
Probabilistic graphical models for computational biomedicine 
 
Y. Moreau†, P. Antal, G. Fannes, B. De Moor 
 
Department of Electrical Engineering ESAT-SCD (SISTA) 
Katholieke Universiteit Leuven 
Leuven, Belgium 
 
† Correspondence to 
Yves Moreau 
Department of Electrical Engineering ESAT-SCD (SISTA) 
Katholieke Universiteit Leuven 
Kasteelpark Arenberg 10 
B-3001 Leuven 
Belgium 
 
Tel: +32/16/32.18.06 
Fax: +32/16/32.19.70 
Email: yves.moreau@esat.kuleuven.ac.be

mailto:yves.moreau@esat.kuleuven.ac.be


2 
 

Probabilistic Graphical Models for Computational Biomedicine 

 
Submitted to Method Inform Med 21/06/2002 

 

SUMMARY 

Background: As genomics becomes increasingly relevant to medicine, medical 
informatics and bioinformatics are gradually converging into a larger field that we call 
computational biomedicine.  

 
Objectives: Developing a computational framework that is common to the different 

disciplines that compose computational biomedicine will be a major enabler of the further 
development and integration of this research domain. 

 
Methods: Probabilistic graphical models such as Hidden Markov Models, belief networks, 

and missing-data models together with computational methods such as dynamic programming, 
Expectation-Maximization, data-augmentation Gibbs sampling, and the Metropolis-Hastings 
algorithm provide the tools for an integrated probabilistic approach to computational 
biomedicine. 

 
Results and Conclusions: We show how graphical models have already found a broad 

application in the different fields that compose computational biomedicine. We also indicate 
several challenges that lie at the interface between medical informatics, statistical genomics, 
and bioinformatics. As a conclusion we assert that probabilistic graphical models should be a 
foundation in the curriculum of students of computationally intensive approaches to biology and 
medicine. From such a foundation, students could then build towards specific computational 
methods in medical informatics, medical image analysis, statistical genetics, or bioinformatics 
while keeping the communication open between these areas.   
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1. TOWARDS COMPUTATIONAL BIOMEDICINE 

In medicine, the increasing prevalence of computerized information (medical 
imaging, electronic patient records, automation of clinical studies) considerably 
enhances the further progress of medicine as a data-driven evidence-based science, 
alongside its empirical tradition. As a result, medicine is developing tighter and 
tighter links to engineering, computer science, and statistics. In biology, faced to the 
flood of data generated by high-throughput genomics (Human Genome Project, 
Arabidopsis Genome Initiative, microarrays, Single Nucleotide Polymorphism 
Initiative, and so on), biologists have a pressing need for support, guidance, and 
collaboration for the analysis of their data. The importance of data management and 
analysis cannot be underestimated, as it has become a main bottleneck in molecular 
biology (which itself is a driving force of the pharmaceutical and biotechnological 
sectors). 

 
Information technology provides a practical platform for a better integration of the 

different biological and medical disciplines, both for practice and research. As a 
result, we witness the convergence of the many disciplines relating to the application 
of computation and information technology to biology and medicine, such as 
(together with some examples): 

• Medical information systems (electronic patient records) 
• Biostatistics (design and analysis of clinical studies and clinical trials) 
• Medical decision-support systems (diagnosis assistance and critiquing) 
• Biomedical image analysis (radiography, nuclear magnetic resonance) 
• Biomedical signal processing (electroencephalography, electrocardiography, 

and also as an essential initial step for image analysis) 
• Biomedical systems and control (intelligent prostheses, intelligent drug 

delivery devices) 
• Statistical genetics and epidemiology (gene mapping, single nucleotide 

polymorphism analysis) 
• Computational structural biology (prediction of protein structure from 

sequence) 
• Biological databases and information technology (gene and protein databases) 
• Bioinformatics and computational biology (statistical data analysis strategies 

for molecular biology and in silico biology) 
 

