATION

TO (8) USING M = 64, K = 1000, AND A GIVEN N̂ .

N̂ (I1 × · · · × IN̂ ×K)

2 8× 8× 1000
3 4× 4× 4× 1000
4 2× 4× 4× 2× 1000
5 2× 2× 2× 2× 4× 1000
6 2× 2× 2× 2× 2× 2× 1000

TABLE II
BY EXPLOITING MORE OF THE INTRINSIC HIGHER-ORDER STRUCTURE

IN (8), MORE INPUTS CAN BE IDENTIFIED. HERE WE REPORT THE
MAXIMUM VALUE OF R FOR WHICH COROLLARY 4.13 IN [30] HOLDS FOR

A GIVEN N̂ AND CORRESPONDING DIMENSIONS GIVEN IN TABLE I.

N̂ 2 3 4 5 6

R 40 46 49 50 52

rank. If M ≥ R′2 then the decomposition X = GS is
essentially unique.

Proof. Reshape the columns of X into (I1×I2×· · ·×IN ) ten-
sors Xr with M =

∏N
n=1 In for 1 ≤ r ≤ R(L+ 1). Construct

N matrix representations of the form: X
(w)
r = A

(w)
r B

(w)
r

T

for 1 ≤ w ≤ N with A
(w)
r =

⊙
γ∈Γw

U
(γ)
r ∈ KI′w×Pr and

B
(w)
r =

⊙
υ∈Υw

U
(υ)
r ∈ KJ′w×Pr with I ′w =

∏
γ∈Γw

Iγ , and
J ′w =

∏
υ∈Υw

Iυ . The sets Γw and Υw satisfy Γw ∪ Υw =
{1, . . . , N} and Γw∩Υw = ∅. The constraint M ≥ R′2 allows
at least one matrix representation w for which I ′w, J

′
w ≥ R′.

The factor matrices A
(w)
r and B

(w)
r have full column rank by

definition. The flower decomposition can be interpreted as a
coupled BTD in multilinear rank-(Pr, Pr, 1) terms. We know
from Subsection II-B that the flower decomposition is unique
if one of its BTDs is unique and S has full column rank. The
result then follows from Theorem 1.

Let us now give an example to explain why the uniqueness
conditions become milder in the higher-order case. Consider
decomposition (8) and ignore the block-Toeplitz structure as
before. Consider a coefficient matrix H that has a 6th-order
structure (N = 6), which we will represent by tensors of
increasing order. More specifically, we have a matrix of the
form H = U(6) �U(5) �U(4) �U(3) �U(2) �U(1) with
U(n) ∈ KIn×R and In = 2, for 1 ≤ n ≤ N , using M = 64
and K = 1000. By applying our segmentation-based approach
to X for increasing N̂ , we obtain a CPD of an (N̂ + 1)th-
order tensor X of dimensions (I1 × · · · × IN̂ × K); see
Table I for the values of the dimensions. For N̂ > 2, one can
rework the higher-order CPD into a set of coupled third-order
CPDs, similar to the explanation for the flower decomposition
in Subsection II-B, such that one can use the uniqueness
conditions in [30]. In order to illustrate the milder uniqueness
conditions for increasing order N̂ we check if Corollary 4.13
in [30] is generically satisfied, in the way explained in [35,
Section III-B]. The results are shown in Table II. It is clear that
the uniqueness conditions are more relaxed for higher N̂ , i.e.,
when exploiting more of the intrinsic higher-order structure.
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E. Block-Toeplitz structure

We have shown that convolutive BSI can be reformulated as
a block-Toeplitz constrained flower decomposition, assuming
low-rank coefficient vectors. Improved uniqueness conditions
can be obtained by exploiting the block-Toeplitz structure
of S in (8) as well. Dedicated uniqueness conditions have
been presented in [34], [35] for the block-Toeplitz constrained
(coupled) CPD and the BTD in multilinear rank-(Pr, Pr, 1)
terms. In this subsection, we generalize the results for the more
general flower decomposition. In other words, we exploit both
the higher-order structure and the block-Toeplitz structure,
enabling more relaxed uniqueness conditions.

