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Abstract

Accurate modelling tools for TSO planners for the
problems of peak load temperature adjustment, short-term
forecasting, and customer identification, are presented in
this paper. The results are derived from the analysis of
intra-day (hourly) load records from local substations of
the Belgian high-voltage grid, as provided by Elia (Bel-
gian National Transmission System Operator - TSO). Us-
ing time series of hourly load values over a 5 years period,
the short-term forecasting problem is addressed by a Pe-
riodic Autoregressive (PAR) model that leads to customer
identification; the task of temperature adjustment is tack-
led by a multi-equation system with autocorrelated resid-
uals. Satisfactory results are obtained for a large sample
of substations in the Belgian high-voltage grid.

Keywords - Short-Term Load Forecasting, Periodic
Time Series, Load Profiles, Temperature Sensitivity,
Weather Adjustment

1 Introduction

The quantitative analysis of the electric load is cur-
rently a key research area [1, 2] with important impli-
cations for grid managers. Not only accurate forecasts
are needed for the short-term operations and mid-term
scheduling, but also network managers need to have in-
sight in the type of customers they supply as a support
for long-term planning. In order to deal with the every-
day process of planning, scheduling and unit-commitment
[2], the need for accurate short-term forecasts has led to
the development of a wide range of models based on dif-
ferent techniques, with different degrees of success. In
recent literature, some interesting examples are related to
traditional time series analysis [1, 3, 4], and neural net-
works applications [5, 6, 7, 8, 9]. At the same time, the
unbundling between generation, transmission, distribution
and sales induced by market liberalization strenghtened
the blindness of network managers beyond a certain sub-
station level with respect to the power input and the final
customers. In these cases, it is required to use indirect
techniques to assess the type of demand they face [10, 11]
in order to support their long-term investment planning.
In this context, categories of residential, business and in-
dustrial customers have been documented for some loca-
tions [12, 13] and are recognized usually by their “typi-
cal” load pattern in a day. On the other hand, for long-
term analysis and planning purposes, it is required to de-
termine how much of the peak load observed in any year
is due to weather effects, and how it is possible to adjust
the observed peaks taking this information into account.

Weather adjustment of historical load data and normal-
ization of future load prospects to standard temperature
conditions have indeed become highly critical in planning
procedures: one of the consequences of liberalization is a
higher financial pressure on the transmission system oper-
ator, notably leading to higher use than before [14].

Within this context, this paper presents research re-
sults and novel techniques derived from the analysis of
intra-day (hourly) load records from local substations in
the Belgian high-voltage grid, as provided by Elia (Bel-
gian National Transmission System Operator - TSO). The
goal is to provide accurate statistical and modelling tools
to TSO planners for the tasks of peak load temperature ad-
justment, short-term load forecasting and customer identi-
fication. The data available consists of a set of time series
of hourly load value over a 5 years period, derived from
metering at local grid nodes. We have developed method-
ologies based on traditional econometrics that can tackle
these problems. On the one hand, the task of peak load
temperature adjustment is addressed [15] by estimating
a multi-equation model for residential loads, where each
hour of the week is modelled separately, as a function of
temperature, weekly and monthly periodicities plus a de-
terministic trend factor. On the other hand, the problem of
individual load modelling is tackled using a vector auto-
regression structure, based on a Periodic Autoregressions
(PAR) system. By a simple extension, this model can be
used to identify typical daily shapes. This paper is struc-
tured as follows. The problem of peak load temperature
adjustment it discussed in Section 2, and the methodol-
ogy applied for the problems of short-term forecasting and
customer identification is described in Section 3.

2 Peak Load Temperature Adjustment

This section addresses the problem of temperature ad-
justment of the (peak) load. The TSO grid development
team is currently testing new tools dedicated to tempera-
ture effect correction. This new method attempts to tackle
some shortfalls present in the existing technique, namely,
the volatility of temperature sensitivity coefficients from
one planning year to another and its partial and/or asym-
metrical implementation.

