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Introduction

Many different types of control strategies can be found in the liter-
ature for controlling channels, such as proportional-integral, heu-
ristic, predictive, and optimal controllers (Malaterre et al. 1998;
Burt et al. 1998; Litrico et al. 2006; van Overloop et al. 2005).
The control strategy used in this work is model predictive control
(MPC) (Rossiter 2003; Mayne et al. 2000). Model predictive con-
trol originates from the process industry and is used in various
applications from chemicals and food processing to automotive and
aerospace applications (Qin and Badgwell 2003). Because MPC
formulates the control problem as an optimization problem, it
can minimize the deviations of water levels from their targets,
and it can be used for set-point control. It can also be used for flood
control because flood limits can be incorporated inside the optimi-
zation problem. To achieve a high control performance, the control-
ler requires an accurate model of the river system to be controlled.

The standard way to model the dynamics of a channel is done
through the Saint-Venant equations. Based on these equations, to-
gether with the dynamics of hydraulic structures and junctions, a
mathematical model can be derived for river systems. Because of
the complexity of these models, controllers do not work directly
with these equations but use approximate models. Models based

on identification techniques or simple integrator-delay models form
a good approximation and have been used in combination with
MPC for set-point control (Schuurmans 1997; van Overloop
2006; Wahlin and Clemmens 2006; van Overloop et al. 2010; Puig
et al. 2009; Negenborn et al. 2009; van Overloop et al. 2008). How-
ever, because these models describe the water levels of every chan-
nel at only one point, they are not the right choice for flood control.
Therefore, a model approximating the Saint-Venant equations
along the entire river is used in this study. A similar model has al-
ready been used in combination with MPC (Xu et al. 2011), but this
work looked at only one channel and did not focus on flood control.
Other works can be found on flood control, but they work with
models describing the dynamics at a very limited number of points
(Romera et al. 2011), do not take the nonlinearities of gates and
hydraulic structures into account (Thai 2005), and none of them
have water reservoirs, which should be used optimally.

Previous works have used a simplified conceptual model for the
controller (Barjas Blanco et al. 2010; Breckpot et al. 2010). Re-
cently, an approximate model of the Saint-Venant equations was
used with a very fine spatial discretization for controlling a single
channel (Breckpot et al. 2012a) and a two-channel system with one
gate (Breckpot et al. 2012b). In this work, this method is extended
to a larger river system where also junctions and a water reservoir
are present. Also, a Kalman filter (Kalman 1960) is included in the
control scheme because in practice only a limited number of water
levels are measured, and MPC requires knowing the entire state of
the system.

Contribution

This paper shows how MPC and a Kalman filter can be used for
flood control of river systems containing water reservoirs. The
authors are not aware of any other publication in which these tech-
niques are applied to optimally use the buffer capacity of reservoirs
for flood control on the basis of models approximating the river
dynamics along the entire river. Because the proposed controllers
work directly with approximations of the Saint-Venant equations
describing the water-level dynamics along every channel, they
can effectively be used for flood control.
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The main contribution of this paper is the formulation of the
optimization problem. Inspired by a paper of Malaterre and Baume
(1999), the authors did not work with the gate positions as control
variables but with the gate discharges. This means that the gate
equations are pulled out of the optimization problem. Because
the gate dynamics are the main nonlinearities of river systems, the
resulting optimization problem is less complex to solve. After find-
ing the optimal gate discharges, a conversion is made based on the
gate equations. The remaining model equations present in the op-
timization problem are based on the Saint-Venant equations. The
paper shows that, for the purpose of controller design, these equa-
tions can be approximated accurately with one linear state-space
model without losing control performance. The big advantage of
this is that the total computation time needed by the controller
is limited.

Another contribution lies in the formulation of the optimization
problem such that the buffer capacity is used in an optimal way
and the modification of its parameters to recover the used buffer
capacity quickly.

Paper Outline

The paper starts by discussing the river system and the correspond-
ing control problem, followed by showing how the dynamics of a
river system can be modelled. Then it is explained howMPC can be
used for flood control as well as the use of the Kalman filter for
estimating the states. This is followed by a discussion of the sim-
ulation results when the proposed controllers are used for the test
system. The paper ends with some concluding remarks.

Notation

Matrices are denoted with bold capital letters, e.g.,X, whereas bold
lowercase letters are used for vectors, e.g., x. Scalars or entries of
vectors are not bold. The ith component of x is xi. kxk2W denotes
xTWx. Superscript (i) indicates the channel or the gate the variable
or parameter belongs to, and 1n represents a vector of ones of di-
mension n.

Problem Formulation

The goal of this study is to find a controller that can be used for set-
point control of rivers while preventing them from flooding. For
this the controller needs to use the available buffer capacity of the
present water reservoirs in an optimal way during periods of heavy
rainfall. The controller should also empty the reservoirs as fast as
possible before focusing on set-point control again. Each channel
has a safety limit and a flood limit. When the water levels risk vio-
lating only their safety limits, the controller is allowed to use the
buffer capacity of the water reservoirs up to its own safety limit. If
the water levels risk violating also the flood limits, then all the
available buffer capacity of the water reservoirs can be used. The
controller should also take into account that only a very limited
number of water levels are measured in practice. The controller
can use the future disturbances to find the best control actions.

