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Abstract: In this paper we present a new approach to model river systems. In general the
dynamics of a single reach can be described with the Saint-Venant equations. These equations
can be combined with nonlinear gate equations to fully characterize the behavior of river
systems with multiple reaches. Simulating the dynamics of a river system while taking all
these nonlinearities into account, can take a lot of time. The complete linearization of these
equations can drastically decrease the computational burden on one hand, but on the other
hand it can compromise the accuracy of the results. Therefore in this paper we propose to
combine the linear version of the Saint-Venant equations with the nonlinear gate equations in
order to reduce the computational load while generating accurate results. In addition, we show
that the use of Proper Orthogonal Decomposition (POD) and Galerkin Projection can lead to
an extra computational saving.
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1. INTRODUCTION

The dynamics of river systems are described by nonlinear
partial differential equations (PDE) in combination with
nonlinear algebraic equations (for the hydraulic struc-
tures). The standard way of simulating the full dynamics
of these systems is by using the method of characteristics,
the Preissmann scheme or a variation of the Preissmann
scheme (Chaudry [2008], Strelkoff and Falvey [1993], Xu
et al. [2011]). Each has its own advantages and disad-
vantages but all of them can take a lot of computation
time. This paper proposes a new method to drastically
reduce the simulation time while still achieving accurate
results. The key idea is to work with a linearized model for
the reach dynamics while working with the full nonlinear
gate equations to connect these reaches. An additional
reduction is achieved by reducing the number of states of
the river system with Proper Orthogonal Decomposition
(POD) and Galerking Projection.

The paper has the following structure. Section 2 describes
how the dynamics of a single reach and gates can be mod-
elled, together with a numerical scheme to simulate these
dynamics with high accuracy. Section 3 briefly discusses
the derivation of a linear model. Section 4 explains the
underlying idea of our proposed model: the combination
of linear reach models together with nonlinear gate equa-
tions. POD is used in Section 5 to reduce the states of
the model derived in Section 4. Section 6 compares the
performance of the different models. This paper ends with
some conclusions in Section 7.

2. NONLINEAR MODEL

2.1 Single reach dynamics

Saint-Venant equations The Saint-Venant equations are
often used in practice to model the evolution of water levels
and discharges in river reaches. The equations are valid
under certain assumptions which can be found, e.g., in
Chaudry [2008]. Given these assumptions the dynamics of
the water levels and discharges in a reach can be described
by the following equations:
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with A the cross-sectional flow area (m2), Q the water
discharge (m3/s), h the water depth (m), g the gravity
acceleration (m/s2), S0 the bed slope and Sf the friction
slope. Equation (1) describes the conservation of mass and
(2) the conservation of momentum. Sf is taken to represent
any number of empirical resistance laws. The resistance
law which is used in this study is the Manning relation:

Sf =
n2

mannQ|Q|
A2R1/3

(3)

where nmann is the Manning coefficient (s/m1/3), R = A/P
is the hydraulic radius (m) and P is the wetted perimeter
of the cross section (m).

Numerical scheme Our way of simulating (1) and (2) is
based on Strelkoff and Falvey [1993] and Xu et al. [2011].



In this method the time integration is based on the θ-
method, e.g., f(tj +θ∆t) = θf(tj +∆t)+(1−θ)f(tj) with
θ ∈ [0, 1]. The approximation of the partial derivatives is
based on finite differences. The grid used in this paper is
a staggered grid:

Q1 Q2 . . . QN−1

h1 h2 . . . hN−1 hN

where 2N − 1 is the total number of grid points (N water
levels and N − 1 discharges). The derivatives in (1) are
approximated by (note h(xi, tj) = hji )
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A similar approach is used for the terms ∂Q/∂t, A,
∂h/∂x and Sf in (2). The advection term ∂(Q2/A)/∂x is
approximated with an upwinding approach:
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In this way the two PDE’s are transformed into a system
of nonlinear equations:
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which has to be solved for hj+1
1 , hj+1

2 , . . . , hj+1
N and

Qj+1
1 , Qj+1

2 , . . . , Qj+1
N−1. To be able to solve this system, up-

stream and downstream boundary conditions are needed.
These boundary conditions can be a given predefined dis-
charge or an hydraulic structure between two connected
reaches. Together with these boundary conditions, (9) and
(10) can be solved with Newton’s method.

