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Control of a single reach with model predictive control
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ABSTRACT: Many control strategies can be found in literature for controlling a reach. Most of these methods
focus on set-point control such that the most upstream or downstream water level track a certain reference
trajectory. One control strategy often applied in the literature is the Linear Quadratic Regulator (LQR). However
as good as LQR is for set-point control, it cannot be used for preventing a river from flooding when large
disturbances take place. In this paper we present a more advanced control strategy already used in other fields
that can be used for set-point control as well as for flood control: Model Predictive Control (MPC). Simulation
results show that MPC outperforms LQR for three different test cases.

1 INTRODUCTION

Several studies can be found in literature where
control strategies are used to control reaches or
irrigation canals, such as PI controllers, heuristic
controllers, predictive controllers and optimal con-
trollers (Malaterre et al. 1998; Burt et al. 1998; Litrico
et al. 2006). The dynamics of such a reach are often
described by two nonlinear partial differential equa-
tions, the so-called Saint-Venant equations. Because
of computational reasons these controllers do not work
directly with these equations but use approximating
models, e.g. models based on the linearized Saint-
Venant equations. One control strategy which works
with such a linear model is the Linear Quadratic
Regulator (LQR). This technique has been success-
fully applied in different studies for set-point control
(Clemmens and Schuurmans 2004; Clemmens and
Wahlin 2004; Malaterre 1998; Malaterre 1994;
Balogun et al. 1988; Balogun 1985; Reddy 1990;
Reddy et al. 1992). However, this controller cannot
be used for flood control at the same time because the
controller is not aware of the existence of flood levels.

This problem does not exist with Model Predictive
Control (MPC). MPC (Rossiter 2003; Mayne et al.
2000) is a control strategy originating from the pro-
cess industry and is used in various applications going
from chemicals and food processing to automotive and
aerospace applications (Qin and Badgwell 2003). Just
as for LQR, one can find many studies in literature
where MPC is used for controlling reaches, irrigation
canals or river systems towards a certain set-point (van
Overloop 2006; Ruiz and Ramirez 1998; Xu and van

Overloop 2010; Xu et al. 2011; Wahlin and Clemmens
2006;Wahlin 2002). However these works do not focus
on flood control. In previous work (Breckpot et al.
2010a; Breckpot et al. 2010b) we have been using a
simplified conceptual model which models the water
levels of a river system only at a very limited num-
ber of points for set-point control and flood control. In
this work we use a linear version of the Saint-Venant
equations with a very fine spatial discretization for
designing the controllers.

The paper is organized as follows. Section 2 dis-
cusses the equations describing the dynamics of a
single reach, their discretization and numerical imple-
mentation. Section 3 presents the linear approximation
of the model equations. Section 4 explains LQR and
Section 5 describes how MPC can be used for set-
point control and flood control. Section 6 compares
the performance of LQR and MPC for set-point con-
trol, disturbance rejection and flood control. Section 7
ends the paper with conclusions and future work.

2 THE SAINT-VENANT EQUATIONS

2.1 Single reach dynamics

The Saint-Venant equations are often used in prac-
tice to model the dynamics of the water levels and
discharges in river reaches. The derivation of these
equations are based on a set of assumptions which can
be found in (Chaudry 2008; Sturm 2001; Chow 1959).
Given these assumptions, the following two Partial
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Differential Equations (PDEs) describe the dynamics
of the water levels and discharges in a single reach:

with A the cross-sectional flow area (m2), Q the water
discharge (m3/s), h the water depth (m), g the gravity
acceleration (m/s2), S0 the bed slope and Sf the fric-
tion slope. Equation 1 describes the conservation of
mass and Equation 2 the conservation of momentum.
Sf is an (empirical) resistance law approximating the
head losses. The resistance law used in this study is
the Manning relation (Chaudry 2008; Chow 1959):

where nmann is the Manning coefficient (s/m1/3),
R = A/P is the hydraulic radius (m) and P is the wetted
perimeter of the cross section (m).