Fig. 1 gives a schematic overview of the river system used to test
the control performance. Channels 1–4 form the main part of
the river, whereas Channels 5 and 7 connect the water reservoir
(Channel 6) with the river. The squares represent hydraulic gates
that can be used to control the discharges locally. QinðtÞ is the
discharge entering the river, whereas QoutðtÞ corresponds with the
discharge leaving the river. When there is no flooding risk, the con-
troller should keep the water levels of the first and the fourth chan-
nels as close as possible to their set points. The discharge QinðtÞ

entering the river system is a disturbance signal. The controller can
control the water levels withQoutðtÞ and the three gates. Every con-
trol variable has an associated upper and lower limits, and the gates
have a maximal rate of change constraint.

Modeling

Channel Modeling

The standard approach in the literature to model open channel flow
is done by using the Saint-Venant equations (Chaudry 2008; Cunge
et al. 1980; Sturm 2001; Litrico and Fromion 2009). The equations
modeling the dynamics of a single channel without later inflow are
the following two partial differential equations (PDEs):

∂Aðz; tÞ
∂hðz; tÞ

∂hðz; tÞ
∂t þ ∂Qðz; tÞ

∂z ¼ 0 ð1Þ

∂Qðz; tÞ
∂t þ ∂

∂z
Qðz; tÞ2
Aðz; tÞ þ gAðz; tÞ

�∂hðz; tÞ
∂z þ Sfðz; tÞ − S0

�
¼ 0

ð2Þ
where t = time variable; z = space variable; Qðz; tÞ = water dis-
charge (m3=s); hðz; tÞ = water depth (m); Aðz; tÞ = cross-sectional
flow area (m2); g = gravitational acceleration (m=s2); S0 = bed
slope; and Sfðz; tÞ = friction slope. Eq. (1) describes the conserva-
tion of mass, and Eq. (2) the conservation of momentum. The
resistance law Sfðz; tÞ is modeled in this study with the Manning
relation (Chow 1959):

Sfðz; tÞ ¼
n2mannQðz; tÞjQðz; tÞj
Aðz; tÞ2Rðz; tÞ1=3 ð3Þ

where nmann = Manning coefficient (s=m1=3); Rðz; tÞ ¼ Aðz; tÞ=
Pðz; tÞ = hydraulic radius (m); and Pðz; tÞ = wetted perimeter of
the cross section (m). The channels discussed in this study have
a trapezoidal shape with side slope S. The parameters of a trapezoi-
dal channel can be seen in Fig. 2, where L is the length of the
channel (m), and B is the bottom width (m).

Together with these PDEs, upstream and downstream boundary
conditions are needed for each channel. The most simple one is
where the upstream or downstream discharge is given, e.g., it

Fig. 1. River system to be prevented from flooding; arrows indicate
general flow direction from upstream to downstream

Fig. 2. Parameters of trapezoidal channel
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can be controlled directly with a pump or it might be a disturbance
signal. Other possibilities are gates and junctions.

Gate Dynamics

The gates used in this study are underflow-vertical sluices. In gen-
eral, the gate dynamics can be modeled as follows:

QgateðtÞ ¼ ~f½cðtÞ; hupðtÞ; hdownðtÞ� ð4Þ
whereQgateðtÞ = discharge controlled by the gate; cðtÞ = gate open-
ing (m); hupðtÞ = water level on the upstream part of the gate;
hdownðtÞ = water level on the downstream part; and ~f∶R3 → R
is a nonlinear function. The function ~f used in this study is based
on Lin et al. (2002) and Sepúlveda et al. (2009) and has the follow-
ing form:

QgateðtÞ ¼ CDðtÞcðtÞw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ghupðtÞ

q
ð5Þ

where CDðtÞ = discharge coefficient; and w = width of the gate (m).
The equation used for CDðtÞ depends on the flow condition:

Free flow∶ CDðtÞ ¼
CCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ αðtÞp ð6Þ

Submerged flow∶ CDðtÞ

¼ CC

�
βðtÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βðtÞ2 −

�
1

αðtÞ2 − 1
�
2
�
1 − 1

γðtÞ2
�r �

1=2

1
αðtÞ − αðtÞ ð7Þ

where CC = contraction coefficient; βðtÞ ¼ ½1=αðtÞ − 1�2þ
2½γðtÞ − 1�; αðtÞ ¼ CCcðtÞ=hupðtÞ; and γðtÞ ¼ hupðtÞ=hdownðtÞ. CC

can vary from 0.598 to 0.74, but for most applications, 0.611 is
usually assumed (Henderson 1966; Liggett and Cunge 1975).
The gate is in free flow if hdownðtÞ is below the limit hdown;maxðtÞ:

hdown;maxðtÞ ¼
CCcðtÞ

2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16

αðtÞ½1þ αðtÞ�

s !
ð8Þ

Otherwise, the gate is in a submerged flow condition. The roles of
hupðtÞ and hdownðtÞ interchange when hdownðtÞ becomes larger than
hupðtÞ, and the discharge becomes negative.

Given these equations, the boundary conditions for two chan-
nels i and j connected to each other with a gatem can be formulated
as follows:

QðiÞðLðiÞ; tÞ ¼ QðjÞð0; tÞ ð9Þ

if hðiÞðLðiÞ; tÞ ≥ hðjÞð0; tÞ

QðiÞðLðiÞ; tÞ ¼ ~f½cðmÞðtÞ; hðiÞðLðiÞ; tÞ; hðjÞð0; tÞ� ð10Þ
else

QðiÞðLðiÞ; tÞ ¼ − ~f½cðmÞðtÞ; hðjÞð0; tÞ; hðiÞðLðiÞ; tÞ� ð11Þ
This simply means that the gate discharge is equal to the discharge
leaving the first channel and to that entering the second channel.