A discussion about the choice of ∆t and θ can be found in
Clemmens et al. [2005]. However we will not elaborate on
this in this paper.

2.2 Gate equations

The gates used in this paper are underflow-vertical sluices.
They have been extensively described and modelled in the
literature. The general equation is as follows:

Q = z(CD,W, c, hup, hdown) (11)
with Q the discharge through the gate, CD the discharge
coefficient, W the width of the gate (m), c the gate
opening (m), hup the upstream water level and hdown the
downstream water level. The equation used in this study
has the following form:

Q = CDWc
√

2ghup (12)
with different equations for CD depending on the flow
condition (Sepúlveda et al. [2009] and Lin et al. [2002]):

free flow: CD =
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, (13)

submerged flow:
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Here CC is the contraction coefficient, η = CCc/hup,
λ = hup/hdown and ξ = (1/η − 1)2+2 (λ− 1). CC can vary
from 0.598 to 0.74 but for most engineering applications a
value of 0.611 is usually taken (Henderson [1966], Liggett
and Cunge [1975]). The gate is considered to be in free flow
if hdown is below the limit hdown,max given by (Sepúlveda
et al. [2009] and Lin et al. [2002]):
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2
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Otherwise the gate is in submerged flow condition.

3. LINEAR MODEL

A straightforward way to decrease the computational bur-
den of the nonlinear model is using a linear approximation
of it. In this way only a limited number of matrix-vector
operations are needed to calculate the next state of the
river system given its current state and the boundary
conditions. When linearizing the nonlinear equations (9),
(10) and (12) around a nominal operating point (hss ∈ RN
for the water levels, Qss ∈ RN−1 for the discharges and
uss ∈ Rnu for the inputs with nu the number of inputs),
the following linear model can be found:(

∆h(k + 1)
∆Q(k + 1)

)
= Ā

(
∆h(k)
∆Q(k)

)
+ B̄1∆u(k)+

+ B̄2∆u(k + 1) (16)
with ∆h(k) = h(k)−hss, ∆Q(k) = Q(k)−Qss, ∆u(k) =
u(k) − uss, Ā ∈ R(2N−1)×(2N−1), B̄1 ∈ R(2N−1)×nu

and B̄2 ∈ R(2N−1)×nu . The input vector u contains the
upstream/downstream river discharges together with the
gate positions: u = (Qup, c1, c2, . . . , cnu−2, Qdown)T . Note
that ∆u(k+1) is needed to predict ∆h(k+1) and ∆Q(k+
1) since we work with a linearized version of an implicit
nonlinear scheme.

4. LINEAR-NONLINEAR MODEL

If the river system consists of just one reach without gates
as boundary conditions, then the linear model provides
a good approximation of the system dynamics. However
if there are gates present, then the performance of the



linear model degrades if the gates do no stay close to
their nominal operating point. This can be observed in
the simulation results in Section 6.

A solution for this problem is to work with a combination
of the linearized version of the Saint-Venant equations of
each reach together with the nonlinear gate equations.
This means that the effect of the gates on the water levels
and the discharges is “pulled” out of the linear model.
From now on this system will be referred to as the LN
model. The linear part of the LN model has the following
form:(
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∆Q(k + 1)
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= A
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∆h(k)
∆Q(k)

)
+ B1∆u(k)+

+ B2∆u(k + 1) (17)

with A ∈ R(2N−1)×(2N−1), B1 ∈ R(2N−1)×nu and
B2 ∈ R2N−1×nu . The main difference with (16) is
that u now contains the gate discharges instead of the

gate openings: u =
(
Qup, Qgate1 , . . . , Qgatenu−2

, Qdown

)T
.