2.2 Discretization and numerical implementation

Because in general an analytical solution can-
not be found for the Saint-Venant equations, a
numerical simulator is needed which approximates
the infinite dimensional variables on a finite grid
(Strelkoff and Falvey 1993; Xu et al. 2011).
In this study, the partial derivatives are approxi-
mated with finite differences while the θ-method,
e.g. f (tj + θ�t) = θf (tj + �t) + (1 − θ)f (tj) with θ ∈
[0, 1], is used for the time integration. The spatial grid
used in this paper is a staggered grid:

where 2N − 1 is the total number of unknown vari-
ables (N water levels and N − 1 discharges) and Qup
and Qdown are the (known) boundary discharges. The
derivatives in Equation 1 are approximated by (note
h(xi, tj) = hj

i)

A similar approach is used for the terms ∂Q/∂t,
A, ∂h/∂x and Sf in Equation 2. The advection

term ∂(Q2/A)/∂x is approximated with an upwinding
approach:

with

In this way the two PDEs are transformed into a system
of nonlinear equations:

with f : R
4N+2 → R

N , g : R
4N+2 → R

N−1, h =
(h1, . . . , hN )T and Q = (

Qup, Q1, . . . , QN−1, Qdown
)T

,

which has to be solved for hj+1
1 , hj+1

2 , . . . , hj+1
N and

Qj+1
1 , Qj+1

2 , . . . , Qj+1
N−1. The upstream and downstream

discharges Qup and Qdown are known at every time.
They are given by the controller or are disturbance sig-
nals. Equations 9 and 10 can be solved with Newton’s
method.

A discussion about the choice of �t and θ can be
found in (Clemmens et al. 2005). However, we will not
elaborate on this in this paper and set θ equal to 0.6.

3 THE LINEAR MODEL

The controllers used in this paper need a linear approx-
imation of the Saint-Venant equations. One approach
is to linearize Equations 9 and 10 around a steady-
state point (hss ∈ R

N for the water levels, Qss ∈ R
N−1

for the discharges, uss ∈ R
nu for the control inputs

and dss ∈ R
nd for the disturbances with nu and nd the

number of inputs and disturbances) resulting in the
following model:

with �x(k) = (
�h(k), �Q(k)

)T
, �h(k) = h(k) − hss,

�Q(k) = Q(k) − Qss, �u(k) = u(k) − uss, �d(k) = d
(k) − dss, A ∈ R

(2N−1) × (2N−1), B ∈ R
(2N−1) × nu and

D ∈ R
(2N−1) × nd . The input vector u(k) contains the

controllable upstream and/or downstream river dis-
charges at time instant k while the disturbance vector
d(k) contains the uncontrollable ones. E.g. if only the
upstream discharge can be controlled, then we have
that u(k) = Qup(k) and d(k) = Qdown(k).
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4 LINEAR QUADRATIC REGULATOR

4.1 Set-point control

It is desired to keep all or some of the water levels
h and the discharges Q close or equal to its steady-
state values hss and Qss with a minimum of control
effort. This goal can be translated into the following
cost function or objective function which we want to
minimize

with W h ∈ R
N×N , W Q ∈ R

N−1×N−1 and R ∈ R
nu×nu

three positive semi-definite diagonal penalty matri-
ces. The higher the value of a diagonal element in any
of these three matrices, the more important the cor-
responding variable is. E.g. if all the elements in W h
are much larger than the elements in W Q and R, then
the controller will mainly focus on steering the water
levels as close as possible to its steady-state values.

The solution of the optimization problem with
Equation 12 as cost function and with the linear model

as constraint, is the linear feedback law (Althans 1971;
Kwakernaak and Sivan 1972; Franklin et al. 1997):

where the feedback matrix K is given by

with S the positive definite solution of the discrete
algebraic Riccati equation

If there is a rate of change constraint for the inputs
or if the inputs have some operational limits, then they
have to be enforced using a saturator such that �u(k)
does not violate these limits.

The control actions given by Equation 14 will
always try to steer the water levels and discharges back
to their steady state values. However in practice, it can
be important that the water levels and/or discharges
follow a certain reference signal r(k). In this paper
this reference signal will only contain step changes.
To ensure a zero steady-state error to this step input

r(k), it can be shown that the feedback control law has
to be modified as follows:

with �r(k) = r(k) − rss, rss = (
hss, Qss

)T
and

and I the identity matrix.

4.2 Flood control

Just as the control law in Equation 14 does not know
the limits on the control actions, the controller is also
not aware of any possible upper limit (flood levels) on
the water levels. Therefore it is really difficult to tune
the weighting matrices W and R such that an LQR
controller will keep the water levels below their flood
levels for different disturbance signals. This problem
can be avoided by using MPC.

5 MODEL PREDICTIVE CONTROL

5.1 The working procedure of MPC

Model Predictive Control (MPC) is an optimization
based control strategy which makes use of a process
model to predict the future process outputs within a
specified prediction horizon. MPC solves an optimiza-
tion problem over this horizon to determine the optimal
inputs for the process taking into account input and
output constraints, future disturbances and the process
model. Only the first input sample of the complete
optimal sequence is applied to the process, new sam-
ples are taken to determine the new current state of the
system and the entire procedure is repeated.