Junctions

Junctions are places along the river where multiple channels
coincide. At these points all the water levels of the channels should
be equal, and the sum of the discharges at the end of the upstream

channels should be equal to the sum of the discharges at the begin-
ning of the downstream channels. Applying this to the river system
in Fig. 3 results in the following equations:

hð1ÞðLð1Þ; tÞ ¼ hð2Þð0; tÞ ð12Þ

hð1ÞðLð1Þ; tÞ ¼ hð3Þð0; tÞ ð13Þ

Qð1ÞðLð1Þ; tÞ ¼ Qð2Þð0; tÞ þQð3Þð0; tÞ ð14Þ

Test Example

The river system to be controlled is shown in Fig. 1. Based on
the equations and boundary conditions defined in the previous
subsections, the mathematical model corresponding to this system
consists of the following set of equations:
• The Saint-Venant equations [Eqs. (1) and (2)] to model the

dynamics of every channel individually;
• The gate equations [Eqs. (9)–(11)] as boundary conditions

between Channels 2 and 3, 5 and 6, and 6 and 7;
• Equations similar to Eqs. (12)–(14) for all channels ending in or

starting from a junction: Channels 1, 2, and 5 and Channels 3, 4,
and 7; and

• The following two last boundary conditions:

Qð1Þð0; tÞ ¼ QinðtÞ ð15Þ

Qð4ÞðLð4Þ; tÞ ¼ QoutðtÞ ð16Þ
Table 1 contains the values of the parameters of the channels and

the gates of the test example.

Discretization and Numerical Implementation

Because there is no analytical solution for the Saint-Venant equa-
tions, the infinite dimensional variables will be approximated on a
finite grid (Strelkoff and Falvey 1993). The partial derivatives are
approximated with finite differences, whereas the θ-method,
i.e., fðtj þ θΔtÞ ¼ θfðtj þΔtÞ þ ð1 − θÞfðtjÞ with θ ∈ ½0; 1� and
Δt the integration step, is used for the time integration. The spatial

Fig. 3. Example of river system consisting of three channels coinciding
in junction; arrows indicate general flow direction

Table 1. Parameters of Different Channels and Gates of Test Example

Parameter

Channels Gates

1 2–4 5 and 7 6 1–3

L (m) 800 1,000 500 3,000
S0 0.0002 0.0002 0.0001 0.0001
nmann · ðs=m1=3Þ 0.02 0.02 0.02 0.02
B (m) 6 6 6 6
S 1 1 1 1
w (m) 6
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grid used in this paper is a staggered grid (see Fig. 4), with N water
levels and N þ 1 discharges for a given channel. The derivatives in
Eq. (1) are approximated by the following [Qðzi; tjÞ ¼ Qj

i ; and
Qjþθ

i ¼ θQjþ1
i þ ð1 − θÞQj

i ]:

∂hji
∂t ≃ hjþ1

i − hji
Δt

ð17Þ

∂Qj
i

∂z ≃ Qjþθ
i −Qjþθ

i−1
Δz

ð18Þ

∂Aj
i

∂h ≃
�∂A
∂h
�

jþθ

i
ð19Þ

A similar approach is used for the terms ∂Qðz; tÞ=∂t, Aðz; tÞ,
∂hðz; tÞ=∂z, and Sfðz; tÞ in Eq. (2). The advection term ∂½Q2ðz; tÞ=
Aðz; tÞ�=∂z is approximated with an upwinding approach:

∂
∂z
�
Q2

A

�
j

i
≃
8><
>:

1
Δz

h�Q2

A

	jþθ
iþ1

− �Q2

A

	jþθ
i

i
Qj

i < 0

1
Δz

h�Q2

A

	jþθ
i − �Q2

A

	jþθ
i−1
i

Qj
i ≥ 0

ð20Þ

In this way, the two PDEs describing the dynamics of a single
channel are transformed into a system of nonlinear equations:

f½hðtjþ1Þ;hðtjÞ;qðtjþ1Þ;qðtjÞ� ¼ 0 ð21Þ

where hðtjÞ ¼ ½h1ðtjÞ; : : : ; hNðtjÞ�T ; qðtjÞ ¼ ½Q1ðtjÞ; : : : ;
QNþ1ðtjÞ�T ; and f∶R4Nþ2 → R2Nþ1. The system of nonlinear equa-
tions [Eq. (21)] for each channel, together with all the boundary
conditions, needs to be solved for hðtjþ1Þ and qðtjþ1Þ of every
channel given the values of these variables at time step tj. This
can be done with Newton method. A discussion about the choice
of Δt and θ can be found in (Clemmens et al. 2005). In this paper,
θ is set to 0.6.

Model Predictive Control

To find a controller that is able to prevent rivers from flooding, it is
important that the controller considers the flood levels when look-
ing for the best control actions. The controller should also take pos-
sible actuator limits and rainfall predictions into account. Model
predictive control is an optimization-based control strategy that
can perfectly deal with these requirements. It uses a process model
to predict the future process outputs within a specified prediction
horizon. It determines the next inputs for the process by solving an
optimization problem over this horizon, taking input and output
constraints (e.g., flood limits), future disturbances (rainfall predic-
tions), and the process model into account. Only the first element of
the complete optimal sequence is applied to the process, the new
current state of the system is measured or estimated, and the entire
procedure is repeated.

