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Abstract— This paper shows that Model Predictive Control
(MPC) can more effectively be used for flood prevention in
comparison with a three-position controller. Because MPC takes
rain predictions into account, it uses the buffer capacity of the
available flood basins in a more optimal way. Simulation results
for historical data for the Demer, a river in Belgium with a
history of large floodings, show a significant reduction of the
number and the impact of floodings when MPC is used. Because
the river models behave strongly nonlinear, it is necessary to
use a nonlinear model predictive controller. Furthermore, as
rainfall predictions tend to be less predictable over longer
periods, it is necessary to extend MPC to Multiple MPC in
order to cover this uncertainty.

I. INTRODUCTION

To prevent the Demer, a river in Belgium, from flooding,

the storage capacity of the river was expanded with flood

basins and hydraulic gates were installed at the end of the

sixties. These gates are controlled by an advanced three-

position controller. However, these constructions could not

prevent the Demer from flooding in 1998 and 2002.

This paper shows that the number and the impact of

these floodings could have been reduced when a Model

Predictive Controller (MPC) has been used. Because MPC

takes constraints on the inputs and states and the effect of

disturbances (e.g. heavy rainfall) explicitly into account, it

uses the flood basins in a more optimal way.

So far, only Matlab has been used for MPC implemen-

tations for flood control at the K.U.Leuven [1], [2], [3].

However an implementation of this technique should as best

practice be based on industrial software. This paper shows

that the industrial INCA Software of the company IPCOS1

is suited for this task. The main reason to use this software

instead of own developed software is twofold:

1) INCA is already successfully implemented in MPC ap-

plications in the glass industry and the petrochemistry.

If we achieve positive results in this case, the effort

to build an MPC flood control system will decrease

significantly.

2) By avoiding to start from scratch, applying MPC in

the domain of flood control gets full focus right from

the start of the project. Other topics like visualization

of the simulation, handling of signal drop outs, etc.,

are already available as well.
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A second extension is the reduction of the influence of

uncertainty on the rainfall predictions on the performance

of the implemented MPC controllers. In order to cover this

uncertainty, MPC is extended to Multiple MPC (MMPC).

The paper is organized as follows. Section II describes

the current controller for the Demer and its disadvantages.

Section III elaborates how MPC can be used for flood

control while Section IV explains how the nonlinearities of

the river models can be tackled. Section VI explains how

robustness can be achieved with respect to uncertainty on

the rainfall predictions while Section VII shows results for

the controllers discussed in the previous sections.

II. CURRENT CONTROL

The current control of the Demer is done by an advanced

three-position controller, in combination with manual over-

ruling by operators. A standard three-position controller is

often used to maintain water levels as close as possible

to their set-points. It changes the heights of the hydraulic

structures based on some basic rules [4]:

1) do not change the position of the gate as long as the

water level is within a band around the reference value,

2) let the gate go down in case the water level is above

the upper boundary

3) and let the gate go up in case the water level is below

the lower boundary.

The controller used by the local water authority is more

advanced. During periods of no or limited rainfall they use

the standard three-position controller to steer the water levels

to their set-points. However, during periods of heavy rainfall

the focus shifts towards flood prevention and these simple

rules are overruled by some advanced rules based on many

years of experience in controlling the Demer. These rules

determine when and to which upper limit the basins can

be filled to prevent flooding. However this controller still

has two important drawbacks: the control actions are only

based on the current state of the system and do not take

rain predictions into account. Therefore it will not react

preventive on periods of heavy rainfall. A better alternative

is to use a control strategy that takes the rain forecasts into

account like model predictive control.

III. MODEL PREDICTIVE CONTROL AND FLOOD

CONTROL

MPC is a control strategy originating from the process

industry and is nowadays used in various applications going

from chemicals and food processing to automotive and

aerospace applications [5], [6], [7]. MPC makes use of a
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process model to predict the future process outputs within

a specified prediction horizon. MPC solves an optimization

problem over this horizon to determine the optimal inputs for

the process taking into account input and output constraints,

future disturbances and the process model. Only the first

input sample of the complete optimal sequence is applied to

the process, new samples are taken and the entire procedure

is repeated.

