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Abstract— This paper shows that model predictive control
(MPC) in combination with moving horizon estimation (MHE)
can more effectively be used for flood prevention in comparison
with an advanced three-position controller. Because MPC takes
rain predictions into account, it uses the buffer capacity of
the available flood basins in a more optimal way. Simulation
results for historical data for the Demer, a river in Belgium
with a history of large floodings, show a significant reduction
of the number and the impact of floodings when MPC is used.
Because of the strong nonlinear river dynamics it is necessary
to use nonlinear MPC. The use of a state estimator like MHE
is necessary because only some of the states are measured.

I. INTRODUCTION

Flooding of rivers is a worldwide problem with severe
consequences. The Demer, a river in Belgium, has in this
context a bad reputation. The Demer often floods during
periods of heavy rainfall. As counter measure the local water
administration expanded the storage capacity of the river with
flood reservoirs to store the excessive amount of water during
periods of heavy rainfall. They also installed hydraulic gates
to control the discharges in the river and the flow of water
from and into these reservoirs. Nowadays, the hydraulic
structures are controlled with an advanced three-position
controller which determines the control actions based on
some simple rules. However, these constructions could not
prevent the Demer from flooding again in 1998 and 2002.
The main reason is that the controller does not take the rain
forecasts into account. Therefore the control actions are often
suboptimal. This paper shows that this is not the case when
a model predictive controller is used.

A. Model Predictive Control

Model predictive control (MPC) is an optimal control
strategy originating from the process industry to operate
power stations and petroleum refineries more efficiently
in combination with the tightened environmental, quality
and safety regulations. Nowadays it has gained widespread
acceptance in industry due to its unique advantages com-
pared to classic control methods and it is used in many
diverse industries like the food industry and aviation [9].
MPC distinguishes itself by the ability to efficiently control
large-scale interconnected systems and the inherent ability
to handle physical and other constraints of the controlled
system. MPC works with a dynamical model of the system

Katholieke Universiteit Leuven, Department of Electrical Engineering
(ESAT), SCD-SISTA, Kasteelpark Arenberg 10, B-3001 Leuven (Heverlee),
Belgium {maarten.breckpot, toni.barjas-blanco,
bart.demoor}@esat.kuleuven.be

and applies mathematical optimization techniques to obtain
the optimal inputs to be applied to the system [13].

Several studies can be found in literature where MPC is
used to control water systems [15], [16] and [5]. However,
these studies are focussed on steering the water levels to their
set-points and not on flood prevention. This simplifies the use
of MPC as the nonlinear river dynamics can be approximated
sufficiently accurate by a linear model. A simple linear model
is not sufficient for flood control because heavy rainfall
excites the entire nonlinear dynamics. In previous work
[2], [3] and [4] a MPC strategy was presented for flood
control of the Demer. In this work all the constraints were
imposed as hard constraints and a constraint strategy had to
be developed. In the work presented in this paper the flood
levels are imposed as soft constraints. The previous work
also assumes that all the states of the system are known at
every time step. This is however not realistic as only the
water levels are measured and e.g. the discharges not. In
this paper this assumption is dropped and a moving horizon
estimator is used as state estimator.

B. Moving Horizon Estimation

For the estimation of the current state of the system,
moving horizon estimation (MHE) is used [10], [11] and
[8]. MHE can be regarded as the dual of MPC. Also MHE
makes use of a dynamical model of the system which is used
in an optimization problem that minimizes the deviations
between the measurements and the estimated states over a
finite horizon.

II. CURRENT CONTROL

There exist many different control strategies for the control
of rivers. An overview can be found in [12] and [7]. Nowa-
days the hydraulic structures in the Demer are controlled by
an advanced three-position controller. The control actions of
a standard three-position controller are based on the deviation
of the water levels from their set-point:

1) move the gate to decrease the water level if it is above
its set-point,

2) move the gate to increase the water level if it is below
its set-point

3) and do not move the gate if the water level is close
enough to the set-point.

In practice this type of controller is often used to steer
the corresponding water level to a desired reference level.
The three-position controller used to control the Demer is
more advanced. It contains extra logical rules that are based
on the experience of operators which are used to avoid



flooding instead of optimal set-point regulation. However
this controller still has two important drawbacks: the control
actions are only based on the current state of the system and
do not take rain predictions into account. Therefore it will
not react preventive on periods of heavy rainfall. A better
alternative is to use a control strategy that takes the rain
forecasts into account like model predictive control.