Nonlinear MPC

Approximate Model
Model predictive control solves at every time step an optimization
problem in which the model equations are considered as equality
constraints. However, the model equations discussed in the pre-
vious section are too complex to be used directly inside the opti-
mization problem. The main complexity comes from the nonlinear
gate equations. Inspired by Malaterre and Baume (1999), these gate
equations can be excluded from the optimization problem when we
work with the discharge at the gates as control variables instead
of the gate positions. Once the optimal gate discharges are found,
a conversion step is needed to find the corresponding gate posi-
tions. Under this control scheme, the boundary conditions for
the river system are given by the following instead of Eqs. (9)–(11):

QðiÞðLðiÞ; tÞ ¼ QðmÞ
gateðtÞ ð22Þ

QðjÞð0; tÞ ¼ QðmÞ
gateðtÞ ð23Þ

The resulting model equations will be approximated with linear
time-varying state-space models by linearizing the discretized
Saint-Venant equations [Eq. (21)] around the linearization point
xlinðkÞ, ulinðkÞ, and dlinðkÞ:

xðkþ 1Þ − xlinðkþ 1Þ ¼ AðkÞ½xðkÞ − xlinðkÞ�
þ BðkÞ½uðkÞ − ulinðkÞ�
þ DðkÞ½dðkÞ − dlinðkÞ� ð24Þ

where xðkÞ ¼ ½hð1ÞTðtkÞ; : : : ;hðncÞTðtkÞ;qð1ÞTðtkÞ; : : : ;qðncÞTðtkÞ�T ;
nc = number of channels; uðkÞ ¼ ½Qð1Þ

gateðtkÞ;Qð2Þ
gateðtkÞ;Qð3Þ

gateðtkÞ;
Qð4ÞðLð4Þ; tkÞ�T ; dðkÞ ¼ Qð1Þð0; tkÞ; and AðkÞ, BðkÞ, and DðkÞ =
state-space matrices at time tk. Eq. (24) can be rewritten as

xðkþ 1Þ ¼ AðkÞxðkÞ þ BðkÞuðkÞ þDðkÞdðkÞ þ βðkÞ ð25Þ
where

βðkÞ ¼ xlinðkþ 1Þ −AðkÞxlinðkÞ − BðkÞulinðkÞ −DðkÞdlinðkÞ
ð26Þ

The linearization points xlinðkÞ, ulinðkÞ, and dlinðkÞ should be as
close as possible to the values found by the optimizer based on
these linear models. Therefore, dlinðkÞ is set equal to the predicted
disturbance signal, and ulinðkÞ will be set equal to the optimal con-
trol actions found by the optimizer in the previous time step. xlinðkÞ
is found by using the nonlinear model equations to predict what the
states are corresponding to ulinðkÞ and dlinðkÞ. After this prediction
step, the linear models are derived and can be used in the optimi-
zation problem.

Optimization Problem
The optimization problem that needs to be solved at every time step
is a quadratic program (QP) of the following form:

min
u;x;ξ;ζ

XNP

k¼1

kxðkÞ − rk2W þ
XNP−1

k¼0

kuðkÞ − uðk − 1Þk2R

þ kξk2S þ sTξ þ kζk2V þ vTζ ð27Þ

s:t: xð0Þ ¼ x̂0 ð28Þ
xðkþ 1Þ ¼ AðkÞxðkÞ þ BðkÞuðkÞ þDðkÞdðkÞ þ βðkÞ ð29Þ

Fig. 4. Staggered grid structure used to discretize Saint-Venant
equations
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uðkÞ ≤ uðkÞ ≤ ūðkÞ; ∀ i ¼ 1; : : : ; nc∶ ð30Þ

hðiÞðkÞ ≤ hðiÞ
max;1 þ ηðkÞξi ð31Þ

hðiÞðkÞ ≤ hðiÞ
max;2 þ ηðkÞζi ð32Þ

ξ ≥ 0 ð33Þ

ζ ≥ 0 ð34Þ
where NP = prediction horizon; W ∈ Rnx×nx , R ∈ Rnu×nu ,
S ∈ Rnc×nc , and V ∈ Rnc×nc = four positive semidefinite diagonal
weighting matrices; nx = total number of water levels and dis-
charges; nu = number of inputs; s ∈ Rnc and v ∈ Rnc = two weight-
ing vectors; r = set points for the states; x̂0 = current state estimate
of the process; hmax;1 = safety levels; hmax;2 = flood levels; u and
ū = operational limits on the inputs; ξ; ζ ∈ Rnc = two vectors of
slack variables (one slack variable for each channel); and ηðkÞ ¼
1=rk−1c = time-dependent weight (rc > 1). The weighting matrices
W, R, S, and V define the relative importance of the difference
between the states and their set points, the changes of the control
actions, and the two vectors of slack variables ξ and ζ . It can be
shown that this QP has only one (global) solution (Nocedal and
Wright 2000). In this study, quadprog of MATLAB (2011a) is used
to solve the QPs. This controller will be called NMPC (nonlin-
ear MPC).

