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Abstract— Many control strategies can be found in literature
for controlling a river system. Most of these methods focus on
set-point control such that the most upstream or downstream
part of each reach tracks a certain reference trajectory while
minimizing the effect of disturbances. However many of the
control techniques suitable for set-point control cannot be used
at the same time for preventing a river from flooding when
large disturbances take place. In this paper we show that Model
Predictive Control can be used for set-point control and flood
control of a river system consisting of two reaches and one
gate. For this we use a linearized version of the Saint-Venant
equations with special attention to the gate dynamics.

I. INTRODUCTION

Many different types of control strategies can be found
in literature to control reaches or irrigation canals. Examples
are PI controllers, heuristic controllers, predictive controllers
and optimal controllers [1], [2], [3]. The dynamics of a single
reach can be accurately described by two nonlinear partial
differential equations, the so-called Saint-Venant equations.
These equations have to be combined for every reach with the
dynamics of the interconnecting gates to get a mathematical
model of the entire river system. Because of computational
reasons these controllers do not work directly with these
equations but they use approximate models.

The control purpose influences which kind of approximate
model is appropriate. E.g. if the only goal is to keep the most
downstream water level of each reach close to a set-point,
the integrator delay (ID) model can be a good approximation
[4]. However since this model simulates the water levels of
the reach at only one point, this model is not the right choice
for the application of flood control where we want to keep all
water levels below their flood levels. Since we are interested
in set-point control as well as flood control, another model
is used in this study: a model based on the linearized Saint-
Venant equations along the entire river.

A control strategy suited for the task of set-point control
and flood control at the same time is Model Predictive
Control (MPC) [5], [6]. MPC is a control strategy originating
from the process industry and is used in various applications
going from chemicals and food processing to automotive and
aerospace applications [7]. One can find many studies in
literature where MPC is used for set-point control of river
systems based on the ID model ([8], [9], [10]) and on the
linearized Saint-Venant equations [11]. However these works
do not focus on flood control.
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In previous work we have been using a very simplified
conceptual model which models the water levels of a river
system only at a very limited number of points for set-point
control in combination with flood control [12]. In recent
work we switched to using a linear version of the Saint-
Venant equations with a very fine spatial discretization for
designing and implementing a control strategy for only a
single reach without gates [13]. In this work we test MPC
applied to a two reach system with a gate in between.
The controller combines the linear Saint-Venant equations
together with the nonlinear gate equations.

The paper is organized as follows. Section II discusses
the equations describing the dynamics of a single reach as
well as its numerical implementation together with the gate
equations. Section III presents two linear approximations of
the full nonlinear model used by MPC. Section IV describes
how MPC can be used for set-point control and flood control
at the same time. Section V compares the performance of
MPC for the two types of approximate models for set-point
control, disturbance rejection and flood control. Section VI
ends the paper with conclusions and future work.

II. RIVER MODELLING
A. Reach dynamics

The Saint-Venant equations model the dynamics of the
water levels and discharges in a reach by the following partial
differential equations (PDEs) [14], [15]:

∂A

∂h

∂h

∂t
+
∂Q

∂x
= 0, (1)

∂Q

∂t
+

∂

∂x

Q2

A
+ gA

(
∂h

∂x
+ Sf − S0

)
= 0, (2)

with Q the water discharge (m3/s), h the water depth
(m), A the cross-sectional flow area (m2), g the gravity
acceleration (m/s2), S0 the bed slope and Sf the friction
slope. Equation (1) describes the conservation of mass and
(2) the conservation of momentum. Sf is an (empirical)
resistance law given by the Manning relation:

Sf =
n2mannQ|Q|
A2R1/3

(3)

where nmann is the Manning coefficient (s/m1/3), R = A/P
is the hydraulic radius (m) and P is the wetted perimeter of
the cross section (m).

