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Abstract

In this article the authors describe how genetic optimization algorithms can be used

to find the optimal size and location of distributed generation units in a residential distri-

bution grid. Power losses are minimized while the voltage profile is kept at an acceptable

level. The method is applied on a system based on an existing grid topology with pro-

duction and residential load data based on measurements. Different scenarios are chosen

to run the algorithm. The obtained optimal location and size prove to depend strongly

on the given conditions.

1 Introduction

Decentralized generation will become more and more important in the future electricity dis-

tribution system. This tendency is increased by the commercial availability of small-scale

production units (e.g. fuel cells, micro-CHPs, photovoltaic panels) and the liberalization of

the energy market, putting more pressure on the system. Also the support for sustainable

development using renewable energy sources plays a key role.

As such, distributed generation is defined as local generation of heat and electricity in the

distribution grid. A group of DG units can form a virtual power plant, being centrally

controlled and behaving as a single power plant towards the grid. The extreme case is an

energy island, in which production and consumption of energy are locally matched. Energy

is also kept in balance by local storage and by an optional connection to the main grid across

1



which power is transferred. However, energy islands should have the ability to move from an

uncontrolled power mode (when connected to the main grid) to a load tracking mode (while

in island mode) [8, 9].

In this new environment characteristics will be fundamentally different compared to a sit-

uation in which generation is centralized. There is almost no inertia in the energy sources

which is needed for stability reasons. Although storage of energy can have a stabilizing role.

The load pattern is more varying in time since the averaging of consumption vanishes due to

the small amount of users on such a small-scale low voltage grid. Compared to conventional

power plants distributed generation units such as PV cells (depending on solar illumination)

or CHPs (depending on heat demand) are undispatchable.

Another fundamental problem is the linking between active power injection and the voltage

profile in the grid. In high-voltage (thus mainly inductive) grids an active power injection

imbalance will be the cause of a frequency deviation which is equal in the entire grid. The

sum of all produced power must be adjusted to keep the grid frequency at nominal level.

In low-voltage (more resistive) grids the active power injection will affect the voltage pro-

file throughout the grid. This way the location where active power is injected will be of

importance.

All these different aspects of distributed generation sources in a low- or medium-voltage

grid will influence the important question of where to place the production units. Different

objectives can be put forward, such as highest efficiency (i.e. lowest power losses), minimal

cost (installation and operation), highest reliability, etc. This optimization problem can be

solved in different ways like exhaustive searches [14], Lagrangian based approaches [12] or

tabu searches [11].

In this article, the search for the optimal placement and power level of the different types

of generation units (in such a way that the power losses are minimized) is a non-convex

optimization problem that requires exhaustive search. The use of Genetic Algorithms is

proposed, in order to implement the search of the optimal solution. Advantages of genetic

algorithms are the ability to avoid being trapped in local optima, and also the expected

number of function evaluations before reaching the optimum is significantly reduced compared

with exhaustive search methods. This paper is structured as follows. Section 2 describes the

general framework of the problem (the grid architecture, the load and production profiles).

Section 3 describes the methodology based on Genetic Algorithms. The results are presented

on Section 4.

2



Figure 1: Grid Topology with 20 nodes.
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Figure 2: Production Profiles for CHP (left) and PV (right) generation units for a period of

one day.

2 General Framework

In this section the general configuration of the problem is addressed, describing the grid

topology, power production and load profiles for the different scenarios.

2.1 Grid Topology and Power Production

For this analysis the topology of an existing grid at medium-voltage is used. It consists of

3 lines and 20 nodes, with one aggregated load at each node, as shown in Figure 1. The

distributed energy sources used are PV panels and CHP units. Real measurements are used

to provide data for the illumination on PV panels and the CHP production which is based

on heat demand. The profiles of active power consumption are based on measurements taken

in a residential building for a period of one year on a 15 minute basis. Figure 2 shows the

production profiles for each generator type.
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2.2 Problem Definition

The objective of this analysis is to find the optimal placement and size of CHP and PV

generation units, in order to minimize the power loss along the grid lines over a period of

24 hours. In order to assess the effect of Winter and Summer variations on different load

situations, the period of 24 hours over which the minimization takes place is defined in the

following scenarios:

1. Low Load Scenario (L): From the sets of available daily load profiles, the profile with

the highest peak during each season is selected. Another 4 daily profiles are randomly

selected. This scenario only contains 1 important load peak over each season.