Consider the block-Toeplitz decomposition X = GST

defined in (8). We call it essentially unique if any other block-
Toeplitz decomposition X = MTT is related to X = GST via
a nonsingular matrix F ∈ KR×R as follows: G(l) = M(l)FT

and S(l) = T(l)F−1 for 0 ≤ l ≤ L. Several essential unique-
ness conditions can be found in [34]. We repeat Lemma 2.4
from [34] as Lemma 1 in this paper.
Lemma 1. The block-Toeplitz constrained decomposition X =
GST defined in (8) is essentially unique if the matrices G and
Z =

[
S

(0)
S

(1) · · · S(L)
S(L)

]
∈ K(K−1)×R(L+2) have full

column rank. The matrices S
(l)

and S(l) are equal to S(l) with
the first and last row omitted, respectively.

Remember that the matrix S in the block-Toeplitz decom-
position (8) can only be found up to the intrinsic ambiguity
F. Hence, we have S = T(IL+1 ⊗ F) in which T is a
block-Toeplitz matrix with the same column space as S, i.e.,
range(S) = range(T). As such, we can write (8) as

X = G(IL+1 ⊗ FT)TT.

A two-step procedure for determining G, F, and T from
X has been proposed in [34]. First, we determine T by
computing the column space range(XT) = range(S), assuming
G and Z have full column rank, and solving a linear system
of equations as explained in [34]. According to Lemma 1, we
obtain S up to the intrinsic block-Toeplitz indeterminacy, i.e.,
we have T = (IL+1⊗F−1)S. Next, we can determine G and
F via a coupled decomposition as follows. We have

Y = X(TT)† = GST(TT)† = G(IL+1 ⊗ FT).

Let us partition Y ∈ KM×R(L+1) as Y =[
Y(0) Y(1) · · · Y(L)

]
in which Y(l) ∈ KM×R.

Hence,
Y(l) = G(l)FT for 1 ≤ l ≤ L. (17)

Equation (17) is a coupled decomposition of matrices Y(l)

with a common factor F. One can interpret the block-Toeplitz
factorization as a deconvolution, i.e., the convolutive BSI
problem has been reduced to an instantaneous BSI problem
which takes the form of a coupled decomposition. Decom-
position (8) can be interpreted as a matrix representation
of a block-Toeplitz constrained CPD or BTD in multilin-
ear rank-(Lr, Lr, 1) terms if G = B � A or if G =[
vec(B1A

T
1) · · · vec(BRA

T
R)
]
, respectively.

Here we apply the same idea to the flower decomposition as
follows. Consider a coefficient matrix G with columns defined

as in (12), resulting in a coupled flower decomposition in (17).
As explained earlier, a flower decomposition can be written
as a coupled BTD in multilinear rank-(P (l)

r , P
(l)
r , 1) terms.

Hence, each flower decomposition in (17) can be written as:

Y(w,l) = G(w,l)FT

in which G(w,l) ∈ KI′×R (I ′ = M ) is defined as

G(w,l) =
[
vec(B

(w,l)
1 A

(w,l)
1

T
) · · · vec(B

(w,l)
R B

(w,l)
R

T
)

]

with A
(w,l)
r ∈ KI′w×P (l)

r , B(w,l)
r ∈ KJ′w×P (l)

r . Or equivalently,

Y(w,l) =
(
A(w,l) �B(w,l)

)
F(ext,l)T

(18)

with F(ext,l) =
[
1T

P
(l)
1

⊗ f1 · · ·1T

P
(l)
R

⊗ fR
]
. Hence, we obtain

a coupled BTD and we can use the uniqueness conditions
from [30], [34]. First, we define the matrix V:

V =




CP+1(A(1,0))� CP+1(B(1,0))
...

CP+1(A(1,L))� CP+1(B(1,L))
CP+1(A(2,0))� CP+1(B(2,0))

...
CP+1(A(2,L))� CP+1(B(2,L))

...
CP+1(A(W,L))� CP+1(B(W,L))




PBTD,

in which A(w,l) =
[
A

(w,l)
1 · · · A

(w,l)
R

]
∈ KI′w×RP

and B(w,l) =
[
B

(w,l)
1 · · · B

(w,l)
R

]
∈ KJ′w×RP assuming

P
(l)
r = P for 1 ≤ r ≤ R and 0 ≤ l ≤ L. The matrix PBTD is

a selection matrix that takes into account that each column of
F(ext) is repeated P times in (18), see [34], [37].