Hence, the only extra work is to make the transforma-
tion from the gate openings c(k) = (c1, . . . , cnu−2)T and
c(k + 1) to the discharges over the gates Qgate(k) =(
Qgate1 , . . . , Qgatenu−2

)T
and Qgate(k + 1). At time k the

current upstream and downstream water levels for each
hydraulic structure are known. Given these water levels
together with the current gate opening c(k), Qgate(k) can
be computed from (12) - (14). The only difficulty lies in
making the transformation from c(k + 1) to Qgate(k + 1)
since the water levels h(k+1) are unknown. A solution is to
work in an iterative way (Algorithm 1). The water levels
h(k) are used in combination with c(k + 1) to estimate
Qgate(k+1). With this estimate of u(k+1) we can calculate
h(k+ 1) and Q(k+ 1). Qgate(k+ 1) can now be refined by
using h(k + 1) and c(k + 1), etc.

Algorithm 1 Simulation of the LN model
for k = 1,. . .

h(k + 1) = ∆h(k) + hss;
for i = 1,. . . until convergence

for each gate j
select hup and hdown out of h(k + 1);
use (12) to calculate Qgatej

(k+1) given cj(k+1),
hup and hdown and build up ∆u(k + 1);

end(
∆h(k + 1)
∆Q(k + 1)

)
= A

(
∆h(k)
∆Q(k)

)
+ B1∆u(k)+

+B2∆u(k + 1);
end

end

5. POD BASED LN MODEL

Notice that the LN model has the same (high) number
of states as the nonlinear model. An extra gain in com-
putation time can be obtained by reducing the number of
states. One method successfully used in many applications
is Proper Orthogonal Decomposition (POD). POD is a
data-driven method where a suitable set of ordered or-
thonormal basis vectors are derived from simulation or ex-
perimental data. Reduced-order models are typically found

by projecting (Galerkin projection) the full-order models
on the most relevant basis vectors (Astrid [2004], Ravin-
dran [2000]).

In POD, we start by observing that the vectors ∆h(k) and
∆Q(k) can be rewritten as a sum of orthonormal basis
vectors

∆h(k) =
N∑
j=1

aj(k)ϕ̃j , ∆Q(k) =
N−1∑
j=1

bj(k)ϕ̂j (18)

with ϕ̃j ∈ RN ,∀j = 1, . . . , N and ϕ̂j ∈ RN−1,∀j =
1, . . . , N − 1 two sets of orthonormal basis vectors with
corresponding time-varying coefficients aj(k) ∈ R,∀j =
1, . . . , N , and bj(k) ∈ R,∀j = 1, . . . , N − 1 respectively.

The main dynamics of the system can be described with
the first nh and nQ most relevant basis vectors, since
they contain the main spatial correlations. Hence, the
nhth order approximation of ∆h(k) and the nQth order
approximation of ∆Q(k) are given by

∆hnh(k) =
nh∑
j=1

aj(k)ϕ̃j = Φ̃nha(k), nh � N,

∆QnQ
(k) =

nQ∑
j=1

bj(k)ϕ̂j = Φ̂nQb(k), nQ � N − 1,
(19)

where Φ̃nh =
(
ϕ̃1, . . . , ϕ̃nh

)
,a(k) = (a1(k), . . . , anh(k))T ,

Φ̂nQ =
(
ϕ̂1, . . . , ϕ̂nQ

)
and b(k) =

(
b1(k), . . . , bnQ(k)

)T .