The meaning of the safety limits and the flood limits was ex-
plained in the “Problem Formulation” section. The flood limits
and safety limits for the water levels are implemented as soft con-
straints [Eqs. (31) and (32)]. The maximal violation of these limits
for each channel along the prediction horizon are penalized in the
objective function by the terms kξk2S þ sTξ and kζk2V þ vTζ. A suf-
ficiently large s and v will ensure that the constraints will only be
violated when no feasible solution exists for the hard constrained
optimization problem (Hovd and Braatz 2001). This means that the
constraints are enforced as exact soft constraints. If the constraints
cannot be prevented from being violated, the controller will min-
imize these violations and hence reduce the flood risk. The quad-
ratic terms kξk2S and kζk2V are imposed to have a well-posed QP
and are extra tuning parameters (Scokaert and Rawlings 1999).
A time-dependent weight ηðkÞ is used to penalize future constraint
violations in the prediction horizon increasingly to avoid long-
lasting constraint violations (Hovd and Braatz 2001).

Because the buffer capacity of the reservoir between the safety
limit and the flood limit may not be used to keep the water levels of
all the other channels below their safety limits, the diagonal
element of S and the element of s corresponding to the reservoir
are set higher than the elements corresponding with the other chan-
nels. The diagonal elements of V and the elements of v are set
higher than all the elements of S such that the controller will
use the remaining buffer capacity for flood prevention of all chan-
nels. If there is no flood risk, the controller needs to focus on set-
point control of the water levels of Channels 1 and 4. This is
achieved by choosing the elements in the matrix W corresponding
to these water levels larger (but sufficiently smaller than the weights
of the slack variables) than the entries associated to the water levels
of the other channels.R influences the control effort of the different
input variables.

uðkÞ and ūðkÞ are the operational limits on the inputs at
time step k. These limits are time variable for the control actions
corresponding to the three gate discharges. For the controllable

discharge at the end of the river, they are constant and assumed
to be given. These limits are time variable because they depend
on the rate of change constraint Δmax of the gates and on the up-
stream and downstream water levels at each gate at every time step.
These limits can be calculated with an Algorithm 1. In this algo-
rithm ng is equal to the total number of gates, upred is the sequence
of control actions found by the optimizer in the previous time step,
cmin;m is the lower limit on gate m, and cmax;m is the upper limit on
gate m. The algorithm uses a function l to calculate the gate posi-
tion corresponding to a desired gate discharge and upstream and
downstream water levels. There is one important aspect of this
function. There can be situations in which the position of a gate
can remain unchanged from iteration j to jþ 1 to achieve a given
gate discharge. However, for decreasing water levels, the gate open-
ing can become larger than these water levels. The calculated
umðjþ 2Þ and ūmðjþ 2Þ will have the same value if the Δmax;m

is not big enough to lower the gate between the maximal and min-
imal water levels. This can happen for all future values of j and at
the end the lower limit is equal to the upper limit for that control
variable at every time step within the prediction window. This in-
dicates that the value for the gate discharge is fixed and the con-
troller will stop using this gate, losing in this way one degree of
freedom. This uncontrollability can be avoided by limiting the
maximal value returned by this function l with the maximal water
level at the gate. This will make sure that um will be different from
ūm at every time step, which will ensure the controllability of the
gate. Internally, the function l solves Eqs. (5)–(7) iteratively with
the bisection method.

Because the linear model used in the optimization problem is
only an approximation of the nonlinear model and because of
the dependence of the limits u and ū on the states of the system,
the solution of the QP is not guaranteed to be the solution of the
nonlinear optimization problem. Therefore, the prediction step, the
linearization step, the algorithm, and the optimization step will be
iterated over. First, the optimal control actions found in the previous
time step are used with the nonlinear model to predict what the
future states of the model will be within the prediction window.
On the basis of this sequence of future states, a sequence of linear
state space models is derived, which is used to find u and ū and in
the optimization problem. This procedure is repeated with the new
control actions until convergence or a maximum number of itera-
tions is reached. Then, the controller looks for the gate positions
corresponding to the desired gate discharges and applies them to
the river system. This conversion is done with the function l dis-
cussed previously.

Algorithm 1. Calculation of the time-varying limits
Algorithm to find the time-varying limits uðkÞ ¼

½u1ðkÞ; : : : ; ungðkÞ�T and ūðkÞ ¼ ½ū1ðkÞ; : : : ; ūngðkÞ�T . The
function s selects the upstream and downstream water levels
corresponding to gate m, whereas the function l calculates the
gate position corresponding to the desired discharge for gate m.
% at time step tk
~x ¼ xðtkÞ
cprev ¼ ½cð1Þðtk−1Þ; : : : ; cðngÞðtk−1Þ�T
for j ¼ 1; : : : ;NP do
for m ¼ 1; : : : ; ng do
½hup; hdown� ¼ sðx̂;mÞ
if hup ≥ hdown then
umðjÞ ¼ ~f½maxðcprev;m −Δmax;m; cmin;mÞ; hup; hdown�
ūmðjÞ ¼ ~f½minðcprev;m þΔmax;m; cmax;mÞ; hup; hdown�
else
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ūmðjÞ ¼ − ~f½maxðcprev;m −Δmax;m; cmin;mÞ; hdown; hup�
umðjÞ ¼ − ~f½minðcprev;m þΔmax;m; cmax;mÞ; hdown; hup�
end if
cprev;m ¼ l½upred;mðjÞ; hup; hdown�
end for
d ¼ Qinðtkþj−1Þ ~x ¼ AðjÞ ~xþ BðjÞupredðkÞ þDðjÞdþ βðjÞ
end for

Buffer Capacity Recovery
After a period of heavy rainfall, the controller should recover the
buffer capacity to handle future rainfall without flooding. This can
be achieved by working with two different weighting matrices W
and reference signals r. During normal operation (set-point con-
trol), the diagonal elements of the matrix W corresponding to
the most important water levels will have the highest values com-
pared with those corresponding to the other water levels, and r is set
equal to the desired set points. However, when some of the buffer
capacity is used for flood prevention, the set points of the water
levels of the channels downstream of the reservoir (Channels 3, 4,
and 7) are set lower than the set point of the reservoir, and the
diagonal elements of W corresponding to these water levels are
increased. By decreasing these water levels, Gate 3 can be used to
remove the excess water in the reservoir. This change inW and r is
performed when one of the water levels in the reservoir is 20 cm
above its set point. This is checked every time a new state estimate
of the process is computed. When the buffer capacity is recovered,
W and r are set equal to their initial values (set-point control). This
is done when all the water levels of the reservoir are at the most
10 cm above their set point for at least 2.5 h.