III. MODEL PREDICTIVE CONTROL

A. Why MPC?

The use of MPC for flood control can be justified by the
following properties:
• Because MPC solves an optimization problem, it can

cope with all the constraints that are present in a
river system like physical upper and lower bounds of
the gates and maximal gate movement. Also upper
constraints on the water levels can be taken into account
which is necessary for flood prevention. There is no
strict limit on the time allowed for solving the opti-
mization problem because river systems have relatively
slow dynamics.

• MPC can use the mathematical model of the river to
predict the influence of the rainfall predictions on the
future water level. This information can be used to make
better decisions to prevent flooding.

• River systems are typically highly interactive multi-
input-multi-output systems (MIMO). It is known that
traditional control design for such kind of systems
is very difficult because they make use of relatively
little information about the system. MPC, however, can
effectively deal with MIMO systems.

• Because during a flood event all the nonlinear dynamics
of the river system are excited, it is necessary to have
a controller that can work with a nonlinear model of
the river system. In literature efficient nonlinear MPC
schemes can be found that work with nonlinear models
[6].

B. The river models

Because MPC uses a process model, the first task is to find
an appropriate model. The models used for the Demer are
built, calibrated and validated by the Department of Civil
Engineering of the K.U.Leuven. These models are of the
reservoir type and are based on the principles described
in [14]. Fig. 1 shows the structure of the model for the
study scope of the Demer. This model contains two basins:
Schulensmeer and Webbekom. Because this work is the first
time MPC is used in combination with MHE for flood
control, the focus is limited to the upper stream part of the
Demer indicated in the figure by the (red) ellipse. See Fig. 2
for a more detailed view. This upper stream part of the river
consists of ten states (three water levels, four discharges and
three volumes) and three inputs (the gates A, D and K7).
The outputs of the system are the three water levels hopw

(the upstream water level), hafw (the downstream water level)
and hs (the water level of the reservoir Schulensmeer). The

Fig. 1. Model structure of the Demer for the study area with the basins
Webbekom and Schulensmeer.

Fig. 2. Model structure of the Demer for the area around Schulensmeer.

disturbance inputs are the upstream discharges qopw and qman

which model the rainfall entering the river system.
The river model is a nonlinear state space model:{

xk+1 = s(xk,uk,dk)
yk = Cxk

(1)

with xk the state vector at time k, uk the input vector
at time k, dk the disturbance vector at time k and yk

the output vector at time k. The same model is used as
in [2]. One difficulty in using MPC for flood control lies
in the nonlinear river dynamics. The relation between the
discharge over a gate and the height of the gate and the water
surrounding the gate is strongly nonlinear. For flood control
it is very important that the controller can deal with these
nonlinearities. Therefore nonlinear model predictive control
(NMPC) will be used.

C. NMPC algorithm
In [6] efficient nonlinear MPC schemes can be found that

work with nonlinear models. The algorithm used in this paper
consists of the following steps:

1) Predict at step n the future states in the prediction
horizon with the nonlinear model for the optimal inputs
found in the previous step n−1 and the rain forecasts.
Derive at each time instant within the prediction hori-
zon a linear state space model based on the future states
and the optimal inputs of the previous step:

Ak+i(:,m) =
∂s

∂xk+i(m)

∣∣∣∣
x0

k+i,u
0
k+i

, (2)

Bk+i(:,m) =
∂s

∂uk+i(m)

∣∣∣∣
x0

k+i,u
0
k+i

(3)



with Ak+i(:,m) and Bk+i(:,m) the m-th column of
Ak+i and Bk+i, u0

k+i the optimal inputs found in the
previous step on time instant i in the prediction horizon
and x0

k+i the predicted future states at time instant i.
The linearization used in this paper is done with central
differences. This step gives a sequence of time variant
linear models of the form:{

xk+i+1 = Ak+ixk+i + Bk+iuk+i + fk+i

yk+i = Cxk+i

(4)

with i ∈ {0, . . . , N − 1} and fk+i a vector containing
the information of the linearization point (x0

k+i,u
0
k+i):

fk+i = x0
k+i+1 −Ak+ix

0
k+i −Bk+iu

0
k+i. (5)

2) Solve an optimization problem based on these linear
models to determine a sequence of optimal inputs.