We call Computational Biomedicine the general discipline resulting from this 
convergence. This evolution is a long-term trend that will continue over several 
decades. This convergence is actually happening by bringing together elements from 
medical information systems, biostatistics, medical decision support, biological 
information technology, and bioinformatics for a series of medical and biological 
applications. Most importantly, we argue here that integration of these different 
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disciplines is not limited to information technology but that integration will also 
happen at the level of data analysis thanks to the use of probabilistic graphical 
models. This integration will enable us to tackle problems that are currently out of 
reach of each research area on its own. Fig. 1 illustrates a number of research areas 
that are closely connected and can be integrated within computational biomedicine; it 
also presents a number of applications within each area where graphical models are 
already heavily used. As an additional remark, many applications of graphical models 
are also found in image processing [1] but we do not discuss them here as they fall 
outside our field of expertise. 

Medical informatics
Decision support
Knowledge discovery

Statistical genomics
Linkage analysis
Association studies

Sequence analysis
Gene prediction
Modeling of protein families
Motif finding
Phylogeny

Microarray analysis
Clustering
Genetic network inference

Fig. 1 This drawing illustrates the probabilistic framework for computational biomedicine. For a better 
understanding of the mechanisms underlying complex pathologies, we must integrate clinical, genetic, and 
molecular biological knowledge. At the level of data analysis, this means for example linking medical informatics, 
statistical genomics, sequence analysis, and microarray analysis.  

2. PROBABILISTIC GRAPHICAL MODELS 

In bioinformatics, probabilistic graphical models have emerged as a dominant 
approach for data analysis [2]. By probabilistic models, we mean here models that 
express the probability of some observations given a set of model parameters (i.e., the 
likelihood). Such models are graphical when this probability can be broken down into 
the combination of several elementary contributions and the probability can then be 
represented as a graph. Examples of probabilistic graphical models (or graphical 
models for short) are Hidden Markov Models (HMMs) (for example, for the modeling 
of protein families) and belief networks (for the reconstruction of gene networks from 
expression data). Once the probabilistic model has been set up, the goal is to find 
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good sets of model parameters matching the observed data. This goal can be achieved 
by maximum likelihood or maximum a posteriori estimation or by Bayesian 
inference. In Bayesian inference, we use the data to update a prior probability 
distribution over the parameters into a posterior probability distribution over the 
parameters given the data. While this approach is computationally intensive and has 
only recently become really practical, Baldi and Brunak [2] have convincingly argued 
that this Bayesian framework offers distinctive advantages, such as a systematic way 
of “incorporating prior knowledge and constraints into the modeling process” and 
such as the fact that probability distributions over parameters or observations are more 
informative than optimal point estimates. After the modeling criterion has been 
chosen, a variety of algorithms are available for estimating the model, such as 
gradient descent, Expectation-Maximization (EM), or Markov Chain Monte Carlo 
(MCMC) methods (Gibbs sampling, the Metropolis-Hastings algorithm, or simulated 
annealing).   

The application of graphical models in bioinformatics is extremely broad. For 
example, DNA, RNA, and protein sequences lend themselves to simple probabilistic 
modeling thanks to their sequential structure and their discrete alphabet. In fact, and 
this is essential to our argument, probabilistic graphical models are not limited to 
sequence analysis. In medical informatics, belief networks provide a powerful tool for 
decision support in diagnosis. Another domain where probabilistic graphical models 
play an important role is statistical genomics. The goal here is to use patterns of 
genetic inheritance to determine relationships between genes or genetic loci, or 
relationships between genes and traits or diseases. One important application is the 
identification of disease-causing genes (which means genes for which some variants 
contribute to a disease) from affected families (linkage analysis) or populations 
(association studies). Similarly, graphical models are powerful tools for phylogeny 
(which is the reconstruction of the tree of evolution based on genomic sequences) 
thanks to the graphical description of evolutionary trees and of DNA and protein 
sequences. Furthermore, the patterns of expression of genes and proteins can be 
efficiently analyzed with graphical models for clustering and with belief networks. 