2.1 Procedure

The procedure of temperature adjustment can be struc-
tured in the following 3 steps:



1. Weather-load relationship identification: the opti-
mal1 model structure must be determined, capable
to isolate with high precision the specific effect of
temperature on the load;

2. Model check: once the adequate model structure
is determined and estimated, it has to be assessed
whether the obtained results are suitable for further
data treatment, notably temperature adjustment;

3. (Peak) Load data adjustment: finally, the estimates
of the relevant temperature effect are used to adjust
observed peak load values for their extreme temper-
ature component.

It should be stressed here that, while the global model
structure is the same for all local loads, the estimation is
performed for each load individually, e.g. ”tailored” es-
timates of the temperature sensitivity for each analyzed
local load are found. The following drivers traditionally
determine the local load behaviour[16]:

1. A temperature sensitive part: in Belgium, for resi-
dential consumers, it is observed a clear negative re-
lationship between load and temperature, due to the
heating use; some loads do also experience a pos-
itive relationship with temperature, notably in lo-
cations were there is a high concentration of com-
mercial and office buildings (usually equipped with
air-conditioning);

2. A non-temperature sensitive part:

• The periodicity inside the week and inside the
year: socio-economical parameters (timeta-
bles, holidays, business cycle etc.) clearly pro-
duce significant electric load variations;

• A monthly trend factor.

2.2 The Model

The model developed consists of a system of 24 inde-
pendent equations (one equation for each hour of the day):

yh,d = αh + β1,hHDDd + β2,hCDDd +
6∑

j=1

(δj,hWDj)

+
11∑

m=1

(γm,hMm) + τhMTd + uh,d, (1)

with uh,d = ρhuh,d−1 + εh,d

whereE(εh,d) = 0, V ar(εh,d) = σ2,Cov(εh,d, εh,d−1) =
0, h = 1, . . . , 24, and where:

• yh,d: Load at hourh of dayd;

• HDDd : Heating degree-days = max(0, 16.5−ETd);

• CDDd : Cooling degree-days = max(0, ETd−16.5);

• ETd: Equivalent temperature =0.6Td + 0.3Td−1 +
0.1Td−2;

• Td: Average temperature at dayd;

• WDj : Dummy variable for the dayj in a week;

• Mm: Dummy variable for the monthm;

• MTd: Monthly trend variable;

• ρh: AR(1) coefficient of the residuals for equation
of hourh.

The temperature variables finally elected2 are actually
temperature-derived indicators. They correspond to the
usual degree-day index that measures the degree of differ-
ence between ambient temperature and outside tempera-
ture producing the best comfort inside buildings. The par-
ticularity of the degree-days used here is that the ambient
temperature measure usually considered is replaced by the
”equivalent temperature”, namely a weighted average of
the temperature over the 3 last days. This allows taking
into account the inertia that characterizes the reaction of
power consumption to temperature fluctuations (resulting
from buildings isolation). Since the ordinary least squares
(OLS) residuals are found to be autocorrelated, the model
is estimated with the Yule-Walker [17] estimation method
for autoregressive error models (first order).

2.3 Estimation Results

Model (1) has been estimated on 448 time series of
residential load records measured at substation level, on an
hourly basis, from January 1999 to December 2003. For
evident space constraint, illustrations reported here will
involve only two specific cases: one substation for which
the yearly peak takes place in winter (LOAD1), and an-
other one for which the yearly peak takes place in summer
(LOAD2). The general quality of the fit is good: only 7%
of the regressions estimated (24× 448) show a ”weak”
quality of fit (R-square measures< 75%). The heating
temperature effect is most of the time significant: only few
of the estimated HDD parameters are declared statistically
insignificant. On the other hand, the cooling temperature
effect is much less widespread, which is not surprising
since for the moment the penetration of air-conditioning
in Belgium remains fairly low and limited to specific lo-
cations. As far as the non-temperature part of the load is
concerned, most of the parameters for periodicity and for
trend are declared significant and hence useful for explain-
ing the load. Figure 1 illustrates the temperature sensitiv-
ity parameters for each hour of the day, respectively for
LOAD1 (winter peak) and LOAD2 (summer peak). As
expected, LOAD1 is mainly characterized by heating tem-
perature sensitivity, while LOAD2 is mainly characterized
by a cooling temperature effect.