3) Because the linear models are only a valid approxima-
tion for the nonlinear system around the linearization
point, the solution of the optimization problem does
not necessarily lead to an improved point. If the new
point lies too far away from the linearization point,
the new point could be a worse solution. Therefore a
simple line search between the linearization point and
the new point is performed. More information can be
found in [4].

4) Because of the approximation of the nonlinear model,
the previous steps are repeated until convergence or
until time runs out. Afterwards the first input is applied
to the system and the procedure is repeated.

A schematical representation of this procedure can be found
in Fig. 3.

prediction

uk−1

linearisation

xk

QP

Ak,Bk,Ck,Dk

convergence?

uk

process

yes

no

uk

Time step k-1

Time step k

Time step k+1

uk

Fig. 3. Schematical representation of the NMPC algorithm.

In [1] it has been shown that this algorithm delivers a
local minimum of the nonlinear control problem where the
original nonlinear model is used.

D. The optimization problem

When there is no or little rainfall the objective is to steer
the most important water levels to their set-point. When
there is heavy rainfall the objective is to prevent the water
levels from flooding. As it will be shown both tasks can be
accomplished with the following quadratic program (QP):

min
uk, . . . ,uk+N−1

xk+1, . . . ,xk+N

yk+1, . . . ,yk+N

ξk+1,1, . . . , ξk+N,1

ξk+1,2, . . . , ξk+N,2

N∑
i=1

(∥∥∥∥ ξk+i,1

ξk+i,2

∥∥∥∥2

S

+ ‖yk+i − yr‖2
Q

+ ‖uk+i−1 − ur
k+i−1‖2

Rk+j

)
(6)

subject to xk = x̂k, (7)
j ∈ {1, . . . , N} : xk+j = Ak+j−1xk+j−1

+ Bk+j−1uk+j−1 + fk+j−1,

(8)

j ∈ {1, . . . , N} : yk+j = Cxk+j , (9)
j ∈ {1, . . . , N} : umin ≤ uk+j−1 ≤ umax, (10)

j ∈ {1, . . . , N − 1} : |uk+j − uk+j−1| ≤ ∆max, (11)
|uk − u0

k−1| ≤ ∆max, (12)
j ∈ {1, . . . , N} : yk+j − ξk+j,1 ≤ ymax,1, (13)
j ∈ {1, . . . , N} : yk+j − ξk+j,2 ≤ ymax,2, (14)
j ∈ {1, . . . , N} : ξk+j,1 ≥ 0, ξk+j,2 ≥ 0 (15)

with N the length of the prediction horizon, Q, Rk and S
positive definite diagonal matrices, yr and ur

k the reference
values for the outputs, resp. the inputs. x̂k is the estimated
state with MHE (see section IV) at time step k. Constraint
(10) represents the physical limits of the gates and constraints
(11) and (12) represent the maximal possible gate movement
with u0

k−1 the optimal inputs applied in the previous time
step. Constraints (8) and (9) make sure that the optimization
variables obey the linear model equations. Constraints (13)
and (14) bound the water levels to prevent them from
flooding. Both are soft constraints with slack variables ξk,1

and ξk,2 for which each component is always greater than
or equal to zero (constraint (15)). A value different from
zero for ξk,m corresponds with the amount by which the
corresponding water level exceed its upper bound ymax,m.

The elements of S are taken much larger than the elements
of Q and Rk. Therefore an increase in ξk,1 or ξk,2 has the
greatest impact on the cost function (6). However, they can
only be set equal to zero when the water levels do not exceed
their upper bounds. When this is possible the objective of the
controller should be to steer the most important water levels
to their set-point which is achieved when the elements of
Q are larger than the elements of Rk. It is important that
the controller does not use the reservoirs to improve the set-
point regulation of the water levels because this would reduce
the available storage capacity for future rainfall. This can
be prevented by putting a higher weight on the deviation



from the water reservoirs from their set-points than on the
deviation of the other water levels. When it is not possible
to set ξk,1 and ξk,2 equal to zero, this means that there is a
risk of flooding. Because of the heavier weight on ξk,1 and
ξk,2 in the cost function, the controller will now focus on
flood prevention. Instead of steering the water levels to their
set-points, the controller will try to minimize the difference
between the water levels and their upper bounds and hence
reduce the flood risk.