Theorem 5. Consider the decomposition of X in (8) in which
G has a structure as in (12) with P

(l)
r = P , for 1 ≤ r ≤ R

and 0 ≤ l ≤ L, and S has a block-Toeplitz structure. It is
essentially unique if G, Z, F, and V have full column rank.

Proof. Lemma 1 ensures that we can write the block-Toeplitz
decomposition in (8) as a coupled flower decomposition. We
explained above how this decomposition can be written as
a coupled BTD in multilinear rank-(P (l)

r , P
(l)
r ) terms. The

results then follows from [34, Theorem II.3].

By exploiting the block-Toeplitz structure in (8), Theo-
rem 5 provides a more relaxed uniqueness condition than
Theorem 4. We compare the theorems by checking if the
conditions are generically satisfied, in the way explained
in [35, Section III-B]. More specifically, we construct random
matrices with structure as specified in Theorems 4 and 5. Next,
we numerically check for which values of R the conditions
hold. The results are shown in Table III for M = 1000,
I1 = I2 = I3 = 10 (N = 3), and K = 100. Clearly,
more inputs can be identified by exploiting the available block-
Toeplitz structure. The most restrictive constraint in Theorem 5
is the constraint that Z should have full column rank, hence,
the repeated values do not depend on P .
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TABLE III
BY EXPLOITING THE BLOCK-TOEPLITZ STRUCTURE IN (8), MORE

RELAXED UNIQUENESS CONDITIONS CAN BE OBTAINED. HERE, WE
REPORT THE MAXIMUM VALUE OF R FOR WHICH THEOREMS 4 AND 5
HOLD FOR A GIVEN PAIR (P,L) AND M = 1000, I1 = I2 = I3 = 10,

AND K = 100. CLEARLY, MORE INPUTS CAN BE IDENTIFIED WHEN
EXPLOITING THE AVAILABLE BLOCK-TOEPLITZ STRUCTURE.

L 1 2 3
P 1 2 3 1 2 3 1 2 3

Theorem 4 15 7 5 10 5 3 7 3 2
Theorem 5 33 33 33 24 24 24 19 19 19

Finally, algebraic methods have been proposed that are
guaranteed to find the exact solution in the case of exact
decompositions, see [34], [35]. In the noisy case, such methods
can be used to initialize optimization-based methods.

IV. NUMERICAL EXPERIMENTS

In Subsection IV-A we illustrate our method with a simple
proof-of-concept. Next, we inspect the influence of noise and
sample size as well as the system order on the accuracy in
Subsection IV-B and IV-C, respectively. In Subsection IV-D
we discuss parameter selection. In order to compute the
relative error on the estimated FIR system coefficients and
inputs, they first have to be optimally scaled and permuted with
respect to the true ones. This is due to the standard permutation
and scaling indeterminacies in BSI. Hence, we define the
relative error εA as the relative difference in Frobenius norm
||A− Â||F/||A||F with Â the optimally scaled and permuted
estimate for the matrix A. In the experiments we use Gaussian
additive noise and i.i.d. zero-mean unit-variance Gaussian
random sources of length K unless stated otherwise.

Tensor decompositions are computed using least-squares
optimization-based methods from Tensorlab [31], [38]. The
CPD and the BTD in multilinear rank-(Pr, Pr, 1) terms are
computed using cpd and ll1, respectively, using a GEVD
as initialization, see [17], [31], [39], [40]. The (unstructured)
decomposition in (rank-Lr ⊗ vector) terms is computed with a
nonlinear least squares (NLS) algorithm called lvec [8], [15]
which is available upon request. We use the GEVD method
from Subsection II-C to initialize. For the computation of
the block-Toeplitz structured flower decomposition we use
a two step procedure. First, we compute the unstructured
decomposition as explained earlier. Next, we use this solution
to initialize the computation of the block-Toeplitz structured
flower decomposition in the SDF framework of Tensorlab [40].
Finally, we mention that for very large tensors one can resort
to large-scale algorithms, see [14], [41], [42].