1Optimal must be understood as the best structure from both a statistical and applied viewpoint: one must be capable to precisely separate the temper-
ature effect from the non-temperature sensitivity and a trade-off has also to be made between the degree of technical sophistication of the model and the
resultant practical constraints.

2Several alternative temperature variables were tested; thefinal choice was based on both practical and statistical considerations.



Figure 1: Heating temperature sensitivity during the day for LOAD1 (Left). Cooling temperature sensitivity during the day for LOAD2 (Right).

Temperature sensitivity coefficients differ during the
day, which is the particularity of the model. Tempera-
ture indeed influences the load differently according to the
hour of the day. The effect of temperature on LOAD1 is
higher at night than during the day, which corresponds to
the usual behavior of a load supplying places with a high
penetration of storage electric heating. For LOAD2, the
temperature sensitivity is the highest during the day, being
typical of power consumption in locations where there is
an important concentration of air-conditioning equipment.

2.4 Application: Temperature correction of Peak Load

Once the system (1) is estimated, the parameter esti-
mates of heating degree-days or cooling degree-days can
be used to adjust peak load (PL) records for their extreme
temperature part. The actual procedure consists of per-
forming the following operation (equation (2) for a winter
peak correction and equation (3) for a summer peak cor-
rection):

PLadj = PLobs+ β̂1,hp
(HDDnorm− HDDobs), (2)

PLadj = PLobs+ β̂2,hp
(CDDnorm− CDDobs), (3)

where PLadj is the peak load corrected by temperature;
PLobs is the observed peak load value (at the peak hour
hp); HDDobs (resp. CDDobs) is the observed HDD (resp.
CDD) on the day of the peak; HDDnorm (resp. CDDnorm)
is the median value of historical HDD (resp. CDD) for the
corresponding month;̂β1,hp

(resp.β̂2,hp
) is the estimated

parameter of heating (resp. cooling) temperature sensitiv-
ity at the hour of the peak. Figure 2 gives an overview
of the load behavior for LOAD1 and LOAD2, during the
week of their respective annual peak (Monday to Sunday).
Both observed load profile and the one adjusted to normal
temperature conditions are presented.

3 Short Term Load Forecasting using Periodic Time
Series

This section briefly describes the implementation of
the short-term forecasting problem using Periodic Autore-
gression (PAR) models [18].

3.1 PAR Models, Implementation and Estimation

In simple terms, an autoregression is said to be peri-
odic when the parameters are allowed to vary across sea-
sons. Consider the case of a univariate time seriesyt,
t = 1, · · · , N , (in this case, the hourly load measure-
ments) available for a sample ofNd = N/24 days, cor-
responding to theN hours. The general form of a periodic
autoregressive model of orderp (PAR(p)) is:

yt = Cs+φs,1yt−1+φs,2yt−2+· · ·+φs,pyt−p+εs,t (4)

whereCs is a seasonally varying intercept term, theφi,s

are the autoregressive parameters up to the orderp, vary-
ing across theNs seasons (s = 1, 2, · · · , Ns). The choice
of Ns depends on the frequency of the data and the sea-
sonal pattern under scrutiny. The error termεt,s can be a
standard white noise with zero mean and varianceσ, or it
can be allowed to have a varianceσs corresponding to sea-
sonal heteroskedasticity. It is worth to note that (4) gives
rise to a system ofNs equations that can be estimated us-
ing Ordinary Least Squares (OLS). For further details, the
interested reader is referred to [19, 20, 21].

For the implementation discussed here, an approach
similar to [22] is followed. Monthly and weekly seasonal
patterns are modelled by dummy variables, and the intra-
day seasonal pattern is assumed to be captured by PAR
parameters, i.e.Ns = 24 is the number of different “sea-
sons” (here, hours) to be identified using the PAR model.

Denote byyh,d the value of the load measured in hour
h of dayd, with h = 1, 2, · · · , 24 andd = 1, 2, · · · , Nd.
A formulation is built where the hourly loadyh,d is a func-
tion of the last 48 hourly values, thus defining a PAR(48)
model.