B. Gate equations

The gates used in this paper are underflow-vertical sluices.
In general the gate dynamics can be modelled by:

Q = z(CD, w, c, hup, hdown) (4)
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with Q the discharge through the gate, CD the discharge
coefficient, w the width of the gate (m), c the gate opening
(m), hup the upstream water level and hdown the downstream
water level. In this study the following equation is used:

Q = CDwc
√

2ghup (5)

with different equations for CD depending on the flow
condition ([16], [17]):

free flow: CD =
CC√
1 + η

, (6)

submerged flow:

CD = CC

[
ξ −

√
ξ2 −

(
1
η2 − 1

)2 (
1− 1

λ2

)]1/2
1
η − η

. (7)

CC is the contraction coefficient, η = CCc/hup, λ =

hup/hdown and ξ = (1/η − 1)
2
+2 (λ− 1). CC can vary from

0.598 to 0.74 but for most applications a value of 0.611 is
usually taken ([18], [19]). The gate is considered to be in
free flow if hdown is below the limit hdown,max given by:

hdown,max =
CCc

2

(√
1 +

16

η(1 + η)

)
. (8)

Otherwise the gate is in submerged flow condition.

C. Discretization and numerical implementation

Since in general there is no analytical solution for the
Saint-Venant equations, the infinite dimensional variables
will be approximated on a finite grid [20]. The partial
derivatives are approximated with finite differences while the
θ-method, e.g. f(tj+θ∆t) = θf(tj+∆t)+(1−θ)f(tj) with
θ ∈ [0, 1], is used for the time integration. The spatial grid
used in this paper is a staggered grid of the following form:

Qup Q1 Q2 . . . QN−1 Qdown

h1 h2 . . . hN−1 hN

2N − 1 is the total number of unknown variables (N water
levels and N − 1 discharges) and Qup and Qdown are the
(known) boundary discharges. The derivatives in (1) are
approximated by (note h(xi, tj) = hji )

∂hji
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, (9)
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A similar approach is used for the terms ∂Q/∂t, A, ∂h/∂x
and Sf in (2). The advection term ∂(Q2/A)/∂x is approxi-
mated with an upwinding approach:
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In this way the two PDEs for each reach are transformed
into a system of nonlinear equations:

f
(
hj+1,hj ,Qj+1,Qj

)
= 0, (14)

g
(
hj+1,hj ,Qj+1,Qj

)
= 0, (15)

with f : R4N+2 → RN , g : R4N+2 → RN−1, h =
(h1, . . . , hN )

T and Q = (Qup, Q1, . . . , QN−1, Qdown)
T ,

which has to be solved for hj+1
1 , hj+1

2 , . . . , hj+1
N and

Qj+1
1 , Qj+1

2 , . . . , Qj+1
N−1. Boundary conditions (BCs) for the

upstream and downstream discharges Qup and Qdown of every
reach are needed to be able to solve the nonlinear system
of equations. These discharges can be given by the gate
dynamics (5) or can be disturbances. Given these BCs, (14)
and (15) can be solved with Newton’s method.

A discussion about the choice of ∆t and θ can be found
in [21]. In this paper θ is set equal to 0.6.

D. Test case

In this study we will test our controllers on a river system
consisting of two consecutive trapezoidal reaches with a gate
in between (Fig. 1). The most downstream discharge Qout can
be directly controlled (e.g. with a pump), the most upstream
discharge Qin is either a disturbance signal or also an input
variable. A gate controls the discharge going from reach one
to reach two. The mathematical model describing the system
dynamics can be summarized as follows:

BC: Q1(0, t) = Qin(t), (16)

reach:
∂A1

∂h

∂h1
∂t

+
∂Q1

∂x
= 0, (17)

∂Q1

∂t
+

∂

∂x

Q2
1

A1
+ gA1

(
∂h1
∂x

+ Sf − S0

)
= 0, (18)

gate: Q2(0, t) = z(CD, w, c(t), h1(L1, t), h2(0, t)), (19)
Q1(L1, t) = Q2(0, t), (20)

reach:
∂A2

∂h

∂h2
∂t

+
∂Q2

∂x
= 0, (21)

∂Q2

∂t
+

∂

∂x

Q2
2

A2
+ gA2

(
∂h2
∂x

+ Sf − S0

)
= 0, (22)

BC: Q2(L2, t) = Qout(t) (23)

The parameters of the river system are given in Table I.

III. APPROXIMATE MODELS

In this section we will discuss two linear models which
can be used by MPC for controlling river systems consisting
of multiple reaches and gates. The explanation will be given
for the river system discussed in Section II-D.
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Fig. 1. Schematic structure of the river system with Qin and Qout the
discharges at the boundaries, c the gate position, h the water levels, L the
length of each reach and S0 the channel slope.

parameters values
reach 1 reach 2

reaches: N 10 40
S0 0.0004 0.0001

reach length L 1000 m 4000 m
side slope S 0.5 0.5

nmann 0.014 s/m1/3 0.014 s/m1/3

bottom width B 4 m 4 m
gate: w 4 m

TABLE I
PARAMETER VALUES OF THE RIVER REACHES AND THE GATE.