A. Proof-of-concept

We illustrate the proposed method with a simple proof-
of-concept. Consider a large FIR system with M = 1000
outputs, R = 2 inputs with K = 100 samples, and system
order L = 1. The coefficient vectors g

(l)
r are sums of

exponentials: g(0)
1 (ξ) = e−2ξ, g(1)

1 (ξ) = 1
4 (5−10ξ + 10

ξ
2 ),

g
(0)
2 (ξ) = 1

3 (e
ξ
2 + e−4ξ), and g(1)

2 (ξ) = (1
2 )

3ξ
2 evaluated in M

equidistant samples in [0, 1]. We know from Subsection III-B

0 1
0

1

Original
coefficients

First input

0 1
0

1

Second input

0 1
0

1

Reconstructed
coefficients

0 1
0

1

Delay zero

Delay one

Fig. 5. The proof-of-concept experiment of Subsection IV-A illustrates perfect
reconstruction of the FIR system coefficients in the noiseless case.

that a sum of P exponentials leads to a reshaped tensor of
rank-P . Hence, we use an N th-order rank-1 approximation
for g(0)

1 and g(1)
2 (P (0)

1 = P
(1)
2 = 1) and we use an N th-order

rank-2 approximation for g(1)
1 and g

(0)
2 (P (1)

1 = P
(0)
2 = 2).

We choose N = 3 with In = 10 for 1 ≤ n ≤ N . As
such, we decompose the (10 × 10 × 10 × 100) segmented
tensor obtained from the observed data matrix X into a sum
of (rank-P (l)

r ⊗ vector) terms. We use the two step procedure
explained above to compute a solution. Note that we need only
P

(l)
r (I1 + I2 + I3 − 2) values to model the (r, l)th coefficient

vector. More specifically, we need only 28 or 56 values instead
of 1000 for a rank-1 or -2 approximation, respectively. Hence,
we have compression rates of 1− P (l)

r
I1+I2+I3−2

M = 97.20%
and 94.40%, respectively. Higher compression rates can be at-
tained by further increasing N . Both the original and perfectly
reconstructed coefficient vectors are shown in Figure 5.

B. Influence of noise and sample size

Let us illustrate the influence of the noise and the sample
size K for the proposed method. Consider a large FIR system
with M = 1000 outputs, R = 3 inputs of sample size K, and
system order L = 1. We vary the SNR from 0 dB to 30 dB in
steps of 10 dB and choose K = 10i for 1 ≤ i ≤ 3. The low-
rank coefficient vectors are constructed as vectorized low-rank
tensors using (12). Specifically, we have N = 2, P (l)

r = 2 for
all delays of the first input, P (l)

r = 1 for all delays of the other
two inputs, and I = J = 50 for 1 ≤ n ≤ 2 using random zero-
mean unit-variance Gaussian-distributed factor vector entries.
In Figure 6, we report the median across 50 experiments of
the relative error on the system coefficients εG and the inputs
εS. The results clearly show that the accuracy is very high
in comparison with the signal-to-noise ratio (SNR) for both
the coefficients and the inputs. Moreover, even a small sample
size K leads to accurate results. Also, increasing the sample
size K is beneficial for εG but has no effect on εS. This is due
to the fact that one also has to estimate longer input signals,
which was also observed for instantaneous BSS [8].
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Signal-to-noise ratio (dB)

Relative
error (dB)

Coefficients
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-65
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Fig. 6. The proposed method clearly obtains accurate results in comparison
with the SNR for both the coefficients and the inputs, e.g., a relative error
of -45 dB for 10 dB SNR. Increasing the number of samples improves the
accuracy on the coefficients. This is not the case for the inputs due to the fact
that one also has to estimate longer input signals.

C. Influence of the system order L

The effect of under- or overestimating the system order L
for our segmentation-based method is analyzed. Consider a
large FIR system with M = 1000 outputs, R = 2 inputs of
sample size K = 100, and exact system order L = 2. The low-
rank coefficient vectors are constructed as vectorized rank-1
tensors using (12) with N = 3, P (l)

r = 1 for all r and l,
In = 10 for 1 ≤ n ≤ 3, and random zero-mean unit-variance
Gaussian-distributed factor vector entries. The SNR is varied
from 0 dB to 30 dB in steps of 10 dB. We apply our method
for 0 ≤ L̂ ≤ 4. The relative error on the system coefficients
εG is defined as εG = ||Ĝ − GPD||F/||Ĝ||F with Ĝ ∈
KM×R(L̂+1) and G ∈ KM×R(L+1). P ∈ KR(L+1)×R(L̂+1)

is the optimal column selection and permutation matrix, and
D ∈ KR(L̂+1)×R(L̂+1) is the optimal scaling matrix. The
relative error on the inputs εS is defined in a similar way.
We report εG and εS in Figure 7 and Figure 8, respectively.
While overestimating the system order L is not so critical for
εG, underestimating leads to less accurate results. Both under-
and overestimating the system order decreases the accuracy on
the inputs, but underestimating leads to slightly more accurate
results than overestimating.