The use of two sets of upper bounds is justified by
the following reasoning. Because most weather predictions
longer than two days are unreliable, the prediction horizon is
limited to two days. However serious rain events that cause
floods typically last longer than two days. If a prediction
horizon of two days would be used and the flood levels are
the only constraints on the water levels, the optimal solution
can be to fill the water reservoirs up to their flood level
at the end of the horizon because the controller does not
know that it might still rain after the prediction horizon. This
leaves no storage capacity for future rainfall and floodings
will take place. Therefore, conservativeness must be added
to the control strategy. This is achieved by using two sets of
upper bounds on the water levels:

• For each water level a guard level (ymax,1) is defined
by the local water administration. Every guard level
has a value smaller than the corresponding flood level
(ymax,2). As long as the water levels do not violate
their guard level, all the slack variables are zero and
the reservoirs will not be used.

• When a water level will violate its guard level, its slack
variable ξk,1 will be different from zero. Because the
controller tries to minimize these variables, its focus
shifts towards flood prevention and it will use the water
reservoirs to prevent the violation of the guard levels.
However, to prevent the usage of the complete storage
volume available in the reservoirs, every reservoir can
only be filled to a first upper limit (ymax,1). Once
this limit is reached the reservoirs may not be used
anymore and the guard levels might get violated. This
is achieved by putting a higher weight on ξk,1 for the
water reservoirs than for the water levels.

• If it continues raining and MPC cannot keep the water
levels beneath their flood level (ymax,2), the controller is
allowed to further fill the reservoirs until they reach their
corresponding flood level. This is achieved by putting
a higher weight on ξk,2 than for ξk,1.

Besides reference values for the water level the optimiza-
tion problem also uses reference values for the gates. This
is to keep the gates within their controllable region. The
gate equations contain modes for which the discharge over
the gate is independent of the gate itself, e.g. when the
gate is completely closed or when the gate is much lower
than the water levels up- and downstream of the gate. By
moving the gate by a small amount the discharge will not
change for these modes. This is reflected in the linearized
model where the position of the gate has no influence on

the discharge over the gate. After the simulation step every
gate at every time step in the prediction horizon is checked
to see whether it is controllable or not. Every uncontrollable
gate gets a reference value between the up- and downstream
water levels of the gate and the corresponding weight in the
matrix Rk is increased which forces the controller to steer
the uncontrollable gate into the controllable region. More
details can be found in [3].

In previous work all the constraints on the water levels
were hard constraints and a constraint strategy had to be
developed in order to keep the QP feasible. On certain time
instants multiple optimization problems had to be solved.
This is here not necessary because the slack variables keep
the QP always feasible. A disadvantage is the increase
in the number of optimization variables which makes the
optimization problem more complex to solve. In this study
the controller is implemented such that the slack variables
are included only when they are needed to keep the problem
feasible. After the prediction step the simulated water levels
are checked to see if they exceed ymax,1 or ymax,2. For
every violation of these constraints only the corresponding
slack variable is included in the optimization problem.

IV. MOVING HORIZON ESTIMATION

A. Why MHE?

In order to find a optimal sequence of inputs, the controller
needs to know the current state of the system. In previous
work it was assumed that all the states are known at every
time step. However, in practice not all the states of the river
are measured. In fact only the water levels are measured,
the discharges and the water volumes not. Therefore it is
necessary to include a state estimator in this application.

MHE estimates the states by solving an optimization
problem using a moving and fixed-size window of data.
When new measurements become available, the oldest mea-
surements are discarded and a new optimization is solved to
estimate the new state of the system. MHE has two important
advantages compared to the classical Kalman filter. Because
MHE is optimization based, MHE can take constraints on
states and disturbances into account. A second advantage is
the ability to handle explicitly nonlinear systems. Because
the river dynamics are strongly nonlinear, MHE is chosen
for this study.

B. The optimization problem

The optimization problem that is solved at every time step
is of the form:

min
x̂k−T , . . . , x̂k

ŷk−T+1, . . . , ŷk

T∑
i=1

‖ŷk−i+1 − ym
k−i+1‖2

W (16)

subject to
j ∈ {1, . . . , T} : ŷk−j+1 ≥ ymin, (17)

j ∈ {1, . . . , T} : x̂k−j+1 = Ak−jx̂k−j

+ Bk−juk−j + fk−j ,

(18)

j ∈ {1, . . . , T} : ŷk−j+1 = Cx̂k−j+1 (19)



where T is the length of the estimation horizon, W is
a positive definite diagonal matrix, ym

k are the measured
outputs and ymin are known lower limits for the outputs.
x̂k and ŷk are the estimates for the unknown states xk,
resp. unknown outputs yk.