A. The linear model

After discretizing the model equations (16)-(23) and lin-
earizing the resulting equations around a nominal operating
point (hss ∈ RN1+N2 for the water levels, Qss ∈ RN1+N2−2

for the discharges, uss ∈ Rnu for the control inputs and
dss ∈ Rnd for the disturbances with N1 and N2 the number
of water levels for reach one, resp. reach two, nu and nd
the number of inputs and disturbances) the following linear
model can be found:

∆x(k + 1) = A∆x(k) +B∆u(k) +D∆d(k), (24)

with ∆x(k) = (∆h(k),∆Q(k))
T , ∆h(k) = h(k) −

hss, ∆Q(k) = Q(k) − Qss, ∆u(k) = u(k) − uss,
∆d(k) = d(k) − dss, A ∈ R(2N1+2N2−2)×(2N1+2N2−2),
B ∈ R(2N1+2N2−2)×nu and D ∈ R(2N1+2N2−2)×nd . The
input vector u(k) contains the gate position c together
with the controllable upstream Qin and/or downstream Qout
discharges at time instant k while the disturbance vector d(k)
contains the uncontrollable ones. For example, if only the
downstream discharge can be controlled, then we have that
u(k) = (c(k), Qout(k))

T and d(k) = Qin(k). We will refer
to this model as the L-model.

B. The linear-nonlinear model

However as we have shown in [22] more accurate results
can be obtained if we use a linear model which treats the
nonlinearities of the gate equations in a separate way. In this
model the gate equations are pulled out of the linear model
and we work with the gate discharge as input variable instead
of the gate position for the linear part. More specifically for
our test example, equations (16)-(18) and (20)-(23) remain

unchanged and equation (19) is replaced with

Q1(L1, t) = Qgate(t). (25)

Discretizing and linearizing this new set of equations around
the operating point results in the following model:

∆x(k + 1) = Ā∆x(k) + B̄∆ū(k) + D̄∆d(k), (26)

with ∆ū(k) = ū(k) − ūss ∈ Rnu , Ā ∈
R(2N1+2N2−2)×(2N1+2N2−2), B̄ ∈ R(2N1+2N2−2)×nu

and D̄ ∈ R(2N1+2N2−2)×nd . The control variables ū are
the discharge controlled by the gate Qgate together with the
controllable upstream and/or downstream river discharges.
When using this model, first a conversion is needed from the
gate position to the gate discharge before the linear model
can be used. We will refer to this model as the LN-model.

IV. MODEL PREDICTIVE CONTROL

MPC is an optimization based control strategy which
makes use of a process model to predict the future pro-
cess outputs within a specified prediction horizon. MPC
determines the next inputs for the process by solving an
optimization problem over this horizon taking into account
input and output constraints, future disturbances and the
process model. Only the first element of the complete optimal
sequence is applied to the process, the new current state of
the system is measured or estimated and the entire procedure
is repeated.

If we let the controller minimize the deviation of the water
levels from their set-points, MPC can be used for set-point
control. If we add at the same time the flood levels as upper
limits on the water levels, the same controller can also be
used for flood control.

A. MPC based on the L-model

The optimization problem that has to be solved at every
time step is the following quadratic problem (QP):

min
u,x,ξ

NP∑
k=1

‖ x(k)− r(k) ‖2W +

NP∑
k=1

‖ ξ(k) ‖2S +

+

NP−1∑
k=0

‖ u(k)− u(k − 1) ‖2R (27)

s.t. x(0) = x0, (28)
∆x(k + 1) = A∆x(k) +B∆u(k) +D∆d(k), (29)
umin ≤ u(k) ≤ umax, (30)
|u(k)− u(k − 1)| ≤ ∆umax, (31)
h(k) ≤ hmax + ξ(k), (32)
ξ(k) ≥ 0, (33)

with NP the prediction horizon, W , R and S three positive
semi-definite diagonal weighting matrices of appropriate
dimension, r(k) the reference signal for the states, x0 the
current state of the process, hmax the flood levels, umin

and umax the operational limits on the inputs, ∆umax the
maximal allowed rate of change for the inputs and ξ a vector
of slack variables (one slack variable for each water level).
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It can be shown that for positive semi-definite weighting
matrices, the QP has only one (global) solution [23]. In this
study we use Mosek [24] for solving the QPs. From now on
this controller will be referred to as L-MPC.