In practice one can find a reasonable estimate for the system
order L as follows. The multilinear rank of X in (13) is
bounded by (

∑R
r=1

∑L
l=0 P

(l)
r ,
∑R
r=1

∑L
l=0 P

(l)
r , RL). Hence,

one can find an estimate for RL, in which R is equal to
the number of inputs, by computing the MLSVD of X and
checking the number of significant mode-3 singular values.

D. Parameter selection

We discuss the choice of the dimensions I and J of the
segmentation matrix and the rank of the model P

(l)
r for

the (r, l)th coefficient vector. What is considered a “good”
choice of parameters depends of course on the needs in a
particular application. In our case, we are most interested in
the compactness and the accuracy of the model. Given those
objectives, we discuss a simple example to illustrate good
choices and how to obtain them.

Consider a Gaussian with mean 0.5 and standard deviation
0.15 that is uniformly discretized in M = 214 samples in [0, 1].
We reshape the resulting vector into an (I × J) matrix with

0 30
-58

-28

L̂ = 2

L = 0
L = 1

Signal-to-noise ratio (dB)

Relative
error (dB)

on the
coefficients

Underestimating

0 30
−60

−50

−40

−30

−20

L̂ = 2
L = 3
L = 4

Overestimating

Fig. 7. Overestimating the exact system order L = 2 is not so critical for
the accuracy on the coefficients. Underestimating the system order reduces
the accuracy but the results are still quite good.

0 30
-57

-21

L̂ = 2

L = 0
L = 1

Signal-to-noise ratio (dB)

Relative
error (dB)

on the
inputs

Underestimating

0 30

−50

−40

−30

L̂ = 2

L = 3
L = 4

Overestimating

Fig. 8. Although under- and overestimating the exact system order L =
2 decreases the accuracy on the inputs, the former provides slightly more
accurate results than the latter.

I = 2q and J = 214−q for 2 ≤ q ≤ 12 such that IJ = M .
Subsequently, we compute the best rank-P approximation by
truncating the singular value decomposition (SVD) for P =
{1, 2, 3}. Define the normalized number of parameters as the
ratio between the number of parameters needed in the model
and the total number of values in the original vector, i.e., M̂ =
P (I+J−1)/M . In Figure 9, we report the normalized number
of parameters M̂ versus the relative error ε for a rank-P model.

There is a trade-off between compactness and accuracy:

−224 −9

0

0.8

rank-1
model

rank-2
model

rank-3
model

Square matrix

Fat matrix Tall matrix

Relative error (dB)

# Model parameters
# Total values

Fig. 9. Our segmentation-based approach allows a trade-off between compact-
ness and accuracy of the model through the choice of the dimensions and the
rank of the model. What is considered a ‘good’ choice of parameters depends
on the needs in a particular application. If compactness is the objective, a
square segmentation matrix is preferred. If accuracy is the objective, a fat
matrix clearly outperforms a tall one and better results can be attained by
increasing the rank. An explanation for the former phenomenon is illustrated in
Figure 10 using a rank-1 approximation of two different segmented matrices.
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0

1
Original
function

Rank-1
approximation

Tall segmentation matrix

0 1
0

1

Fat segmentation matrix

Fig. 10. A tall segmentation matrix often leads to a poor approximation
because the original function is divided in only a few segments. In the case of
a rank-1 approximation (P = 1), each segment is approximated by the same
‘long’ vector multiplied by a different coefficient. Conversely, the original
function is divided in many small segments when using a fat segmentation
matrix, leading to an overall good approximation.

• The accuracy can be improved by choosing I and J such
that I < J rather than I > J . In other words, a fat
segmentation matrix is better than a tall one for a fixed
rank; this is illustrated in Figure 10. Hence, segmentation
is not symmetric in the modes that it creates.

• Increasing the rank P of the model improves the accu-
racy, especially when I < J .