A. Previous work

Several studies can be found in the literature where MPC

is used to control water systems [8], [9]. However, these

studies are focused on steering the water levels to their set-

points and not on flood prevention. This simplifies the use of

MPC as the nonlinear river dynamics can be approximated

sufficiently accurately by a linear model. For flood control

MPC can not ignore the nonlinear behaviour as heavy rainfall

excites the entire nonlinear dynamics. In [10] MPC is used

for flood control but this study does not take the nonlinearity

of the gates into account. This is again an oversimplification

of the problem because especially the gates are responsible

for the nonlinearities.

B. The river models

Because MPC uses a process model, the first task is to find

an appropriate model. The models used for the Demer are

built, calibrated and validated by the Department of Civil

Engineering of the K.U.Leuven. These models are of the

reservoir type and are based on the principles described

in [11]. Fig. 1 shows the structure of the model for the

study scope of the Demer located close to the place where

the Mangelbeek pours into the Demer (more information

can be found in [12]). This model contains two basins:

Schulensmeer and Webbekom. A smaller model is derived

for the area around Schulensmeer in the red circle and is

visualized in Fig. 2. The hollow rectangles are the control-

lable hydraulic structures, the full rectangles are fixed spills

or overflows. The lines are river reaches with positive flow in

the direction of the arrows. The nodes are places where the

model simulates the local water levels and water volumes.

The symbol k is used for the controllable gates, h for the

water levels, v for the water volumes and q for the discharges.

Fig. 1. Model structure of the Demer for the study area with the basins
Webbekom and Schulensmeer.

Fig. 2. Model structure of the Demer for the area around Schulensmeer.

Both models are nonlinear state space models of the form:
{

xk+1 = s(xk,uk,dk)

yk = Cxk

(1)

with xk the state vector at time k, uk the input vector at

time k, dk the disturbance vector at time k and yk the output

vector at time k. The state x consists of the water levels, the

water volumes and the discharges, the input u of the gates,

the disturbances d of the upstream discharges and the output

y of the water levels. The small model consists of 10 states, 3

inputs, 3 outputs and 2 disturbances, the large model consists

of 75 states, 12 inputs, 20 outputs and 8 disturbances.

One difficulty in using MPC for flood control lies in the

nonlinear river dynamics. The relation between the discharge

over a gate and the height of the gate and the water

surrounding the gate is strongly nonlinear. For flood control

it is very important that the controller can deal with these

nonlinearities. Therefore nonlinear model predictive control

(NMPC) will be used.

IV. NONLINEAR MODEL PREDICTIVE CONTROL

A. The influence of nonlinear models on the optimization

problem

The nonlinearities of the river model have a negative

influence on the optimization problem that MPC will solve

at every time step. When a linear model can be used, the

resulting optimization problem is often a quadratic problem

(QP) where the model equations are substituted in the

objective function or are present as equality constraints. If

the Hessian of the quadratic objective function is positive

definite, then the corresponding QP is strictly convex and

it has a unique solution. This solution can efficiently be

found with algorithms like active set methods. However,

when the model is nonlinear the corresponding optimization

problem will not have linear equality constraints: a nonlinear

optimization problem has to be solved (NLP). These are

much harder to solve and can have multiple local optima.

B. NMPC algorithm

In [5] efficient nonlinear MPC schemes can be found that

work with nonlinear models. The algorithm used in this paper

is based on the following procedure:

1) Predict at step n the future states in the prediction

horizon with the nonlinear model for the optimal
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inputs found in the previous time step n − 1 and the

rain forecasts. Derive at each time instant within the

prediction horizon a linear state space model based on

the future states. The linearization used in this paper

is done with forward differences. This step gives a

sequence of time variant linear models of the form:
{

xk+1 = Akxk + Bkuk + fk

yk = Cxk

(2)

with fk a vector containing the information of the

linearization point.

2) Solve an optimization problem based on these linear

models to determine a sequence of optimal inputs.