To derive the POD basis vectors, simulation data of the
linear model is gathered in the snapshot matrices X̃ ∈
RN×M and X̂ ∈ RN−1×M with M the number of time
samples. The POD basis vectors are found by calculating
the singular value decomposition (SVD) of the snapshot
matrices:

X̃ = Φ̃Σ̃Ψ̃
T
, X̂ = Φ̂Σ̂Ψ̂

T
(20)

with Φ̃ ∈ RN×N , Ψ̃ ∈ RM×M , Φ̂ ∈ R(N−1)×(N−1)

and Ψ̂ ∈ RM×M unitary matrices and Σ̃ ∈ RN×M and
Σ̂ ∈ R(N−1)×M diagonal matrices containing the singular
values of X̃ and X̂ respectively. The POD basis vectors
are the columns of Φ̃ and Φ̂:

Φ̃ = (ϕ̃1, . . . , ϕ̃N ) , Φ̂ =
(
ϕ̂1, . . . , ϕ̂N−1

)
. (21)

Each singular value indicates the importance of the corre-
sponding POD basis vector. By using the Galerkin projec-
tion we can derive a dynamical model for a(k) and b(k),
that is, a reduced-order model for (17).

The state vector (17) can be written down as follows:

∆x(k) =
(

∆h(k)
∆Q(k)

)
. (22)

Its nth order approximation (n = nh + nQ) will be given
by

∆xn(k) =
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= Φn
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with
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(

Φ̃nh 0
0 Φ̂nQ

)
. (24)

If we define a residual function for (17) as follows:



R (∆x(k + 1),∆x(k)) = ∆x(k + 1)−A∆x(k)
−B1∆u(k)−B2∆u(k + 1) (25)

and we replace ∆x(k) and ∆x(k + 1) by their nth order
approximations, the Galerkin projection states that the
projection of R(∆x(k + 1),∆x(k)) on the space spanned
by the basis vectors Φn vanishes:

〈R(∆xn(k + 1),∆xn(k)),ϕj〉 = 0,
∀j = 1, . . . , nh + nQ (26)

with 〈., .〉 the inner product and ϕj the jth column of Φn.
Equation (26) can be rewritten as

〈Φn

(
a(k + 1)
b(k + 1)

)
,Φn〉 = 〈AΦn

(
a(k)
b(k)

)
+ B1∆u(k)

+ B2∆u(k + 1),Φn〉. (27)
By evaluating the inner product in (27), we get the
reduced-order model of the river system,(

a(k + 1)
b(k + 1)

)
= Ar

(
a(k)
b(k)

)
+ B1,r∆u(k)+

+ B2,r∆u(k + 1) (28)

with Ar = ΦT
nAΦn ∈ R(nh+nQ)×(nh+nQ), B1,r = ΦT

nB1 ∈
R(nh+nQ)×nu and B2,r = ΦT

nB2 ∈ R(nh+nQ)×nu .

The steps for simulating the POD model are described in
Algorithm 2.

Algorithm 2 Simulation of the POD based LN model

build the snapshot matrices X̃ and X̂;
use SVD to find Φ̃nh and Φ̂nQ and construct Φn;(

a(0)
b(0)

)
= Φn

((
h(0)
Q(0)

)
−
(

hss

Qss

))
;

for k = 1,. . .
hnh(k + 1) = Φ̃

T

nh
a(k) + hss;

for i = 1,. . . until convergence
for each gate j

select hup and hdown out of hn(k + 1);
use (12) to calculate Qgatej

(k+1) given cj(k+1),
hup and hdown and build up ∆u(k + 1);

end(
a(k + 1)
b(k + 1)

)
= Ar

(
a(k)
b(k)

)
+ B1,r∆u(k)+

+B2,r∆u(k + 1);

hnh(k + 1) = Φ̂
T

nh
a(k + 1) + hss;

end
end

6. SIMULATION RESULTS

The different models presented in this paper are tested on
a river system consisting of two equal rectangular reaches
connected with one gate. Fig. 1 shows the river system
together with the meaning of some parameters. Table 1
contains the values of the parameters of the reaches and
the gate. The upstream and downstream discharges of the
river system are considered given, as well as the evolution
of the gate positions (see Fig. 2). The POD basis vectors of
the reduced-order LN model are derived from the system
response of the linearized reach dynamics when applying
step changes to the boundary conditions of each reach (166
time samples were gathered). The first 12 basis vectors of

Φ̃ and the first 20 basis vectors of Φ̂ were selected to build
the matrix Φn. This means a reduction from 1602 states
to 64 states. A sampling time ∆t of 60 s was used for the
linear and the LN models.