Linear MPC

Because of the prediction step, the NMPC requires high computa-
tion times to find optimal control actions. This step can be avoided
by working with the same linear model at every time step. To this
end, the model constraint Eq. (29) in the NMPC formulation is
replaced by

xðkþ 1Þ ¼ ĀxðkÞ þ B̄uðkÞ þ D̄dðkÞ þ β̄ ð35Þ

where Ā, B̄, D̄, and β̄ are found by linearizing the discretized model
equations around the nominal steady-state operating point of the
river. The algorithm can still be used to find uðkÞ and ūðkÞ if
the time-varying state-space matrices AðkÞ, BðkÞ, DðkÞ, and the
vector βðkÞ are replaced with Ā, B̄, D̄, and β̄, respectively. This
controller will be called LMPC (linear MPC).

Because there is still a dependence between uðkÞ and ūðkÞ, the
chosen control actions, and the water levels surrounding every gate,
in theory several iterations involving the algorithm and solving the
QP are needed. However, the simulation results show that good
results can already be achieved by performing these operations only
once.

State Estimator

The controllers defined in the previous section require the knowl-
edge of the current state of the process x0. However, only a very
limited number of water levels are measured and none of the dis-
charges. Therefore, all the other states need to be estimated. The
state estimator used in this paper is the Kalman filter (Kalman
1960). This is explained here for the LMPC. The estimation of
the state vector xðkÞ will be written as x̂ðkÞ. The Kalman filter uses
the linear state-space model in combination with the error between

the predicted and the measured water levels to correct the state
estimation through a feedback gain matrix L:

Δx̂ðkþ 1Þ ¼ L½ΔyðkÞ −ΔŷðkÞ� þ ĀΔx̂ðkÞ þ B̄ΔuðkÞ
þ D̄ΔdðkÞ ð36Þ

ΔŷðkÞ ¼ CΔx̂ðkÞ ð37Þ
where ΔxðkÞ ¼ xðkÞ − xlin; Δx̂ðkÞ ¼ x̂ðkÞ − xlin; ΔuðkÞ ¼
uðkÞ − ulin; ΔyðkÞ ¼ yðkÞ − ylin; ΔŷðkÞ ¼ ŷðkÞ − ylin; yðkÞ =
measured water levels; ŷðkÞ = estimated water levels; and
C = matrix that selects the measured water levels from the states.
The Kalman gain L is found by minimizing the covariance of the
estimation error xðkÞ − x̂ðkÞ, taking process and measurement
noise into account. Both noises are assumed to be independent
white noise with a normal distribution. The exact derivation for
finding L can be found in Franklin et al. (1997) and Kwakernaak
and Sivan (1972).

Simulation Results

This section describes the simulations results when NMPC, LMPC,
and LMPC with Kalman filter are applied to the river system in
Fig. 1. For the first two controllers, it is assumed that all the states
are measured at every time step. This allows the comparison of the
control performance of these two controllers separately. Only the
effect of the Kalman filter on LMPC is shown, as this controller has
the lowest computation time and a similar performance as NMPC.

The sampling time of every controller is 15 min, whereas the full
nonlinear model of the river system generates data every minute. A
spatial discretization Δz of 50 m is used. The maximum number of
iterations for the NMPC is limited to five or when the Euclidean
norm of the difference of the control actions found between two
consecutive iterations is smaller than 10−3. Only one iteration is
used for LMPC and LMPC with the Kalman filter.

Initially, the discharges in the main river part are all 3 m3=s,
whereas there is no flow in the reservoir and the two side channels.
This indicates that the second and the third gates are closed. The
most downstream water level of the second and the fourth channels
is 5 m, whereas the most downstream water level of the reservoir is
4 m. The set points for all the water levels are equal to the initial
water levels. The discharge at the end of the fourth channel should
remain between 0 and 5 m3=s. All the gate openings should be be-
tween 0 and 5 m, and they can only be changed over a maximum
distance of 20 cm every time step. The differences between the ini-
tial water levels and the safety levels are 0.6, 0.6, and 1.2 m for
Channels 1, 2, and 5, Channels 3, 4, and 7, and the reservoir,
and the differences with respect to the flood levels are 1, 0.8,
and 2 m, respectively. The disturbance signal is depicted in Fig. 5.
Initially, the discharge entering the river system is 3 m3=s, which is

Fig. 5. Disturbance signal QoutðtÞ
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increased after 4 h to 12 m3=s and is decreased back to 3 m3=s
6 h later.