3) The solution found in step 3 will only be an approx-

imation of the solution of the original NLP because

the linear models are only an approximation of the

nonlinear model. Therefore, the previous steps have

to be repeated until convergence. In every iteration

the optimal inputs in step 1 have to be replaced with

the solution of the QP in step 3. When the algorithm

terminates the first input is applied to the system and

the entire strategy is repeated.

It has been proved that this algorithm delivers a local

optimum of the original NLP [13].

C. Necessary adaptations for the INCA Software

The INCA Software can handle nonlinear models for only

a limited number of applications. For other applications, like

flood control, INCA can only work with a linear model. This

is however not sufficient for flood control because of the

strong nonlinearities of the river models. In order to be able

to handle these nonlinearities, the software was expanded

with the NMPC algorithm by making a connection between

Matlab and INCA. With this connection it is possible to

perform step 1 and 2 of the algorithm. Step 3 is performed

by the standard solver of INCA. Only the last step could

not be implemented: the software can not be adjusted in a

straightforward way to solve the QP multiple times for the

same time step. However as Section VII shows, good results

are achieved even without this last adaptation.

V. CONTROL OBJECTIVES AND CONSTRAINTS

A. In general

The control objectives and constraints are situation depen-

dent and are determined by the local water administration.

During periods of no or light rainfall the controller has

to steer the most important water levels to their set-points.

It is also important to empty the basins and keep them as

empty as possible in order to maximize the buffer capacity.

This can be achieved by emphasizing the deviations of these

water levels and the basins in the objective function of the

QP using appropriate weights.

During periods of heavy rainfall the focus shifts towards

flood prevention. Because these rainfalls could last more than

five days the prediction horizon should have at least the same

length to prevent flooding in an optimal way. However this

is not possible:

• The rain predictions are only accurate for the first two

days.

• The number of optimization variables would be too

large to solve the problem in an acceptable amount of

time.

Therefore it is necessary for the MPC controller to follow

some expert rules:

1) Every water level has a guard level. The flood basins

should remain empty as long as every water level

remains beneath this guard level. To achieve this the

guard levels are added as constraints to the optimiza-

tion problem and a high cost is placed in the objective

function on the deviations of the basins from their set-

points.

2) The basins may be filled when the water levels violate

their guard levels over the prediction horizon. However

it is not allowed to use the entire buffer capacity. Every

basin may only be filled as far as its safety limit. After

reaching this limit, it is possible that the water levels

will violate their guard levels. To allow the basins to

be filled, the deviations from their set-points are not

important any more in the objective function. Also the

safety limits are added as constraints and the guard

levels are replaced with the flood levels.

3) When the flood levels will be violated the last remain-

ing buffer capacity of the basins can be used to prevent

flooding. This is achieved by substituting the safety

limits with the flood limits of the basins.

4) When it is not possible to prevent a water level

from flooding, the corresponding constraint should be

removed from the QP. In order to limit the height of the

flooding, the weight of this water level in the objective

function is increased.

Besides these constraints on the water levels, there are also

constraints on the movable gates. Every gate has an upper

and a lower limit and can only move over a maximum

distance every hour (velocity limit).

These constraints and objectives in combination with the

linear state space models can be translated into a QP. In

the INCA Software the states of the system are eliminated

as optimization variables of the QP with the following

substitution:
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(3)

with P i =
∏i

n=0 Ak+i−n. This can be rewritten in the
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following form:

yp = Gxk + Hup + Jfp. (4)

The QP that has to be solved at every time instant is then

the following:

min
up

‖yp(up) − yr‖2
Q + ‖up − ur‖2

R (5)

s. t. umin ≤ up ≤ umax, (6)

|∆up| ≤ ∆max, (7)

yk+j(up) ≤ ymax (8)

where ‖x‖2
Q = xT Qx, Q and R are positive definite

diagonal matrices, yr is the output reference values, ur is

the input reference values, umin and umax are the physical

limits of the gates, ∆max is the velocity limit for the gates,

ymax are the upper limits (guard and safety level/flood level)

for the outputs. ∆up is a vector containing the differences

between the inputs at subsequent time steps.

B. The area around the basin Schulensmeer

The rules for the area around the basin Schulensmeer are:

• The set-point for the upstream water level hopw is

21.5 m. The basin level hs should remain as close as

possible to 20.4 m.