5.2 Optimization problem

At every time step, the controller solves an opti-
mization problem. In practice this optimization prob-
lem will often be a Quadratic Programming problem
(QP). This is a convex minimization problem with a
quadratic cost function and linear equality and linear
inequality constraints. In our study, it has the following
form:
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with NP the prediction horizon, W , R and V ∈ R
N×N

three positive semi-definite diagonal weighting matri-
ces, x̂ the current state of the process, hmax the flood
levels, umin and umax the operational limits on the
inputs, �u the maximal allowed rate of change for
the inputs, uprev the input applied to the reach in the
previous time step and ζ ∈ R

N a vector of slack vari-
ables (one slack variable for each water level). It can be
shown that for positive semi-definite weighting matri-
ces, the QP has only one (global) solution (Nocedal and
Wright 2000). In this study we use Mosek (Andersen
et al. 2003) for solving the QPs.

Note that we did not implement the flood limits
as hard constraints (h(k) ≤ hmax), but we used the
vector of slack variables ζ to implement them as soft
constraints (Equation 22) together with a positivity
constraint on ζ (Equation 26) and the weighting matrix
V . This makes sure that the QP will always be feasible
(the hard constraints can sometimes be too restrictive
for large disturbances). It is important to choose the
elements in V larger than the elements in W and R.
This forces the controller to keep the violations of the
flood limits as small as possible or if possible equal
to zero when a large disturbance takes place (flood
control). If there is no risk of flooding, the controller
sets ζ equal to zero and the third term in the objective
function is eliminated. Hence the controller will focus
on steering the different states towards their reference
signal (set-point control).

One big difference with LQR besides the incorpo-
ration of the flood levels is the linear model used in
MPC (Equation 21). If the disturbances can be pre-
dicted in advance (e.g. based on rainfall predictions),
this allows the controller to react on the future rainfall
preventively which limits the risk of flooding. A last
difference is that MPC knows the limits on the inputs
(Equations 23–25) such that a saturator is not needed.

6 SIMULATION RESULTS

In this study we will control a single reach with
LQR and MPC and compare their performance for
three different test cases: set-point control, disturbance
rejection and flood control.The reach has a trapezoidal
cross section with a side slope of 0.5, it has a length
L of 4000 m, the channel slope S0 is equal to 0.0001,
the bottom width is equal to 4 m and the Manning
coefficient nmann is taken equal to 0.014 s/m1/3. Fig-
ure 1 visualizes some of these parameters. In all test

Figure 1. Schematic structure of the reach with Qup and
Qdown the discharges at the boundaries, h the water levels
measured from the bottom of the reach, L the length of the
reach and S0 the channel slope.

cases the reach is initially in steady-state with a down-
stream water level equal to 3 m and a discharge of
1 m3/s at every point along the reach. The linear
model is derived based on this steady state condi-
tion. The reach is approximated with a grid structure
with N = 81 water levels. For the inputs we have
that −umin = umax = 7 m3/s and �u = 2m3/s.The con-
trollers works with a sampling time of 5 min and the
size of the prediction horizon NP is 15. In all the three
test cases we have assumed that we know at every
time step the current state x̂ of the process. The control
actions defined by both controllers will be applied to
the full nonlinear model discussed in Section 2.

The same weighting matrices are used for all the
three test cases:

The elements of the different matrices are chosen
such that flooding will be prevented (V ) and that the
controllers will mainly focus on steering the most
downstream water level towards its reference value,
and if possible also the other water levels.

6.1 Set-point control

The ability to track a reference trajectory for the water
levels is tested for both controllers. There is no risk of
flooding (hmax is set to ∞) and the controllers can con-
trol both the upstream and the downstream discharges.
There are no disturbances.

Figure 2 shows the results for LQR on the left and
for MPC on the right. On top we have the evolution
of the water levels in space (x-axis) and time (y-axis)
relative to the bottom of the reach (the plane in the
bottom). The reference trajectory for all the water lev-
els is shown by the thick lines with a step change
after 3000 s and 13,000 s. The bottom figures show the
applied control actions. The upstream discharge is the
full line and the downstream discharge is the dashed
line. Their limits are the dotted lines.

1024



Figure 2. Simulation results of LQR (left) and MPC (right) for set-point control. The top plots show the evolution of the
water levels (thin line) with the reference trajectory (thick line). The bottom plots present the control actions that correspond
to the upstream (full line) and downstream (dashed line) discharges together with their limits (dotted lines).