Just like for MPC, the MHE estimator has to solve this
optimization problem multiple times untill convergence is
achieved or time runs out. The linear models can be derived
on a same way as for MPC. The estimator gives the estimate
x̂k of the current state to the controller which it uses to find
a new sequence of optimal inputs. The first input is applied
to the system, new measurements are taken and the entire
procedure is repeated.

V. SIMULATION RESULTS
In this section the MHE based MPC controller will be

compared with the advanced three-position controller by
performing a simulation based on the historical rainfall data
of 1998. Some important details of the simulation are (all
the mentioned values are above mean sea level, AMSL):

1) During periodes of no or light rainfall, the controller
should keep the upstream water level hopw as close as
possible to 21.5 m while avoiding an increase of the
water level hs of the reservoir Schulensmeer.

2) During periods of heavy rianfall, the objective of the
controller is to keep the three water levels below their
flood levels (ymax,2):
• hopw ≤ 23.2 m,
• hs ≤ 23.2 m
• and hafw ≤ 22.75 m.

The values for ymax,1 are given by:
• hopw ≤ 23 m,
• hs ≤ 23 m
• and hafw ≤ 22.75 m.

Note that the values of ymax,1 and ymax,2 are the same
for hafw.

3) The physical limits on the gates are:
• 20 m ≤ kA ≤ 23 m,
• 20.03 m ≤ kK7 ≤ 23 m
• and 18.9 m ≤ kD ≤ 22.9 m.

The gates are not allowed to move faster than 0.1
m/hour.

4) It is assumed that the nonlinear model of the Demer is
perfectly known (no plant-model mismatch) and that
the rain predictions are also perfectly known.

For the simulations the prediction horizon N equals 48
hours while the estimation horizon T equals 10 hours. The
simulation results for the advanced three-position controller
are visualized in Fig. 4, the results for the MHE based MPC
controller in Fig. 5:

1) During the first 250 hours the MHE based MPC
controller steers hopw much closer to its set-point of
21.5 m than the advanced three-position controller. The
oscillations for the MHE based MPC controller are also
much smaller. The advanced three-position controller
can also not prevent that the storage capacity of the
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Fig. 4. Simulation results for the water levels for the advanced three-
position controller for the small model of the Demer.
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Fig. 5. Simulation results for the water levels for the MHE based MPC
controller for the small model of the Demer.

reservoir is reduced. This is not the case when MPC
is used.

2) The advanced-three position controller is not capable to
prevent the downstream part of the river from flooding
with more than 40 cm during the heavy rainfall during
the next 150 hours. There is also almost no margin left
for the two other water levels. The results are much
better when MPC is used because it uses the basins
and the available information in an optimal way: the
flooding for the downstream part of the river is reduced
to only 2.5 cm and the two other water levels have a
margin of almost 20 cm.

3) After the heavy rainfall MPC succeeds in restoring the
storage capacity of the reservoir in a much faster way.
With MPC a second period of heavy rainfall could
more easily be covered than with the advanced three-
position controller. MPC also steers hopw much closer
to its set-point.



VI. CONCLUSIONS AND FUTURE WORKS

In this work a nonlinear MHE based MPC controller for
flood control is discussed and compared with the current
controller used for flood prevention of the Demer. The
optimization problem solved by the MPC controller is for-
mulated with slack variables. Since only some of the states
are measured in practice, a MHE estimator is included to
estimate the other states. The MHE based MPC controller
is tested on the historical data of the flood event of 1998.
The simulations show that the MHE based MPC controller
outperforms the current advanced three-position controller.

The MHE based MPC controller is in this study imple-
mented for only a limited part of the Demer. Future research
will be the implementation of a MHE based MPC controller
for a much larger part of the Demer. Another topic will
be to investigate the impact of uncertainties on the weather
predictions on the performance of the controller. Finally a
last topic is to use a very detailed model of the river to
simulate the process and to see what the influence of this
plant-model mismatch is on the performance.
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