• The upper and lower limits for the gates are:

– 20 m ≤ kA ≤ 23 m,

– 20.03 m ≤ kK7 ≤ 23 m
– and 18.9 m ≤ kD ≤ 22.9 m.

• The gates are constrained to move not faster than

0.1 m/hour.

• The guard levels for hopw and hafw are 23 m, resp.

22.55 m. The safety limit of hs is 23 m.

• The flood levels are:

– hopw ≤ 23.2 m,

– hs ≤ 23.2 m

– and hafw ≤ 22.75 m.

All the mentioned heights are above mean sea level (AMSL).

C. The area containing the basins Schulensmeer and

Webbekom

The rules for the model containing the basins Schulens-

meer and Webbekom are here only quantified for the most

important water levels:

• The set-points for the water levels hopw and hbgopw are

21.5 m and 23.8 m.

• The gates are not allowed to move faster than

0.1 m/hour.

• Every gate has an upper and a lower limit.

• The safety limits for the basins Schulensmeer (hs) and

Webbekom (hw) are 23 m and 22 m. Their set-points

are 20.4 m and 20 m.

• The guard level for hopw is 23 m.

• The flood levels are:

– hopw ≤ 23.2 m,

– hs ≤ 23.2 m,

– h2 ≤ 22.737 m,

– hbgopw ≤ 24.84 m,

– hw ≤ 22.4 m,

– hgl ≤ 22 m,

– and hafw ≤ 20.46 m.

VI. ROBUSTNESS AGAINST UNCERTAINTY ON RAINFALL

PREDICTIONS WITH MULTIPLE MPC

The first MPC implementations (discussed in the next

Section) assume there is no uncertainty on the rainfall

predictions. However this is not realistic as the rainfall cannot

be predicted with 100% certainty and the uncertainty on

the predictions increases with the length of the prediction

horizon. The uncertainty can be seen as perturbations super-

posed on the real rainfall data. These perturbations cannot be

modelled as white noise as the uncertainty for time sample

i is not independent of the previous time sample: if the

prediction for an upstream discharge is too large for time

sample i − 1, the prediction for time sample i is probably

also too large. This can be modelled with β-distributions

where the position of the (finite) maximum for time sample

i coincides with the perturbation for time sample i− 1. See

[14] for more details.

One way to deal with this uncertainty is to replace the

MPC controller with a Multiple MPC (MMPC) controller

[15]. This controller works with three sequences of distur-

bances:

• nominal: This is the sequence of the predicted dis-

turbances over the prediction horizon. The lower the

uncertainty the closer the sequence will be to the real

data.

• maximal: This sequence is an upwards shifted version

of the nominal sequence and is in most of the cases an

overestimation of the real data.

• minimal: This sequence is a downwards shifted version

of the nominal sequence and is in most of the cases an

underestimation of the real data.

These three sequences are included in the online linearization

algorithm:

1) Predict for each disturbance sequence the future states

within the prediction horizon with the nonlinear model

for the optimal inputs found in the previous time step.

This step delivers three sequences of states.

2) Derive for every sequence of states a linear state space

model for every time sample in the prediction horizon.

3) At the beginning of this step there are three sequences

of disturbances, states and linear models. As there

are three sequences of models, there are also three

sequences of outputs (water levels). The QP now

searches for one input sequence that brings these three

sequences as close as possible to their reference values.

4) The previous steps have to be repeated until conver-

gence. When the algorithm terminates the first input

is applied to the system and the entire procedure is

repeated.
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Because step 3 looks for the input sequence that is most

optimal for the three output sequences, the controller is

protected against uncertainties on the disturbances.

VII. RESULTS

A. The area with Schulensmeer and Webbekom

Before implementing the controllers, the following as-

sumptions were made:

• There is no plant-model mismatch: the model used to

simulate the Demer and used by the MPC controller are

the same.

• Every state is known at every time sample.

• There is no uncertainty on the rain predictions.

After a successful implementation for the model around

Schulensmeer a MPC controller is implemented for the large-

scale model. Fig. 4 shows the simulation results for this MPC

controller and these should be compared with the results for

the current controller (Fig. 3):

• During the first 250 hours MPC steers hopw much closer

to its set-point of 21.5 m than the current controller.