2. Medium Load Scenario (M): From the sets of available daily load profiles, those with

the highest daily peaks on each season are selected. This scenario contains the most

important peaks of each season.

3. High Load Scenario (H): The load profiles with highest daily averages are selected on

each season. This scenario presents a heavy requirement to the generators.

Each one of these scenarios are computed for Summer and Winter, thus leading to Summer-

Low (SL), Summer-Medium (SM), Summer-High (SH), Winter-Low (WL), Winter-Medium

(WM) and Winter-High (WH). The different load profiles for each scenario are depicted in

Figure 3. As the grid contains 20 load profiles, each one of these sets containing 4 load profiles

is repeated 5 times in each scenario.

3 Problem Formulation and Methodology

In this section, the formalization of the problem and the coding of the Genetic Algorithm is

described.

3.1 Power Line Equations

A network with m nodes and n power lines is considered. The network is assumed to be

radial, which implies that m = n + 1. The topology of the network is defined by a topology

matrix T ∈ Zn×(n+1), where each row represents a power line and each column represents a

node of the power network. On each row two non-zero elements are present indicating the

node where the power line ’starts’ (-1) and the node where the line ’ends’ (1). The convention

is used that -1 is assigned to the node that lies the closest to the power grid. This e.g. allows

the conversion of line currents (currents flowing through a power line) to node currents (total
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Figure 3: Sets of 4 Load Profiles for the different scenarios. SL (a), SM (b), SH (c), WL (d),

WM (e), WH (f).
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current generated or consumed at a node) as

Inode = TTIline, (1)

with Inode ∈ R
(n+1)×1 a vector denoting the current leaving each node and Ilines ∈ R

n×1 the

current flowing through each line.

Line impedances are denoted as Zi, while node and line voltages are denoted as Vnode,i and

Vline,i with i denoting the line/node number.

For each node a load is considered that is modeled as a voltage-dependent load, defined by

its rated active and reactive power consumption Pnom, Qnom :

P =

(

V

Vnom

)α

Pnom, (2a)

Q =

(

V

Vnom

)α

Qnom, (2b)

where α = 2 in case of a resistive load [7]. Both generators and loads are modeled using

(2). The nominal active and reactive power of a load attached to node i are denoted as

Pnom,i, Qnom,i, while the actual active and reactive power are denoted as Pi, Qi.

An iterative solution strategy is chosen, consisting of an initialization phase, followed by a

fixed number of forward and backward iterations.

Given the voltage of the power grid (i.e., voltage of the node attached to the power grid) Vgrid,

given a network topology T , line impedances Zi, i = 1, . . . , n and nominal loads Pnom,i, Qnom,i,

the node and line voltages and currents are computed by executing the following steps :

• Initialization. The initialization consists of several steps

– Set Vnode,1 := Vgrid

– Set Iline,i := 0,∀i

• Forward iteration. This iteration is used to update all node voltages in order to take

into account the voltage drop over the power lines.

• Backward iteration. This iteration is used to update the power generation and

consumption based on the node voltages calculated in the previous forward iteration

step and using equations (2). As power injections are updated, so are the line currents.

Subsequently, for all nodes i = n, . . . , 1, the line currents of the power lines starting at

the given node are updated in order to satisfy the power needs at their ending nodes.

The initialization step is performed once, while the forward and backward iterations are

performed several times in order to obtain a converged solution. In case the line currents
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are small compared to the line impedances (and therefore the line losses are sufficiently small

compared to the nominal voltage) the above method can be shown to converge to the correct

solution.

The resulting total power loss Ploss over the lines is calculated as

Ploss = Re(
∑

i

Vline,iI
⋆
line,i). (3)

By solving the power line equations for all time instants of a set of production and generation

profiles for all involved devices connected to the local grid, the total energy lost over an

entire day can be calculated for the given configuration. It is this total power loss that is

being minimized in the following sections, by modifying the placement of the local power

generators.

3.2 Genetic Algorithm Implementation

A Genetic Algorithm (GA) is a search algorithm that is based on the hypothesis of natural

selection [6]. The GA is an evolutionary population-based search process that begins with a

very large set of initial candidate solutions. These solutions are subjected to selection pressure

based on relative fitness and other genetic operators that serve to advance in the search. Each

candidate solution is known as a chromosome, and the set of all chromosomes is created from

the previous set through the so-called genetic operators (crossover, mutation, tournament,

etc.). In any generation, the fitness of each chromosome is defined in such a way that the

chromosome with the highest fitness represents the optimal point in the search space. Under

certain conditions, it has been proven that the average fitness improves from one generation

to the next [5]. GAs have been used recently within the power systems framework [13, 4, 1].