The flood limits for the water levels are implemented as
soft constraints together with the positivity constraints on the
slack variables (33) and the inclusion of the slack variables
in the objective function (27). By using soft constraints, the
QP will always be feasible. The first goal of the controller is
to keep the water levels below their flood limits. Therefore
the diagonal elements in the matrix S are taken much larger
than the diagonal elements in W and R. This will force
the optimizer to find control actions such that ideally all
the slack variables are equal to zero. If this is not possible,
the controller will try to minimize the violations of these
constraints and hence to reduce the flood risk. If there is no
flood risk, the controller needs to focus on set-point control
of the most important water levels. This is achieved by
choosing large elements in the matrix W corresponding with
these water levels. With the elements in the matrix R we can
influence the control effort of the different input variables.
umin and umax are the operational limits on the inputs.

For the gate they correspond to the minimal and maximal
gate position. For the controllable upstream or downstream
discharges they are the minimal and maximal discharge.

B. MPC based on the LN-model

The form of the QP that has to be solved when the LN-
model is used by the controller is very similar to the QP
of the previous subsection. The biggest difference is the
replacement of the model equation (29) with (26). Hence
the discharge controlled by the gate is now an optimization
variable instead of the gate position. However this means that
after solving the QP, we still need to make the conversion
from the optimal discharge through the gate Qgate to the
corresponding gate position c. Given the current upstream
and downstream water level of the gate, (5) can be solved
iteratively to find the corresponding c. The advantage of
doing this is that the nonlinearities of the gate equations
are included within the controller. However a conversion
is also needed for the limits umin, umax and ∆u on the
position of the gate Qgate to the corresponding unknown
time-varying limits on the discharge through the gate over
the entire prediction horizon. This conversion can be done
in the following way. Given the current state of the process
x(k) and the last applied gate position c(k−1), the maximal
and minimal gate discharge can be found:

Qmax(k) = z(CD, w, c(k − 1) + ∆umax, hup(k), hdown(k)),
(34)

Qmin(k) = z(CD, w, c(k − 1)−∆umax, hup(k), hdown(k)).
(35)

These limits are the new limits umax and umin at time k for
the gate discharge. The next step is to use the linear model
(26) given Qgate(k), Qout(k) and Qin(k) to estimate x(k+1).
Based on these estimates of hup(k+1) and hdown(k+1) and
the optimal gate discharge Qgate(k + 1) found by solving

the QP in the previous time step, the corresponding gate
position c(k+ 1) can be found. Given c(k+ 1) and the state
x(k+1), the upper and lower limits on the gate discharge at
time k+1 can be found in the same way. This procedure has
to be repeated until k+NP−1. In general we need to iterate
between solving the QP and calculating the new upper and
lower limits until convergence, however as it will be shown
in the next section very good results can already be achieved
by performing this iteration only once. We will refer to this
controller as LN-MPC.

V. SIMULATION RESULTS

In this section the performance of the L-MPC and LN-
MPC controllers will be evaluated under three different
scenarios: set-point control, disturbance rejection and flood
control. The test system is described in Section II-D. The
controllers can only change the inputs every 15 min, NP is
taken equal to 15, umin, umax and ∆umax for Qin and Qout
(if controllable) are -7 m3/s, 7 m3/s and 5 m3/s, while the
gate has to remain between 0 m and 2 m and can maximally
be moved over a distance of 20 cm each time step. As initial
condition the river system is considered in steady state with
a discharge equal to 4 m3/s at every point along the river
system, the most downstream water level is equal to 3 m and
the initial gate opening is 0.4 m. The flood levels are 80 cm
above the nominal water levels of reach one and 30 cm above
the nominal water levels of reach two. The control actions
are applied to the fully nonlinear model. We assume that the
disturbances are known in advance. If there is no flooding
risk, the controller needs to keep the most downstream water
level of each reach as close as possible to its initial value.

The diagonal elements of the matrix W corresponding
with the most downstream water level of each reach are taken
equal to 10 for L-MPC and LN-MPC, all the other diagonal
elements are set equal to 10−5. The other parameters of the
controllers are set as follows: R = I and S = 104 × I
with I every time a unit matrix of appropriate dimension.
The results for L-MPC are shown with dashed lines and the
results for LN-MPC with full lines.