• A compact model, on the other hand, can be obtained
by reshaping into a (nearly) square matrix (I ≈ J) and
choosing P not too large.

In practice, one can first overestimate P and use the above
guidelines to find some reasonable segmentation dimensions.
Most often the value of P is not very critical, cf. also [8].
Next, one can repeat the analysis with smaller values of P
and further refine the choice of the parameters.

Let us illustrate that overestimation of P is not so critical.
Consider a FIR system with M = 100 outputs, R = 2
inputs with K = 10 samples, and system order L = 1.
The coefficient vectors g

(l)
r are exponentials: g(0)

1 (ξ) = e−2ξ,
g

(1)
1 (ξ) = e

ξ
2 , g(0)

2 (ξ) = −eξ, and g(1)
2 (ξ) = 1

2e
−ξ evaluated in

M equidistant samples in [0, 1]. It is known that an exponential
can be exactly represented by a rank-1 model [8], [18].
However, we overestimate the rank value of the coefficient
vectors for the zeroth delay (of both inputs) by one, i.e., we use
P

(0)
1 = P

(0)
2 = 2 and P (1)

1 = P
(1)
2 = 1. We take N = 2 with

I = J = 10. The overestimation of the rank value is clearly
not so critical: we can perfectly reconstruct the coefficient
vectors as shown in Figure 11. We also show the spectrum
of the low-rank models G

(0)
1 and G

(0)
2 for coefficient vectors

g
(0)
1 and g

(0)
2 , respectively, in Figure 12. It is clear that the rank

has been overestimated; a rank-1 model would have sufficed.

V. APPLICATIONS

A. Direction-of-arrival estimation

A uniform rectangular array (URA) is an antenna array
with M = MxMy antennas that are uniformly spaced in a
rectangular grid as depicted in Figure 13. There are Mx and
My antennas in the x- and y-direction, respectively. Let us
assume that the output of the mth antenna satisfies (7) and
that the R inputs impinging on the URA are narrow-band
signals. In that case it can be shown that the system coef-
ficients satisfy g

(l)
r = g

(l)
x,r ⊗ g

(l)
y,r with g

(l)
x,r and g

(l)
y,r defined

0 1
0

2

Original
coefficients

First input

0 1
−3

5

Delay zero

Delay one

Second input

0 1
0

1.8

Reconstructed
coefficients

0 1
−3

5

Fig. 11. Although we overestimate the rank value of the zeroth coefficient
vector of both inputs, the FIR system coefficients are perfectly reconstructed
in the noiseless case.

1 2 10
10−18

102

Spectrum of G(0)
1

1 2 10
10−18

102

Spectrum of G(0)
2

Fig. 12. The spectra of the obtained low-rank models G(0)
1 and G

(0)
2 for the

reshaped coefficient vectors of the zeroth delay clearly show a rank-1 model
would have sufficed.

element-wise as g(l)
x,mr = (θ

(l)
r )m−1 and g

(l)
y,mr = (φ

(l)
r )m−1,

respectively. We have θ
(l)
r = e2πi∆x cos(α(l)

r ) sin(β(l)
r )λ−1

and
φ

(l)
r = e2πi∆y sin(α(l)

r ) sin(β(l)
r )λ−1

with inter-element spacings
denoted by ∆x and ∆y , and λ denotes the wavelength. The
angle αr to the x-direction is the azimuth and the angle βr to
the normal is the elevation. Clearly, the system coefficients are
Kronecker products of Vandermonde vectors that allow a rank-
1 representation. We compare our segmentation-based method
with the well-known MUSIC method for DOA estimation [10].

Consider a large square URA with M = 625 antennas

x

y

n
rth source

βr

αr

Fig. 13. Illustration of a uniform rectangular array (URA) with M =MxMy

antennas: Mx = 4 and My = 4 in the x- and y-direction, respectively. The
rth source is impinging on the URA from the far field and is characterized
by two angles: the azimuth αr and elevation βr relative to the x-axis and the
normal, respectively, hence, we have −90◦ ≤ αr, βr ≤ 90◦.
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Fig. 14. Segmentation is clearly more accurate than 2D-MUSIC. For example,
we have a relative error of -56 dB and -36 dB for 10 dB SNR for segmentation
and 2D-MUSIC, respectively. Also, the accuracy of segmentation is high
compared to the SNR, even at low SNR. The accuracy of 2D-MUSIC, on
the other hand, is bounded by the number of points in which the MUSIC
spectrum is evaluated. This number has been limited due to the large number
of antennas in the large-scale URA under consideration. However, the median
computation cost of 2D-MUSIC is still quite high compared to segmentation:
10.04 seconds versus 0.77 seconds on a standard laptop.