We can conclude that both controllers succeed in
tracking the reference trajectory. However because
MPC sees the step changes in the reference trajectory
earlier because of its prediction horizon, it reaches the
new set-point much earlier. LQR only reacts when the
step change effectively takes place. Both controllers
satisfy the limits on the inputs, LQR because of using a
saturator and MPC because it incorporates these limits
in its formulation.

6.2 Disturbance rejection

This test case checks how the controller reacts when
a disturbance takes place. The goal here is to keep
the most downstream water level as close as possible
to its steady state value. The controllers can only use
the downstream discharge, the upstream discharge is
the disturbance signal. After 6000 s the upstream dis-
charge jumps from 1 to 3 m3/s (e.g. a gate upstream
is opened). Also here there is no flood level defined.

The results are visualized in Figure 3. On top we
have the reference signal for the most downstream
water level (thick line), the water level controlled by
LQR (dashed line) and the water level controlled by
MPC (solid line). The bottom figure shows the dis-
turbance signal (thick) and the control action for both
controllers (dashed line for LQR and solid line for
MPC). It is evident that the MPC controller has better
disturbance rejection capabilities than the LQR con-
troller. At the end we have a deviation of 34 cm from
the set-point for the LQR case, and a deviation of only
0.8 cm for the MPC controller.

Figure 3. The top plot shows the effect of a disturbance on
the evolution of the most downstream water level controlled
via LQR (dashed line) and via MPC (full line) as well as its
reference value (thick line).The bottom plot shows the control
action of the controllers together with the disturbance signal
(thick line).

6.3 Flood control

The last test case is very similar as the previous one,
only now the disturbance signal is so large that there
is a risk of flooding. The disturbance is the upstream
discharge signal and only the downstream discharge
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Figure 4. The top plot shows the evolution of m(k) for LQR
(dashed line) and MPC (solid line).The second plot shows the
evolution of the downstream water level for LQR and MPC
together with its reference value (thick line) and flood level
(dotted line). The bottom plot shows the control actions as
well as the disturbance signal (thick line).

can be controlled. The flood levels are taken equal to
hmax = hss + 0.5, the upstream discharge is equal to

Figure 5. Evolution of the water levels when a large disturbance is applied to the system (test case: flood control). The left
plot presents the results obtained with LQR and the right one the results obtained with MPC. The reference is visualized via
the thick solid lines and the flood limits via the thick dashed lines.

Figure 4 shows the results for the two controllers.
The top plot shows the evolution of

A negative m(k) means that none of the water levels
violates the flood limit at time k . However, if m(k) is
positive, then the reach is flooding and m(k) indicates
the maximal violation of the flood level. The middle
plot shows the evolution of the most downstream water
levels in combination with its reference value (thick
line). The bottom plot shows the disturbance signal
(thick line) and the control actions. All the results for
LQR are visualized with dashed lines and for MPC
with solid lines.

The top plot shows that LQR cannot prevent flood-
ing: m becomes highly positive.The maximal violation
of the flood levels is 0.5 m. This is not the case for
the MPC controller where m remains always nega-
tive. The reason for this difference can be seen in the
middle plot. Long before the increase in the upstream
discharge takes place, the MPC controller steers the
downstream water level below its reference value.
MPC performs this preventive control action because
the prediction horizon allows MPC to see the big
increase in the upstream discharge before it actually
happens. The bottom plot clearly shows how MPC
reacts before the disturbance takes place, much ear-
lier than LQR. This action decreases all the water
levels and makes m more negative: the controller cre-
ates extra buffer capacity. After the disturbance has
taken place both controllers succeed in steering the
downstream water level back to its reference value.

The same conclusions can be made from Figure
5, where the evolution of all the water levels con-
trolled by means of the LQR (left) and MPC (right)
controllers are shown. Notice that unlike the LQR con-
troller, MPC first lowers the water levels to increase
the buffer capacity such that they remain at all time
below their flood limits (the dashed thick lines).
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7 CONCLUSIONS

In this paper we have explained how LQR and MPC
can be used for controlling a river reach. The per-
formance of both controllers have been tested and
compared.The results showed that the same MPC con-
troller can be used for both set-point control and flood
control. For a large disturbance signal the MPC con-
troller prevented the reach from flooding by creating
extra buffer capacity. This was not the case for LQR
that gave good results for set-point control, but it was
not able to prevent the reach from flooding.

In future work we will test MPC on river systems
with multiple reaches, gates and junctions. Further-
more, an estimator will be added to the current control
scheme in order to estimate the discharges and water
levels of a river system from a small number of
measurements.
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