A. Set-point control

In this situation the controllers can control the gate to-
gether with Qin and Qout; there is no disturbance. The results
for both controllers are visualized in Fig. 2. On top we have
the evolution of the most downstream water level for reach
one (left) and for reach two (right) together with the reference
trajectory (dashed-dotted line). The bottom figures show the
control actions for the two controllers: the upstream dis-
charge (left), the gate opening (middle) and the downstream
discharge (right). Both controllers succeed in tracking the
first change of the reference trajectory. However the second
change in the reference trajectory is better tracked with
LN-MPC than with L-MPC. With L-MPC there is clearly
a steady state error. The reason for this is that the linear
approximation of the gate equation is not accurate enough
when the difference between the upstream and downstream
water levels of the gate increases compared to the nominal
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Fig. 2. Simulation results for set-point control. The top plots show the evolution of the most downstream water level for reach one (left) and reach
two (right) together with the reference trajectory (dashed-dotted line). The bottom plots present the control actions: the upstream discharge (left), the gate
position (middle) and the downstream discharge (right).

values. Since LN-MPC takes the gate equation into account
separately, it can deal with set-point changes very well.

B. Disturbance rejection

This scenario checks how the controllers react when a
small constant disturbance takes place. The goal here is
to keep the most downstream water level of each reach
as close as possible to its nominal value. The controllers
can only use the downstream discharge and the gate. The
upstream discharge is the disturbance signal. After 15000 s
the upstream discharge jumps from 4 to 6 m3/s (e.g. a gate
upstream is opened). The results are visualized in Fig. 3. On
top we have the results for reach one and below the results for
reach two. As we can see the disturbance rejection for LN-
MPC is much better than for L-MPC. For the first reach the
deviation of the reference signal at the end of the simulation
is only 0.08 cm with LN-MPC while it is 3.78 cm with L-
MPC. For the second reach the deviation with LN-MPC is
0.41 cm while it is 0.56 cm for L-MPC.

C. Flood control

The last scenario is very similar to the previous one, the
only difference is that the disturbance signal is so large that
there is risk of flooding. The disturbance is the upstream
discharge signal. Fig. 4 shows the evolution of

m(k) = max (h(k)− hmax) (36)

for reach one (top) and reach two (bottom). A negative m(k)
means that none of the water levels violates the flood limit
at time k. However, if m(k) is positive, then the reach
is flooding and m(k) indicates the maximal violation of
the flood level. Fig. 5 shows the control actions for both
controllers. The top plot shows the evolution of the gate
opening and the bottom plot the discharge at the end of
the second reach (Qout) together with the disturbance signal
(dashed-dotted line). LN-MPC succeeds in keeping the water
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Fig. 3. Evolution of the most downstream water level of the first (top) and
second (bottom) reach.

levels of both reaches below their flood limits which is
not the case for L-MPC. There is a maximal flooding for
the second reach of 3.89 cm. At the end of the simulation
both controllers succeed in steering the water levels of both
reaches back to their nominal condition restoring the buffer
capacity.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we have shown that one single controller
based on the principles of MPC can be used for controlling
river systems in different scenarios such as reference track-
ing, disturbance rejection and flood control. We have tested
two types of controllers: one controller based on a model
where the gate dynamics are linearized around the nominal
condition (L-MPC) and another controller where the gate
dynamics are treated separately (LN-MPC). Both controllers

4553



0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

−1.5

−1

−0.5

0

0.5

time (s)

m
a
x
im

a
l 
fl
o

o
d

in
g
 (

m
)

 

 

L−MPC

LN−MPC

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

−0.8

−0.6

−0.4

−0.2

0

0.2

time (s)

m
a

x
im

a
l 
fl
o

o
d

in
g

 (
m

)

 

 

L−MPC

LN−MPC

Fig. 4. Evolution of m(k) for the first reach (top) and the second reach
(bottom). A positive value indicates a violation of the flood limits.
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Fig. 5. Evolution of the control actions for the MPC controllers. The top
plot shows the gate opening and the bottom plot the discharge Qout at the
end of second reach together with the disturbance signal Qin.

achieve a good performance, however by treating the gate
equations in a special way, LN-MPC outperforms L-MPC.
For future work we will test LN-MPC for larger river systems
consisting of multiple reaches, gates and junctions.
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