(Mx = My = 25) with R = 2 inputs, system order L = 1, and
K = 100 samples. Assume ∆x and ∆y are both equal to half
the wavelength λ. The azimuth and elevation pairs are given
by (α

(0)
1 , β

(0)
1 ) = (−51◦, 80◦), (α

(1)
1 , β

(1)
1 ) = (55◦,−60◦),

(α
(0)
2 , β

(0)
2 ) = (25◦,−20◦), and (α

(1)
2 , β

(1)
2 ) = (80◦, 51◦).

Recall that the coefficients g
(l)
r are Kronecker products of

Vandermonde vectors (which admit a rank-1 representation).
Hence, we first reshape each coefficient vector g

(l)
r into a

(25 × 25) matrix G
(l)
r such that vec(G

(l)
r ) = g

(l)
r and so we

have G
(l)
r = g

(l)
y,r ⊗ g

(l)
x,r. Next, we use a (5× 5) second-order

rank-1 model for g(l)
x,r and g

(l)
y,r. This simply leads to an overall

fourth-order rank-1 model (N = 4) for each g
(l)
r with In = 4

for 1 ≤ n ≤ 4. As such, we only need
∑4
n=1 In − 3 = 17

values instead of 625 which means a compression rate of
1−

∑N
n=1 In−3

M = 97.28%.
We report the median across 100 experiments of the relative

errors on the azimuth and elevation angles, denoted as εα and
εβ , respectively, for varying SNR in Figure 14. Clearly, seg-
mentation yields more accurate results than MUSIC; note the
high accuracy compared to the SNR. The accuracy of MUSIC,
however, is bounded by the number of points used to evaluate
the 2D MUSIC spectrum [10]. Remember that MUSIC first
computes an eigenvalue decomposition of the (M × M)
covariance matrix in order to evaluate the spectrum. The peaks
of the spectrum correspond to azimuth and elevation pairs.
In order to attain accurate estimates, one has to evaluate the
spectrum in many angles which can become computationally
expensive. Here, we used 100 equidistant angles in [−π2 , π2 ] for
both DOAs to evaluate the spectrum. We limited the number
of evaluation points because of the relatively large number of
antennas. It is the high computational load of MUSIC for large
M that makes it inaccurate or computationally infeasible in a
large-scale setting.

It is not unlikely that in a large-scale array a number of an-
tennas will malfunction. This would result in an observed data
matrix with a few or even all entries missing in several rows,
leading to an incomplete tensor after segmentation. Tensorlab’s
built-in support for incomplete tensors, however, allows us

0 10 30

-26

-40

-78 full data
50% missing
90% missing

Signal-to-noise ratio (dB)

Relative
error (dB)

Azimuth

0 30

−60

−40
+14 dB

Elevation

Fig. 15. The loss in accuracy in a large-scale uniform rectangular array
with missing antennas is limited, even for many inactive antennas and low
SNR. For example, we have only 14 dB loss in accuracy for the elevation
in 0 dB SNR when up to 90% of the antennas are inactive. As such, a
segmentation-based approach using incomplete tensor decompositions enables
DOA estimation in large-scale grids with a few broken antennas or even non-
uniform grids. In the latter case, the grid is “completed” with a dense uniform
one that has many missing antennas.

to compute a decomposition and retrieve the DOAs [31].
Furthermore, the arrays are typically non-uniform in large-
scale applications. One way to tackle this problem is to fit an
imaginary uniform grid on top of the existing antennas. The re-
sulting URA is very dense and mostly filled with non-existing
antennas, resulting in a large and incomplete observed data
matrix. However, there exist algorithms with first and second-
order convergence that have a computational complexity that
is only linear in the number known entries [14]. Hence, it is
still possible to estimate the DOAs in this case. In Figure 15
we report the results for the same experiment as above but now
with a (random) fraction of the antennas turned off. Clearly,
the estimates are still very accurate, even for low SNR and
90% of the array inactive.