Table 2 contains the diagonal elements for the weight matrices
W, S, V, andR and the elements for the weight vectors s and v. As
explained in the “Problem Formulation” section, during normal op-
eration the water levels of the Channels 1 and 4 and of the reservoir
are the most important ones. Therefore, the weights of W corre-
sponding to these water levels are set to 10, 1, and 1,000, respec-
tively. All the other weights for the other water levels are fixed to
0.001. The weights for the discharges for all the channels are set to
0.001. If the buffer capacity is used to prevent the water levels from
violating their safety limits, the set points for the most downstream
water levels (Channel 4) are set below the set point of the reservoir,
and the corresponding weights in W are increased to 1,000 such
that the buffer capacity can be recovered. All the diagonal elements
of R are set to 50, the weights in S and s for the slack variable ξ
associated to the reservoir are set to 106, the weights associated to
the other channels are set to 105, the weights in V and v for the
slack variable ζ are assumed equal to 108, rc is set to 1.2, and
the size of the prediction window NP is 15.

Fig. 6 shows the evolution of the maximal difference between
the water levels and their set points for the three controllers. To
keep the number of plots as low as possible, the results for the up-
stream part of the river (Channels 1, 2 and 5) are plotted together
(the top plot) as are the results for the downstream part of the river
(Channels 3, 4, and 7, the middle plot). The bottom plot shows the
results for the reservoir (Channel 6). Fig. 7 shows the applied con-
trol actions for the three gates andQoutðtÞ by each of the controllers.
The first conclusion that can be made from Figs. 6 and 7 is that the
differences in the results between the NMPC and the LMPC are
small. The control actions and the water levels have a similar gen-
eral trend for both controllers. Also, the addition of the estimator in
the control loop has only a limited effect on the control perfor-
mance. There is only a noticeable difference in the control actions
for the three controllers during the period of heavy rainfall and right
after this period. However, because the trend of the control actions
for all the three controllers is similar, the water levels show the
same behavior. Initially, all the three controllers try to avoid using
the water reservoir and react to the future rainfall by decreasing the
upstream water levels. This is done by increasing the gate opening
of the first gate and increasing the discharge at the end of the river
to its maximal value. Once the water levels risk violating the safety
levels, the controllers start using the water reservoir by opening
the second and the third gates. Because of the magnitude of the

upstream disturbance, the controllers cannot avoid the violation
of the safety levels; however, they can prevent the violation of the
flood levels or at worst minimize their violation. Table 3 shows the
maximal difference between the water levels of each channel and
their flood levels for the three controllers. A positive value corre-
sponds to the maximal violation of the flood levels, whereas a neg-
ative value corresponds to the minimal margin before a flood level

(a)

(b)

(c)

Fig. 6. Evolution of maximal difference between water levels and their
set points for three controllers; plots show maximal deviation of water
levels at every time step of Channels (a) 1, 2, and 5; (b) 3, 4, and 7;
(c) 6; flood and safety levels correspond to horizontal lines

Table 2. Diagonal Elements for Weight Matrices W, S, V, and R and Elements for Weight Vectors s and v

Elements

Channel

1 2 3 4 5 6 7

W ∈ R333×333

Water levels 10 · 117 0.001 · 121 0.001 · 121 1 · 121 0.001 · 111 1,000 · 161 0.001 · 111
1,000 · 121

a

Discharges 0.001 · 118 0.001 · 122 0.001 · 122 0.001 · 122 0.001 · 112 0.001 · 162 0.001 · 112
S ∈ R7×7

Safety levels 105 105 105 105 105 106 105

s ∈ R7×1

Safety levels 105 105 105 105 105 106 105

V ∈ R7×7

Flood levels 108 108 108 108 108 108 108

v ∈ R7×1

Flood levels 108 108 108 108 108 108 108

R ∈ R4×4 Qgate1 Qgate2 Qgate3 Qout
Control actions 50 50 50 50

aValue used to recover the buffer capacity of the reservoir. The weighting factor for each of the 21 water levels changes from 1 to 1,000.
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is violated. There is almost no difference between NMPC and
LMPC. There is no flooding for any of the channels with LMPC.
Three channels are flooded with NMPC. However, these floodings
can be neglected: the flood levels are violated with only 3 mm or
less, and each flooding lasts for less than 1 min. The remaining
buffer capacity in the water reservoir (Channel 6) is larger with
NMPC than with LMPC. Adding a state estimator has only a minor
negative influence on these results: the maximal flooding is in-
creased to 2 cm, and each flooding lasts for less than 5 min. Once
the disturbance is decreased again, the controllers first steer the
water levels below the safety limits. Then, they keep the upstream
water levels close to the safety limits (the opening of the first gate is
decreased, and the second gate is completely closed), whereas the
downstream water levels are further decreased below their initial set
point because of the change in the matrix W and the set point r. To
decrease these water levels as fast as possible, the controllers keep
the downstream discharge at its maximal value while the opening
of the third gate is as large as the surrounding water levels. This
allows the buffer capacity of the water reservoir to be recovered
quickly. Once the buffer capacity is recovered, the matrix W and
the set point r are set to their initial value. The controllers close the
second and the third gates to prevent the water levels in the reser-
voir to increase. The controllers immediately bring the upstream
and the downstream water levels to their original set point by open-
ing the first gate and changing QoutðtÞ. The most significant neg-
ative influence of the state estimator can be found in the water level

of the water reservoir at the end of the simulation: some part of the
buffer capacity is not recovered. This can be seen in Table 4, in
which the average difference between the water levels and their
set point for each channel at the end of the simulation is shown.
This difference for NMPC and LMPC is negligible for every chan-
nel. This is also the case when the Kalman filter is used except for
the reservoir where there is a small difference of 2 cm.