The PAR(48) model applied to the hourly load fore-
casting problem defines the following set of equations:

y1,d = C1 + φ1,1y24,d−1 + φ1,2y23,d−1 + · · · + ε1,d

y2,d = C2 + φ2,1y1,d + φ2,2y24,d−1 + · · · + ε2,d

y3,d = C3 + φ3,1y2,d + φ3,2y1,d + · · · + ε3,d (5)

...

y24,d = C24 + φ24,1y23,d + φ24,2y22,d + · · · + ε24,d



Figure 2: Load patterns (Observed and Adjusted) during the week of theyearly peak for LOAD1 (Left) and LOAD2 (Right).

This basic PAR template consists of24 × 49 = 1176 pa-
rameters. It is further extended to include exogenous vari-
ables to account for temperature effects as well as monthly
and weekly dummy variables. The temperature variables
included in the model are heating and cooling degree-
hours, computed analogously as those defined on Section
2 for degree-days. It is important to stress on that the PAR
system is different from that used on Section 2, even when
both are made of a set of 24 hourly load equations. In
the case of the system (1), each equation uses a load for a
particular hour of the day. In the case of the PAR system
(5), all equations use information fromprevioushours, no
matter what hour of the day it is.

3.2 Results

This methodology is applied to 245 load series, from
a sample of substations containing residential, industrial
and commercial customers. It is found that the model can
describe quite well most substations behaviour, with only
20 substations having an adj-R2 lower than 0.903. Adding
more lags and/or including more external variables may
be required to improve the accuracy for these substations.
The identified coefficients for all dummy and temperature
variables allow for interesting comparisons [18] between
substations, although not shown here because of space
constraints.

In order to quantify the performance of the PAR(48)
model template over the different 245 time series, the
Mean Absolute Percentage Error (MAPE) and the Root-
Mean Squared Error (RMSE) are computed for the fol-
lowing out-of-sample forecasting exercises:

• Case I: One-step-ahead prediction, for a 7 days-
period.

• Case II: Iterative prediction with update every 24
hours, for a 7 days period.

Table I shows how many substations are included within
each category of different error levels. Clearly, the
PAR(48) model template can produce excellent forecast-
ing results (less than 3% error in this setting) for 238 load

series when working with iterative predictions with up-
dates every hour (one-step-ahead prediction, Case I). If
the update is made every 24 hours (Case II), then 166
time series have their errors below 3% . As stated above,
the model performance can be improved by adding more
terms into the PAR formulation. In this setting,p = 48
gives a satisfactory performance while keeping model par-
simony.

An example of the forecasting performance is pre-
sented in Figure 3 for 3 selected substations with very dif-
ferent behavior. Each row represents a substation, where
the left panel shows the observed load series for a pe-
riod of 96 hours starting on a Sunday. The center panel
shows the forecasts and confidence intervals using the
“one-step-ahead” prediction mode. The observed load se-
ries (dashed line) is compared with the forecasted values
(thick line). The confidence intervals are also indicated
(thin lines). The right panel shows the situation for an
“iterative-prediction” mode with updates every 24 hours.

Clearly the best performance is obtained when us-
ing the one-step-ahead mode, which implies an update
every hour with the actual observations. The iterative-
forecasting with updates every 24 hours is less optimal,
but depending on the substation, it can still provide good
predictions. As mentioned above, the performance for
specific substations can be improved by increasing the lags
in the PAR(p) model or by adding external information.

3.3 From PAR models to Typical Daily Profiles

The stationarity properties of the PAR system (5)
are exploited in order to produce a Typical Daily Pro-
file vector from which all calendar and temperature
effects have been removed. Writing the model (5)
in Vector-AutoRegression (VAR) form, withY d =
[y1,d y2,d y3,d · · · y23,d y24,d]

T , yields

Φ0Y d = C + Φ1Y d−1 + Φ2Y d−2 + Φ3Xd + εd (6)

with the definitions ofΦ0,Φ1,Φ2 andΦ3 using the coef-
ficientsφ of the system (5) [19]. The matrixXd contains
all exogenous variables for temperature and calendar in-
formation. The next-day forecasts can simply be written

3Note that the threshold of90% here, compared to the75% threshold considered for model (1) validation, may suggest that the latter is worse;
nevertheless, this higher reference level arises from the fact that regression models with AR terms use to produce betterR

2 (adjusted) than those without
AR terms.