2.1 Belief networks for ovarian tumors diagnosis 
To make our discussion of graphical models more concrete, we briefly present a 

belief network that we have used to assess ovarian tumors using clinical information 
and ultrasonography [3,4]. The preoperative discrimination between malignant and 
benign tumors is a crucial issue in gynecology. The International Ovarian Tumor 
Analysis (IOTA) consortium [5], which is led by the University Hospitals of Leuven, 
is collecting the world’s largest database of ultrasonographic case reports from 
patients with ovarian tumors (about 1000 cases per year) and aims at developing 
predictive models based on statistics and artificial intelligence for the preoperative 
assessment of such tumors. We present the belief network resulting from this study in 
Fig. 2. 

A belief network (also called Bayesian network) represents a joint probability 
distribution over a set of variables. The model consists of a qualitative part (a directed 
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graph) and quantitative parts (dependency models). Directed graphical models are not 
allowed to have directed cycles and have a complicated notion of independence, 
which takes into account the directionality of the edges. For a particular domain, the 
vertices of the graph represent the domain variables and the directed edges describe 
the probabilistic dependency-independency relations among the variables. There is a 
dependency model for every vertex (i.e., for the corresponding variable) to describe 
its probabilistic dependency on the parents (i.e., on the corresponding variables). If 
the variables are discrete, a common dependency model is the table model, which 
contains the conditional distribution of the child variable conditioned on its parents. 

 
Fig. 2  This belief network represents the joint probability distribution of the measurements in the record of a 
patient with an ovarian tumor. Nodes represent the variables, such as age, pathology (benign vs. malignant), and 
CA125 serum level. Nodes are ordered so that each variable has a set of predecessors and a set of successors. 
Edges represent the probabilistic conditional dependency between variables. For example, the probability of the 
CA125 level being low, medium, or high given the menopausal status and pathology is independent of all its 
predecessors. Edges are quantified by an elementary probabilistic model, such as a probability table. For 
example, the presence or absence of a genetic defect (GeneticD = 0 or 1) is a probability value for each of the 
configurations of the family history of ovarian cancer (FH-OC = 0 or 1) and family history of breast cancer (FH-BC 
= 0 or 1).  

We have developed such belief networks alongside more classical techniques 
(such as logistic regression and neural networks) [6]. These belief networks can be 
used for prediction (in our case the prediction of malignancy in ovarian tumors) by 
deriving the probability of the pathology variable given the observations from the 
joint probability distribution of all the variables. Important advantages of belief 
networks over other methods (such as neural networks) are the easy handling of 
missing variables and the possibility to incorporate prior knowledge in the model (in 
the form of the model structure or prior parameterizations of the dependency models). 
As far as classification performance is concerned, belief networks delivered 
performances similar to that of other methods [3,4]. 

The development of such models is an extensive process of interaction with the 
medical expert. Also, belief networks are computationally intensive. Moreover, we 
wanted to be able to perform Bayesian inference on belief networks – a facility that is 
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not readily available. For these reasons, we developed a software environment for the 
easy development of belief networks. A screenshot of this environment is presented in 
Fig. 3. 
 

 
 

Fig. 3 Screenshot of the Bayesian network tool that was developed for the diagnosis of ovarian tumor 
malignancy. Updating the value of any variable changes the probability of the whole configuration.  

3. COMPUTATIONAL METHODS 

Several methods are available to select good sets of parameters θ for a graphical 
model M given some data set D. We review briefly the main criteria and algorithms 
for such model estimation.  

3.1 Maximum likelihood and maximum a posteriori estimation and Bayesian 
inference 

Usually the graphical model let us express the likelihood P(D|θ,M) (or some 
closely related quantity) easily. A reasonable option is then to follow the maximum 
likelihood principle and choose the set of parameters that maximizes this likelihood:  

argmax ( | , ).ML P D M
θ

θ θ=  

Another effective strategy is to select the maximum a posteriori parameters: 
argmax ( | , ).MAP P D M