B. Neural spike sorting

Spike-sorting refers to the separation of spike trains fired
by different neurons from high-density micro-electrode array
(HD-MEA) recordings. Often an instantaneous BSS model
is assumed and one can use, e.g., independent component
analysis (ICA) to extract the spike trains [43]. A convolutive
model as in (7), however, is typically more accurate because
the signals do not propagate instantaneously [44]. Moreover,
the assumption of independence is not satisfied when spikes
coincide. Also, our method works if only a few samples are
available. The amplitude of a spike train typically decreases
with a 1/d characteristic in which d equals the distance
between the neuron and the array. As such, the system coeffi-
cients can be assumed low-rank in the high-density setting. We
illustrate our method for the separation of simulated coinciding
spike trains from a large-scale convolutive mixture.

Consider an array with M = 1000 sensors, system order
L = 1, and R = 2 neural spike trains with K = 270 samples.
Assume the system coefficients can be modeled using the 1/d
characteristic as mentioned above, i.e., we have:

g(l)
r (ξ) =

a
(l)
r√

α2
r +

(
ξ−βr
b
(l)
r

)2
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Fig. 16. Simulated outputs of a high-density microelectrode array for
measuring neuronal activity using simulated spike trains as inputs.

True inputs Estimated inputs

Fig. 17. Our segmentation-based approach obtains an excellent separation of
a convolutive mixture of simulated spike trains stemming from high-density
microelectrode arrays for measuring neuronal activity.

evaluated in M equidistant samples in [0, 1]. αr equals the
distance between the array and the rth neuron. (x − βr)
equals the distance between an electrode of the array and
the electrode with maximum amplitude for the rth neuron.
a

(l)
r and b(l)r are shape coefficients for the rth neuron and lth

delay. We use α1 = 0.1, α2 = 0.05, β1 = 0.2, and β2 = 0.7.
We use the following shape coefficient pairs (a

(0)
1 , b

(0)
1 ) =

(1, 1), (a
(1)
1 , b

(1)
1 ) = (0.5, 0.1), (a

(0)
2 , b

(0)
2 ) = (1, 1), and

(a
(1)
2 , b

(1)
2 ) = (0.7, 0.05). The inputs are spike trains of length

K with the spikes modeled as a linear combination of two
rational functions:

s1(t) =
0.7

(t−0.5)2

0.012 + 1
− 0.3

(t−0.54)2

0.032 + 1
,

s2(t) =
0.3

(t−0.5)2

0.0452 + 1
− 0.15

(t−0.6)2

0.132 + 1
.

The SNR is 30 dB. Some outputs are shown in Figure 16.
A rank-2 approximation is sufficient to accurately model the
smooth system coefficients, i.e., we have P (l)

r = 2 for 1 ≤
r ≤ 2 and 0 ≤ l ≤ 1. We choose I = 20 and J = 50 so that
we have a fat reshaping, see Subsection IV-D. In Figure 17
we see an excellent separation of the spike trains, even for
coinciding spikes and small sample size. Although we do not
exploit the periodicity of the inputs, it is possible to use a two-
fold segmentation approach consisting of segmentation steps
along both the input and mixing level as in [8].

VI. CONCLUSION

In this paper we presented the first BSI method that is
applicable to large-scale FIR systems. The key idea is that

in large-scale applications the system coefficients are often
compressible because there is a lot of structure that can be
exploited. We used low-rank tensor models to approximate
the tensorized system coefficients in a compact way, enabling
large-scale BSI. We showed that our method reduces BSI to
a structured decomposition of a tensor obtained by applying
segmentation on the measured outputs. This enabled a unique
identification of the system and reconstruction of the inputs;
no additional assumptions, such as independence, are needed
on the inputs. The method even works well when only a
few samples are available because it is deterministic. The
decomposition that we used is a generalization of a particular
block term decomposition called the flower decomposition. We
discussed uniqueness properties and proposed a new algebraic
method to compute it. We also discussed uniqueness prop-
erties when incorporating the block-Toeplitz structure of the
decomposition. Our method proved viable for DOA estimation
in large-scale URAs with possibly broken antennas and even
in non-uniform arrays. Also, we demonstrated the use of our
method for convolutive spike sorting problems.
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