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Abstract—In this article, we illustrate the effect of
imposing symmetry as prior knowledge into the mod-
elling stage, within the context of chaotic time series
predictions. It is illustrated that using Least-Squares
Support Vector Machines with symmetry constraints
improves the simulation performance, for the cases of
time series generated from the Lorenz attractor, and
multi-scroll attractors. Not only accurate forecasts are
obtained, but also the forecast horizon for which these
predictions are obtained is expanded.

1. Introduction

In applied nonlinear time series analysis, the estima-
tion of a nonlinear black-box model in order to produce
accurate forecasts starting from a set of observations is
common practice. Usually a time series model is esti-
mated based on available data up to time t, and its fi-
nal assessment is based on the simulation performance
from t + 1 onwards. Due to the nature of time se-
ries generated by chaotic systems, where the series not
only shows nonlinear behavior but also drastic regime
changes due to local instability of attractors, this is
a very challenging task. For this reason, chaotic time
series have been used as benchmark in several time
series competitions [10, 9].

The modelling of chaotic time series can be im-
proved by exploiting some of its properties. If the
true underlying system is symmetric, this information
can be imposed to the model as prior knowledge [3],
in which case it is possible to obtain better forecasts
than those obtained with a general model [1]. In this
article, short term predictions for chaotic time series
are generated using Least-Squares Support Vector Ma-
chines (LS-SVM) regression. We show that LS-SVM
with symmetry constraints can produce accurate pre-
dictions. Not only accurate forecasts are obtained, but
also the forecast horizon for which these predictions
are obtained is expanded, when compared with the
unconstrained LS-SVM formulation.

This paper is structured as follows. Section 2 de-
scribes the LS-SVM technique for regression, and how
symmetry can be imposed in a straightforward way.
Section 3 describes the applications for the cases of

the x−coordinate of the Lorenz attractor, and the data
generated by a nonlinear transformation of multi-scroll
attractors.

2. LS-SVM with Symmetry Constraints

Least-Squares Support Vector Machines (LS-SVM)
is a powerful nonlinear black-box regression method,
which builds a linear model in the so-called feature
space where the inputs have been transformed by
means of a (possibly infinite dimensional) nonlinear
mapping ϕ [7]. This is converted to the dual space
by means of the Mercer’s theorem and the use of a
positive definite kernel, without computing explicitly
the mapping ϕ. The LS-SVM formulation, solves a
linear system in dual space under a least-squares cost
function [8], where the sparseness property can be ob-
tained by e.g. sequentially pruning the support value
spectrum [6] or via a fixed-size subset selection ap-
proach [7]. The LS-SVM training procedure involves
the selection of a kernel parameter and the regular-
ization parameter of the cost function, which can be
done e.g. by cross-validation, Bayesian techniques [4]
or others. The inclusion of a symmetry constraint (odd
or even) to the nonlinearity within the LS-SVM regres-
sion framework can be formulated as follows [2]. Given
the sample of N points {xk, yk}

N
k=1

, with input vec-
tors xk ∈ R

p and output values yk ∈ R, the goal is to
estimate a model of the form

y = wT ϕ(x) + b + e, (1)

where ϕ(·) : R
p → R

nh is the mapping to a high di-
mensional (and possibly infinite dimensional) feature
space, and the residuals e are assumed to be i.i.d. with
zero mean and constant (and finite) variance. The fol-
lowing optimization problem with a regularized cost
function is formulated:

min
w,b,ek

1

2
wT w + γ

1

2

N
∑

k=1

e2

k

s.t.

{

yk = wT ϕ(xk) + b + ek, k = 1, . . . , N,

wT ϕ(xk) = awT ϕ(−xk), k = 1, . . . , N,

(2)



where a is a given constant which can take either -
1 or 1. The first restriction is the standard model
formulation in the LS-SVM framework. The second
restriction is a shorthand for the cases where we want
to impose the nonlinear function wT ϕ(xk) to be even
(resp. odd) by using a = 1 (resp. a = −1). The
solution is formalized in the following lemma.