To verify the generality of the results, a second simulation has
been performed for a higher flood with a maximal discharge of
24 m3=s in combination with a larger reservoir. All the other
parameters of the controller, the state estimator, and the river sys-
tem remained unchanged. The simulation results for this second
test case are very similar as the results discussed previously. This
indicates that the proposed control scheme can handle different
sizes of floodings and reservoirs.

Table 5 contains the mean, the minimal, and the maximal com-
putation times needed for computing the control actions for each
step (prediction, linearization, optimization, conversion) separately
and the total time by the three controllers. Because NMPC performs
the predictions by using a nonlinear model, the time needed to per-
form this step is much larger than that required for LMPC and
LMPC with the Kalman filter. The time needed to solve the opti-
mization problem with the NMPC controller is much larger than
that required by the other controllers because of the need to perform
several iterations to achieve convergence. The relevance of the
conversion step on the total computation time needed by any of
the controllers is practically negligible.

(a) (b)

(c) (d)

Fig. 7. Control actions of three controllers; horizontal lines are upper limits on control variables: (a) Gate 1; (b) Gate 2; (c) Gate 3; (d) discharge
QoutðtÞ at end of river system

Table 3. Maximal Flooding of Each Channel for Three Controllers

Channel NMPC (m) LMPC (m) LMPC + Kalman (m)

1 0.0029 −0.0263 0.0160
2 0.0023 −0.0258 0.0090
3 −0.0283 −0.0360 −0.0292
4 −0.0265 −0.0277 −0.0288
5 0.0024 −0.0284 0.0051
6 (reservoir) −0.4054 −0.3670 −0.4037
7 −0.0290 −0.0293 −0.0249
Note: Negative value indicates that there is no flooding and some buffer
capacity is left.

Table 4. Average Deviation in Meters of Each Channel for Three
Controllers from Their Set Points at End of Simulation (t ¼ 3,000 min)

Channel NMPC (m) LMPC (m) LMPC + Kalman (m)

1 −0.0012 −0.0012 −0.0012
2 −0.0012 −0.0012 −0.0012
3 −0.0081 −0.0084 −0.0078
4 −0.0081 −0.0083 −0.0078
5 −0.0012 −0.0012 −0.0012
6 (reservoir) 0.0015 0.0011 0.0200
7 −0.0081 −0.0083 −0.0078
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Table 6 shows the quantification of the total amount of control
actions for the three controllers. For each gate m, the total gate
movement is calculated with the formula

γgatem ¼
XNT−1

k¼0

jumðkþ 1Þ − umðkÞj ð38Þ

whereNT = total number of time instants during the simulation. For
Qout, the total amount of control action is quantified with the in-
tegral of the absolute value of the changes ofQout with respect to its
initial value:

γQout
¼
Z

T

0

jQoutðtÞ −Qoutð0Þjdt ð39Þ

where T = end time of the simulation. This indicates by how much
the controller let Qout deviate from its normal operation point. The
higher these numbers, the more demanding the controller is for
the hydraulic structures. The third gate has been used the most by
the three controllers. This is for releasing the excess water in the
water reservoir. Overall, the NMPC changes the gate opening more
frequently than the other two controllers, especially the first gate.
The difference in total gate movement for LMPC without or with
the Kalman filter is mainly explained by the third gate. This gate
shows some oscillations when Kalman filtering is used, which are
not present when the state estimator is absent. Because all the con-
trollers use theQout in a very similar fashion, the difference for γQout

is negligible. One can always tune the controllers further to elimi-
nate the oscillations or to reduce the total movement of the gates by
decreasing the upper limit on the rate of change constraint (Δmax) or
by increasing the value of the diagonal elements in the weight
matrixR. This has the advantage that the lifespan of the equipment
can be increased, but it can at the same time increase the risk of
flooding. One needs to make a trade-off between the life cycle
of the structures and the risk of flooding.

Conclusions

This paper has shown that model predictive control can be used for
set-point and flood control of river systems with multiple channels,

gates, junctions, and a water reservoir. The optimization problem
solved by MPC at every time step can be formulated such that the
controller only uses the water reservoir when there is a risk of
flooding. By modifying some of the parameters of the optimization
problem, the same controller can be used to empty the water res-
ervoir quickly when there is no risk of flooding. When the buffer
capacity is restored, the controller automatically focuses on set-
point control of the other water levels in the river system.

Given that the gate equations are the main sources of nonlinear-
ities, the proposed controllers work with the gate discharges as
control variables in the optimization problem instead of the gate
positions. Then, a conversion step is performed to calculate the cor-
responding gate positions. Because the remaining equations of the
nonlinear model (the Saint-Venant equations) can accurately be ap-
proximated with their linear counterpart (for the problem addressed
in this paper) for designing the controllers, the LMPC achieves a
similar control performance as the NMPC. The big advantage with
LMPC is the reduction in computation time.

Adding a Kalman filter to the control loop to estimate the
unmeasured states has only a minor influence on the control per-
formance. Only a small increase in the offset of the water levels in
the water reservoir was observed.

Future work will be focused on applying the techniques pre-
sented in this paper to a bigger river system, the Demer in Belgium,
which has more water reservoirs, channels, gates and junctions.
Because of the big number of states needed to model the behavior
of this system, model reduction techniques will studied, e.g., proper
orthogonal decomposition and Galerkin projection, and distributed
control strategies.
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