Number of Substations for which prediction error is less than
< 1% <3% <5% <8% <10% <20%

Case I
MAPE 206 238 241 241 242 245
RMSE 201 238 241 242 242 245
Case II
MAPE 13 166 189 205 214 245
RMSE 8 166 200 229 234 245

Table 1: Cumulative number of substations with MAPE and RMSE below a certain level for different forecasting modes.
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Figure 3: Out-of-sample predictions for 3 selected substations. Within each row, representing a substation, the observed load series (left) and its forecasts
under different updating modes: One-step-ahead (center) and Iterative-forecasts with update after 24 hours (left). Oneach panel, the forecasts (thick line),
the observed value (dashed) and the 95% confidence interval (thin lines) are depicted.



as

Ed[Y d+1] = Φ−1

0 {C + Φ1Y d + Φ2Y d−1 + Φ3Xd+1}

whereEd is the expectation taken at timed. Now, remov-
ing all calendar and temperature effects is equivalent to
settingXd = 0, where the system becomes

Φ0Y d = C + Φ1Y d−1 + Φ2Y d−2 + εd, (7)

which is a Vector-Autoregression of order 2 (VAR(2))
with convergence vector

Y
∗ = {Φ0 − Φ1 − Φ2}

−1
C. (8)

which exists if and only if the VAR system is stationary,
i.e., all the roots of|Φ0−Φ1z−Φ2z

2| = 0 are outside the
unit circle.

In the dataset considered here, every load series has its
own convergence vectorY ∗, computed from the estimated
model coefficients contained inΦ0,Φ1, andΦ2. As each
vectorY d includes daily information on the load, theY ∗

convergence vector, computed after all seasonal effects
have been removed, can be interpreted in terms of daily
load information as a Typical Daily Profile (TDP). These
profiles can be used for further analysis into the cluster-
ing of types of customers behind the substation level [18].
This definition of Typical Daily Profiles requires the ob-
tained VAR system to be stationary, a condition attainable
in the process of defining the order of the PAR(p) process.
It is also an empirical definition, as it is based on a statis-
tically sound procedure which is the estimation of a set of
autoregressions. Finally, it is important to note that each
one of the TDPs are “virtual”, in the sense that they can not
be observed empirically as all observations are affected by
the corresponding calendar and temperature effects for a
particular date and hour.

Figure 4 shows 6 examples of Typical Daily Profiles
Y

∗ computed from selected substations. Each one of the
TDPs contains features relevant to the load at those loca-
tions, when all the seasonal and temperature effects have
been removed. It is easily visualized that the daily be-
havior of these substations are not the same, with peaks
located at different hours of the day. Using TDPs is a sim-
ple and powerful procedure for comparing the profiles of
substations.

4 Conclusion

This paper presents research results and novel tech-
niques derived from the analysis of intra-day (hourly) load
records from local substations of the Belgian high-voltage
grid, as provided by Elia, the Belgian National Transmis-
sion System Operator - TSO. The techniques shown in this
paper are aimed at producing accurate statistical and mod-
elling tools to TSO planners for the tasks of short-term
load forecasting, customer identification and temperature
adjustment for long-term forecasts.

The first technique described permits the analyst to
normalize (peak) load data to average temperature condi-
tions. A multi-equation model is developed. Each hour of

the day is modelled separately in two main parts, the first
capturing the temperature-related part and the second the
non-temperature one. The main interest of this specifica-
tion is to allow for an accurate estimate of the temperature-
influenced part of the load (varying during the day), while
at the same time controlling for its fundamental periodical
and trend drivers. Once estimated, the temperature part
coefficients could be used in order to adjust historical load
records for severe temperature conditions.

The second technique described allows the analyst to
produce accurate short-term forecasts, and to compare
substations by identifying coefficients for temperature
and calendar effects. Furthermore, the technique based
on Periodic Autorregressions (PAR) allows to compute a
Typical Daily Profile from the same model, thus obtaining
a clean and efficient way to represent and compare substa-
tions. These Typical Daily Profiles can be used for further
analysis, e.g. clustering of customer types.
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