Lemma 1 [2] Given the problem (2) and a positive
definite kernel function K : R

p × R
p → R satisfy-

ing the assumptions K(xk,−xl) = K(−xk,xl) and
K(−xk,−xl) = K(xk,xl) ∀k, l = 1, . . . , N , the solu-
tion to (2) is given by the system

[

1

2
(Ω + aΩ∗) + 1

γ
I 1

1T 0

] [

α

b

]

=

[

y

0

]

, (3)

with Ωk,l = K(xk,xl) and Ω∗

k,l = K(−xk,xl) ∀k, l =
1, . . . , N .

Proof. The Lagrangian for (2) is given

by L(w, b, ek, αk, βk) = 1

2
wT w +γ 1

2

∑N
k=1

e2

k

−
∑N

k=1
(wT ϕ(xk) + b + ek − yk)−

∑N
k=1

(wT ϕ(xk)−
awT ϕ(−xk)), with αk, βk ∈ R the Lagrange mul-
tipliers. Taking the optimality conditions ∂L

∂w
= 0,

∂L
∂b

= 0, ∂L
∂ek

= 0, ∂L
∂βk

= 0 ∂L
∂αk

= 0, yields

the following system of equations: w =
∑N

l=1

(αl + βl)ϕ(xl) − a
∑N

l=1
βiϕ(−xi),

∑N
l=1

αi = 0,
γek = αk, yk = wT ϕ(xk) + b + ek,wT ϕ(xk) =
awT ϕ(−xk), k = 1, . . . , N.

Applying Mercer’s theorem, ϕ(xk)T ϕ(xl) =
K(xk,xl) for a positive definite kernel function K :
R

p × R
p → R[7]. Under the assumptions that

K(xk,−xl) = K(−xk,xl) and K(−xk,−xl) =
K(xk,xl) ∀k, l = 1, . . . , N , the elimination of w, ek

and βk gives

yk =
1

2

N
∑

l=1

αl[K(xl,xk)+aK(−xl,xk)]+b+
1

γ
αk (4)

and the final Karush-Kuhn-Tucker (KKT) system can
be written as (3).

Remark 1 [Kernel functions] For K(xk,xl) there
are usually the following choices: K(xk,xl) = xT

k xl

(linear kernel); K(xk,xl) = (xT
k xl + c)d (polynomial

of degree d, with c a tuning parameter); K(xk,xl) =
exp(−||xk −xl||

2

2
/σ2) (RBF kernel), where σ is a tun-

ing parameter.

Remark 2 [Equivalent Kernel] The final model be-
comes

ŷ(x) =

N
∑

l=1

αlKeq(xl,x) + b. (5)

where Keq(xl,x) = 1

2
[(K(xl,x) + aK(−xl,x)] is the

equivalent symmetric kernel that embodies the restric-
tion about the nonlinearity. It is important to note that

the final KKT system (3) has the same dimensions as
the KKT obtained with standard LS-SVM. Therefore,
imposing the second constraint does not increase the
dimension of the system, as the new information is
translated into the kernel level.

3. Application to Chaotic Time Series

In this section, the effects of imposing symmetry to
the LS-SVM are presented for two cases of chaotic time
series. On each example, an RBF kernel is used and
the parameters σ and γ are found by 10-fold cross val-
idation over the corresponding training sample. The
results using the standard LS-SVM are compared to
those obtained with the symmetry-constrained LS-
SVM (S-LS-SVM) from (2). The examples are defined
in such a way that there are not enough training dat-
apoints on every region of the relevant space; thus, it
is very difficult for a black-box model to ”learn” the
symmetry just by using the available information. The
examples are compared in terms of the performance
in the training sample (cross-validation mean squared
error, MSE-CV) and the generalization performance
(MSE out of sample, MSE-OUT). For each case, a
Nonlinear AutoRegressive (NAR) black-box model is
formulated:

y(t) = g(y(t − 1), y(t − 2), . . . , y(t − p)) + e(t)

where g is to be identified by LS-SVM and S-LS-SVM.
The order p is selected during the cross-validation pro-
cess as an extra parameter. After each model is esti-
mated, they are used in simulation mode, where the
future predictions are computed with the estimated
model ϕ̂ using past predictions:

ŷ(t) = ĝ(ŷ(t − 1), ŷ(t − 2), . . . , ŷ(t − p)).