The representation and implementation of the GA for the problem is proposed as follows.

Each generator is represented by a string G of 5 binary bits. The first bit represents the state

of the generator (1 for on, 0 for off). The remaining 4 bits represent the power level of the

generator, discretized between 1
16 and 100%. As an example, the string G = [1000] represents

a generator working at minimum capacity; G = [00000] represents a generator which is not

operating (or nonexisting); the string G = [11111] represents a generator working at full

capacity.

In order to represent the type of each generation, a new string T is defined consisting of the

concatenation of 2 strings G (thus T contains 10 bits). Therefore, let T = G1G2, where G1

(resp. G2) represents a PV (resp. CHP) generator. In this way, the type of each generator

is given by the position on the string T . For example, at a given node the string T =

[1111100000] represents the situation where only one generator should be placed on that

node, and this generator should be a PV working at full capacity. It is assumed, based on
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this representation, that a maximum of one generator of each type can be placed on any given

node.

As each string T represents the generators (and size) to be placed at a given node, the

representation of the general location of the generators over the grid is straightforward. A

string S is defined consisting on the concatenations of 20 T strings. This sequence S contains

20 (nodes) × 10 (bits per node) = 200 bits. As any string S describes a valid placement and

size configuration of generators over the grid, therefore the string S is the chromosome used

within the GA.

The implementation of the GA is done with generations consisting of 40 individuals (each

one a different string S). The maximum number of generations is set to be 300. The fitness

of each individual is given by the objective function, and it also considers a penalization

if the voltage goes outside the allowed interval, plus another penalization if the number of

generators exceeds 10. The fitness value f for any individual S is

f(S) = Ploss + C1δ1 + C2δ2 (4)

where Ploss is computed from equation (3); δ1 = max(0, Vmin − Vline) +max(0, Vline − Vmax),

takes a penalty C1 if the lines voltage Vline lies outside the limits, and δ2 = max(0, N −

Nmax) takes a penalty C2 if the number of generators N on solution S is larger than the

maximum allowed number of generators Nmax. Crossover is performed between individuals,

which are selected with a probability that depends on their fitness. Mutation takes place with

probability 0.0035 for each bit.

3.3 Implementation Summary

The methodology can be summarized as follows:

1. Generate a set of 40 individuals S.

2. Compute the fitness of the individuals from (4)

3. Repeat for 300 generations:

• Sort the individuals S according to their fitness

• Perform genetic operators to produce a new generation of individuals S

• Compute the fitness of the individuals from (4)

4. The individual S with the best fitness after the 300 generations is the final solution.
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4 Results

For each scenario, an optimal final chromosome S is found. Each solution represents the

location, type and size of generators in the grid. Detailed results are presented in Table 1 and

Figures 4-5 for all scenarios; Table 2 shows a summarized description of the different solutions

obtained.

Figure 6 shows the evolution of the total power loss for the best chromosome of each generation

for the SL scenario. The solution is stable as it remains unchanged for a large number of

generations.

As could be expected, in the Summer scenarios more PV cells are chosen by the algorithm as

compared to Winter when heat demand (and thus power production by CHP) is higher. It is

also clear that for the high demand scenarios, more CHPs are placed compared to the other

scenarios within the same season. In Summer, the solution moves from 7 PV generators and

3 CHP units (SL, SM) to 6 PV and 4 CHP (SH). In Winter the situation also moves from 7

CHP and 2 PV (WL, WM) to the solution of using 10 CHP units only (WH). It is also clear

that the selected load scenarios translate into different power losses that are related to the

magnitude of the load requirement on each case.

An interesting question is to check what would be the power loss along the lines if a generator

configuration different than the optimal one is used within each scenario. In particular,

it is possible to compute the power loss when the optimal configuration from one scenario

is used in a different scenario. Table 3 shows all the losses for the possible combinations

of configurations/scenarios. It is clear that the optimal solutions are dependent of each

scenario, and using a different one will increase the power loss. However, switching the

configurations for within Summer scenarios has a less dramatic effect than switching within

Winter configurations. The final column in Table 3 shows the total loss when there are no

DG units.

Rules of thumb to place generators are not found in the given example. Placement and sizing

depend strongly on the given base case scenario. Sometimes it is assumed that a CHP and

a PV panel are best combined on one location because of complementary power outputs. In

the tested grid this occurs 5 times over all the possible solutions.