Fig. 3 shows the water levels obtained with the models de-
scribed in the previous sections at different time instants.
The results for the nonlinear model can be taken as the
“truth”. We can see that in general the performance of
the linear model is worse than the performance of the LN
model and the POD based LN model. The right figure at
the bottom shows that there is a significant steady state
error in the water levels for the linear model. This is not
the case for the LN models. The figure also shows that
the model reduction with POD has almost no influence on

h

c
L

Qin

Qout

S0

reach 1
reach 2

gate

Fig. 1. Schematic structure of the river system with Qin

and Qout the discharges at the boundaries, c the gate
position, h the water levels measured from the bottom
of the reaches, L the length of each reach and S0 the
channel slope.

parameters values

N 401
S0 0.001

reach length L 4000 m

nmann 0.015 s/m1/3

bottom width B 6.1 m
Qss 20 m3/s

hss,up 5 m
gate width W 6.1 m

Table 1. Parameter values of the river reaches
and the gate.
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Fig. 2. Evolution of the upstream and downstream dis-
charges together with the gate position for the simu-
lation test case.
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Fig. 3. Water levels at different time instants when the boundary conditions visualized in Fig. 2 are used. The water
levels are shown relative to the river bottom.
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Fig. 4. Discharges at different time instants when the boundary conditions visualized in Fig. 2 are used.



linear model LN model POD based
LN model

RMSE water levels 0.16 m 0.029 m 0.043 m
RMSE discharges 3.46 m3/s 1.25 m3/s 1.54 m3/s

Table 2. RMSE for the three models.

model simulation time (s)

nonlinear model 86.99
linear model 0.703
LN model 0.793

POD based LN model 0.067

Table 3. Average simuation times for the mod-
els after 20 runs for a PC with a 2.83GHz Intel

Core2 Quad CPU and a RAM of 8 GB.

the simulated water levels: there is almost no distinction
between the water levels of the LN model and the POD
based LN model. Similar conclusions can be made from
Fig. 4 for the discharges. Again the results for the linear
model deviates much more from the nonlinear model than
for the two LN models. In contrast to the water levels,
the model reduction has a larger influence on the dis-
charges: the reduced order model shows more oscillations.
If necessary, a higher accuracy for the water levels or the
discharges can always be achieved by taking more basis
vectors into account for modelling the variables.

Table 2 shows the root mean squared error (RMSE) for the
water levels and the discharges. The RMSE is definded as

RMSE =

√√√√ 1
NsM

Ns∑
i=1

M∑
j=1

(ŷ(xi, tj)− y(xi, tj))
2 (29)

with y the output of the nonlinear model, ŷ the output of
the linear/LN model, Ns the number of variables and M
the number of samples. The errors for both LN models are
much smaller than the error of the linear model.

Table 3 shows the average simulation time for each model.
As expected the linear model and the LN models require
much less time than the full nonlinear model. The effect of
including the nonlinear gate equations into the LN model
has almost no effect on the simulation time compared
with the linear model. The model reduction gives an
extra speed-up. However the speed-up is not as big as
the reduction of states because of the loss of structure
in the system matrices. The matrices A, B1 and B2 are
very sparse. However, their sparsity is destroyed by the
multiplications with ΦT

n and Φn.

7. CONCLUSIONS

In this paper we have shown that the dynamics of a river
system with hydraulic structures cannot be accurately
approximated by a linear model. However if a linear
model is used only for describing the dynamics of each
single reach together with the nonlinear gate equations,
then we can get a much better approximation, especially
for the water levels, while reducing the simulation time
drastically. A further reduction in computation burden is
possible by using POD together with Galerkin projection.
Future work will focus on the use of the LN and POD
based LN models for control purposes.
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