3.1. Lorenz attractor

This example is taken from [1]. The x−coordinate
of the Lorenz attractor is used as an example of a time
series generated by a dynamical system. A sample of
1000 datapoints is used for training, which corresponds
to an unbalanced sample over the evolution of the sys-
tem, shown on Figure 1 as a time-delay embedding.
Figure 2 (top) shows the training sequence (thick line)
and the future evolution of the series (test zone). Fig-
ure 2 (bottom) shows the simulations obtained from
both models on the test zone. Results are presented
on Table 1. Clearly the S-LS-SVM can simulate the
system for the next 500 timesteps, far beyond the 100
points that can be simulated by the LS-SVM.

3.2. Multi-scroll attractors

This dataset was used for the K.U.Leuven Time Se-
ries Prediction Competition [9]. The series was gener-
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Figure 1: The training (left) and test (right) series from the x−coordinate of the Lorenz attractor
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Figure 2: (Top) The series from the x−coordinate of the
Lorenz attractor, part of which is used for training (thick
line). (Bottom) Simulations with LS-SVM (dashed line),
S-LS-SVM (thick line) compared to the actual values (thin
line).

LS-SVM S-LS-SVM

MSE-CV 3.41 × 10−4 1.62 × 10−4

MSE-OUT 52.057 0.085

Table 1: Performance of LS-SVM and S-LS-SVM on the
Lorenz data.

ated by

ẋ = h(x) (6)

y = W tanh (V x)

where h is the multi-scroll equation, x is the 3-
dimensional coordinate vector, and W ,V are the in-
terconnection matrices of the nonlinear function (a 3-
units multilayer perceptron, MLP). This MLP func-
tion hides the underlying structure of the attractor [5].
A training set of 2,000 points was available for model
estimation, shown on Figure 3, and the goal was to pre-
dict the next 200 points out of sample. The winner of
the competition followed a complete methodology in-
volving local modelling, specialized many-steps ahead
cross-validation parameters tuning, and the exploita-
tion of the symmetry properties of the series (which
he did by flipping the series around the time axis).

Following the winner approach, both LS-SVM and
S-LS-SVM are trained using 10-step-ahead cross-
validation for hyperparameters selection. To illustrate
the difference between both models, the out of sample
MSE is computed considering only the first n simula-
tion points, where n = 20, 50, 100, 200. It is impor-
tant to emphasize that both models are trained using
exactly the same methodology for order and hyperpa-
rameter selection; the only difference is the symme-
try constraint for the S-LS-SVM case. Results are re-
ported on Table 2. The simulations from both models
are shown on Figure 4.



200 400 600 800 1000 1200 1400 1600 1800 2000 2200

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

y

time steps

Figure 3: The training sample (thick line) and future evo-
lution (thin line) of the series from the K.U.Leuven Time
Series Competition

LS-SVM S-LS-SVM

MSE-CV 0.15 0.11
MSE-OUT (1-20) 0.03 0.03
MSE-OUT (1-50) 0.05 0.03
MSE-OUT (1-100) 0.05 0.03
MSE-OUT (1-200) 0.64 0.24

Table 2: Performance of LS-SVM and S-LS-SVM on the
K.U.Leuven data.

4. Conclusions

For the task of chaotic time series prediction, we
have illustrated how to use LS-SVM regression with
symmetry constraints to improve the simulation per-
formance for the cases of series generated by Lorenz
attractor and multi-scroll attractors. By adding sym-
metry constraints to the LS-SVM formulation, it is
possible to embed the information about symmetry
into the kernel level. This translates not only in bet-
ter predictions for a given time horizon, but also on a
larger forecast horizon in which the model can track
the time series into the future.
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Figure 4: Simulations with LS-SVM (dashed line), S-LS-
SVM (thick line) compared to the actual values (thin line)
for the next 200 points of the K.U.Leuven data.
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