θ
θ θ=  

This approach focuses more directly on optimizing the set of parameters of the data. 
However, the graphical model describes the likelihood P(D|θ,M) while we consider 
here the posterior probability P(θ|D,M). Thanks to Bayes’ rule 
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( | , ) ( | , ) ( | ) / ( | ),P D M P D M P M P D Mθ θ θ=  
we can go from the likelihood to the posterior. Additionally, the prior P(θ|M) let us 
introduce the prior knowledge we may have about the problem solution. If we further 
take into account that the data prior P(D|M) is independent of the parameters θ  we 
want to estimate, maximum a posteriori estimation then amounts to  

argmax ( | , ) ( | ).MAP P D M P M
θ

θ θ θ=  

Yet, the likelihood function contains much more information about the data than 
just the maximum-likelihood point estimate. In fact, the posterior distribution 
provides a more accurate representation of which parameter values are good 
candidates to describe our data. For example, if the posterior is multimodal, the modes 
provide very different models that describe the data well. Also, we can construct 
confidence intervals for the parameters based on this distribution while we do not get 
this information from an optimal point estimate. Thus it can be advantageous to work 
with the full probability distribution instead of limiting ourselves to a point estimate. 
This is the approach taken in Bayesian inference: 

( | , ) ( | )( | , )
( | )

( | , ) ( | ) .
( , | ) ( | )

P D M P MP D M
P D M

P D M P M
P D M P M d

θ

θ θθ

θ θ
θ θ θ

=

=
�

 

Note that as long as we can solve the integral in the denominator, the posterior 
distribution can be entirely expressed in term of the likelihood and the prior. Note also 
that Bayesian inference does not provide as such a model that fits our data best, but 
rather a description of the fit of each set of parameters to the data. If we then wish to 
determine a point estimate, we can achieve this easily in a post-processing step. 

3.2 Dynamic programming 
The previous criteria let us estimate the fit of different parameter sets to the data 

as long as we can perform the necessary computations and optimizations. Several 
techniques let us perform the actual computations. The first important technique is 
dynamic programming [7], which is for example applied in sequence alignment 
methods and HMM learning. It lets us perform efficiently maximization or compute 
sums over a huge set of configurations (such as all possible alignments between two 
DNA or amino-acid sequences or all possible parameter configurations of an HMM). 
This computation depends on the possibility of decomposing the configuration set 
into a chain of subconfigurations to which we can apply Bellman’s optimality 
principle [8]. The importance of dynamic programming arises from its high speed and 
from the guarantee to find the global optimum for the problems to which it is 
applicable. This technique is also often a module within the more complex techniques 
we describe further.  
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3.3 Expectation-Maximization and missing data problems 
Often, the likelihood of the data given the parameters is by itself difficult to 

compute. As an example, we can consider the discovery of motifs in protein 
sequences [9]. We then have a set of proteins in which a probabilistic motif (an 
extended but variable amino-acid sequence) is hidden. The parameters we want to 
estimate are the parameters of the distribution of the amino acids that form the motif. 
To compute the likelihood of the full sequences, we need to know where these motifs 
are located; but in practice this information is not available. So we introduce the 
positions of the motif as missing data m. When augmented with this missing data, the 
likelihood P(θ,m|D) is straightforward to compute. EM is then used to find the 
maximum of this likelihood for both the motif parameters (true parameters) and 
positions (missing data).  

EM [10] is a two-step iterative procedure for obtaining the maximum likelihood 
parameter estimates for a model of observed data and missing values. It replaces the 
maximum likelihood estimate by an iterative procedure for a missing data problem: 

EM
EM

1 | ,
arg max (ln ( , | )).

i
i m D

E P D mθ
θ

θ θ+ =  

In the expectation step, the expectation of the data and missing values is computed 
given the current set of model parameters. In the maximization step, the parameters 
that maximize the likelihood are computed. EM is guaranteed to converge to a local 
optimum of the likelihood but not to the global maximum.  