Both controllers keep the basin Webbekom (hw) close

to its reference value. This is not the case for Schulens-

meer (hs) where only MPC can steer it to 20.4 m. Only

the results for hbgopw are a bit better for the current

controller.

• The current controller is not capable to prevent many

water levels from flooding during the heavy rainfall

during the next 150 hours. The results are much better

for the MPC controller as it uses the basins and the

available information in an optimal way. This can also

be concluded from Table I: MPC clearly outperforms

the current controller. All the flood margins are in-

creased.

• After the heavy rainfall MPC succeeds in completely

emptying both basins in a fast way. The current con-

troller can only empty Webbekom completely. MPC

also steers hopw much closer to its set-point. Only the

results for hbgopw are less good.

TABLE I

COMPARISON OF THE MAXIMAL HEIGHT AND CORRESPONDING FLOOD

MARGIN FOR THE MOST IMPORTANT WATER LEVELS BETWEEN THE

MPC CONTROLLER AND THE CURRENT CONTROLLER.

water level MPC controller current controller
max. height margin max. height margin
(m AMSL) (cm) (m AMSL) (cm)

hopw 23.15 5.4 23.18 1.6

hs 23.04 15.8 23.16 4.3

h2 23.02 -28.1 23.04 -30.1

hbgopw 24.77 7.4 24.91 -7.2

hw 22.20 20.5 22.61 -20.7

hgl 21.78 22.4 22.48 -48.0

hafw 20.24 22.4 20.38 8.0

B. Robustness against uncertainty on rainfall predictions for

the area around Schulensmeer

The previous simulations assumed that there is no uncer-

tainty on the rainfall predictions. This Subsection discusses
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Fig. 3. Simulation results for the large model for the advanced three-
position controller.
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Fig. 4. Simulation results for the large model for the MPC controller.

the simulation results for MMPC for the model around Schu-

lensmeer where the rainfall forecasts are an underestimation

of the historical data of the flood of September 1998. The

uncertainty over the prediction horizon of 48 hours lies

between -15 % and 2 % for the first 30 hours and between

-20 % and 3 % for the remaining 18 hours. Fig. 5 shows the

results for the current controller and the MMPC controller:

• The MMPC controller steers hopw much closer to the

set-point of 21.5 m than the current controller for the

first 250 hours. MMPC also keeps the basin hs empty.

• During the heavy rainfall the current controller can not

prevent hafw from flooding with 40 cm. Also hopw and

hs flooded with 1 cm. The situation is much better with

the MMPC controller. It limits the flooding for hafw to

only 5 cm. hopw and hs have a flood margin of 13 cm.

• The current controller is not able to empty the basin hs.

This is not the case for MMPC which empties the basin

completely and steers hopw back to its set-point.
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Fig. 5. Simulation results for the small model for the current controller
(top) and for MMPC (bottom) when the rainfall predictions are an under-
estimation of the historical flood of September 1998.

VIII. CONCLUSION AND FUTURE WORKS

The simulation results for the historical flood event of

1998 clearly show that MPC outperforms the current control

structure. Because MPC uses the available buffer capacity of

the basins in a more optimal way, it reduces the number and

the height of the floodings significantly.

Before the technique can be applied in practice, future

research is necessary:

• The model used for the simulations of the Demer and

used by MPC are exactly the same. There is how-

ever always a plant-model mismatch as a mathematical

model approximates only reality: the model will always

contain model errors and uncertainties. A next step is to

replace the simulation model by a more accurate one.

• Every simulation assumed that every state is known. In

practice however only the most important water levels

are measured and the discharges not. Therefore it is

necessary to incorporate a state estimator in the con-

trol scheme. One possible state estimator is a moving

horizon estimator (MHE) [16]. It estimates the states

by solving an optimization problem based on the past

measurements. Because of the nonlinear dynamics it

will be necessary to use a nonlinear moving horizon

estimator (NMHE) [17].

• Implement a MMPC controller for the large model. The

challenge will be to limit the impact of the increased

number of variables on the computation time.
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