5 Conclusion

The use of genetic algorithms in distribution networks is known for feeder switching [2] or

capacitor placement [10]. In this article this method is extended to placement and sizing of

generators based on known generation and load profiles. Simulations are run on a typical
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Table 1: Results from the Genetic Algorithm for all scenarios

Placement, Type and Size (in percentage) of the Generators

for the Different Scenarios

Node SL SM SH WL WM WH

CHP PV CHP PV CHP PV CHP PV CHP PV CHP PV

1 – – 6.25 – – – 6.25 – 12.50 – – –

2 – – – 18.75 – 25.00 – – – – 18.75 –

3 6.25 12.50 – – 6.25 25.00 6.25 31.25 – – 6.25 –

4 – 25.00 – 31.25 – – – – – – – –

5 – 6.25 – – – – – – 31.25 – 12.50 –

6 – – – – – – – – – – – –

7 6.25 – 6.25 – 12.50 56.25 – – – – 6.25 –

8 – 25.00 – 25.00 – – – – 6.25 – 31.25 –

9 – – – – – – 18.75 – 6.25 – – –

10 – – – – – 25.00 – 43.75 18.75 – – –

11 – – – – – – – – – – 18.75 –

12 – 37.50 – 18.75 18.75 – – – – 6.25 – –

13 12.50 – 12.50 18.75 – – 6.25 – – – 31.25 –

14 – – – – – 62.50 – – – – – –

15 – – – – – – 18.75 – – – 6.25 –

16 – 25.00 – 25.00 – – – – 31.25 – – –

17 – – – – 6.25 – – – – – 18.75 –

18 – – – – – – 6.25 – – 18.75 – –

19 – 31.25 – – – – 6.25 – – – 25.00 –

20 – – – 18.75 – 31.25 – – 12.50 – – –

Table 2: Summary of the Results and Total Power Loss (kWh) over a period of 24 hours.

SL SM SH WL WM WH

Number of CHP Generators 3 3 4 7 7 10

Number of PV Generators 7 7 6 2 2 0

Total Power Loss (kWh) 13.1 22.5 23.4 11.9 29.1 48.1
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Figure 6: Evolution of the total power loss along the lines over 300 generations for the SL

scenario.

Table 3: Cross-Comparison of optimal configurations used in different scenarios. In bold is

the optimal power loss for each scenario

Total power loss (kWh) when using DG Configuration from... No DG

SL SM SH WL WM WH

..into scenario SL 13.1 13.5 17.5 19.7 32.3 52.9 30.9

..into scenario SM 22.6 22.5 26.3 29.3 42.2 62.7 41.2

..into scenario SH 26.9 27.7 23.4 36.9 46.0 59.1 63.5

..into scenario WL 18.8 21.0 13.9 11.9 27.5 74.7 40.4

..into scenario WM 75.5 71.2 53.7 42.5 29.1 47.0 112.2

..into scenario WH 160.0 167.1 130.2 107.7 64.0 48.1 219.9
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distribution grid topology, using load profiles with seasonal variation. Different solutions are

obtained for each season, with more PV generators placed in the Summer scenarios, and

more CHP generators placed in the Winter scenarios. It is also shown that using a different

placement for any given scenario (different than the optimal solution) increases the power

losses, thus suggesting that the placement is dependent on the load profiles being used. The

total energy loss in the optimal placement is in each scenario considerably lower (up to a

factor 4 or 5) as compared to the case in which there is no DG and all power is taken from

the main grid. This stresses the importance of DG and its optimal placement and sizing.

An extension to this work is to include economic considerations. The minimization of the

power loss is only a part of the economic cost. This will call up other issues. Besides installa-

tion costs there are also production costs, and it is not clear how can they be included. Is the

energy price fixed or does a local trading market exist? Also in some countries production

of energy using renewables is coupled to green power certificates which can be traded. All

these issues have to be well considered in order to keep assumptions realistic. In the given

simulations two common types of distributed energy resources are used. This can easily be

widened to more types like wind power and small hydro power. Another interesting issue is

the use of storage like e.g. flywheels, batteries, superconductive coils,etc.

Sizing of generators is done by discretizing the possible nominal power outputs. To enlarge

the number of feasible production sizes the discretization step can be decreased. This leads

to longer chromosomes and eventually a more complex algorithm. Another possibility is an

algorithm in which the genetic optimization is followed by continuous optimization algorithm

which uses the solution of the genetic optimization as a start and searches for small deviations

which lead to a more optimal situation.
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