3.4 Markov Chain Monte Carlo methods 
When performing Bayesian inference, it is in some cases possible to describe the 

posterior distribution analytically. However, for more complex models such as 
sequence models, it is impossible to handle the probability distributions analytically. 
The idea behind MCMC methods is to use sampling for optimization.  Several 
methods are available to generate data according to a complex probability 
distribution. These are methods such as the Metropolis-Hasting algorithm [11] (which 
is well known as the foundation of the simulated annealing algorithm for global 
optimization) and Gibbs sampling [12]). If we assume that we can generate samples 
according to the posterior distribution, we can use these samples to approximate 
quantities of interest (possibly using Monte Carlo integration). For example, we can 
approximate a global solution with maximum posterior probability by tracking the 
sample with the highest posterior probability if we draw enough samples from the 
posterior distribution.  

MCMC methods are methods to sample from any distribution provided it has an 
appropriate structure. While sampling from an arbitrary one-dimensional probability 
density can be achieved simply using a uniform random generator on the [0,1] interval 
and using the cumulative density function, sampling from high-dimensional 
probability densities is hard. MCMC methods exploit an important property of 
Markov chains, which is that data generated by a Markov chain will eventually (after 
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a number of samples going to infinity) be generated according to a fixed probability 
distribution called the equilibrium distribution of the Markov chain. 

A Markov chain is a stochastic process that generates a sequence of samples 
according to the fact that any value in the sequence depends only on the previous one 
and is independent of all the earlier ones. This property is called the Markov property. 
Markov chains have the remarkable property that, starting from an arbitrary initial 
condition, the distribution of the samples of the Markov chain will converge to an 
equilibrium distribution called a stationary distribution (if the chain and the stationary 
distribution satisfy a condition called detailed balance). Thus in practice, after a 
sufficient number of transient samples (called burn-in period), the Markov chain will 
draw approximately from this stationary distribution. 

3.4.1 Gibbs sampling 
Gibbs sampling is a MCMC method that was introduced by Geman and 

Geman [1] in the context of image restoration. Tanner and Wong [12] introduced its 
use for data augmentation problems. The idea is to describe a complex probability 
distribution in terms of a Markov chain built with the simpler marginals of the 
distribution. Suppose we have a set of variables described by a joint probability. 
Gibbs sampling will consist in drawing sequentially every variable according to the 
probability of this variable conditioned on all the other variables held frozen to their 
current values. In many cases, Gibbs sampling is applied to missing data problems 
and is called data-augmentation Gibbs sampling.  

3.4.2 Metropolis-Hastings 
Metropolis-Hastings sampling [13] is another MCMC method. The method relies 

on randomly walking through parameter space according to a Markov chain satisfying 
the following conditions. First, the walk must use a symmetric transition proposal. 
Second, each move of the walk is accepted according to an acceptance mechanism (if 
the probability of the proposed parameter set is higher than of the previous set, the 
move is always accepted; if it is lower, the move is accepted with a probability equal 
to the relative probability of the two configurations). After convergence of the chain, 
this procedure then generates samples from the probability distribution used to score 
the transition proposals.  Also, Metropolis-Hastings sampling is the foundation of 
simulated annealing for global optimization [14]. 

4. SOME APPLICATIONS OF GRAPHICAL MODELS 

Now that we have a general idea of what graphical models are and how we can 
use them to model data, we can have a look at the variety of problems from 
computational biomedicine that can be addressed by these techniques. This summary 
overview will give us an impression of how prevalent these methods have become.  

For the analysis of data from clinical trials, Bayesian techniques have become 
important because of the limited amount of data available and therefore the need for a 
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detailed characterization of uncertainty. WinBUGS [15] is a popular software package 
for the automatic generation of Gibbs sampler for simple graphical models and it has 
been used in numerous applications [16]. For the knowledge discovery in medical or 
clinical data, clustering by Expectation-Maximization estimation of mixture models is 
an effective approach. This approach is available in AutoClass [17] together with a 
Bayesian technique for estimating the number of clusters. For decision support in 
diagnosis, belief networks are a promising technique. Kahn et al. [18] describe the 
development and validation of MammoNet, a belief network for mammographic 
diagnosis of breast cancer that integrates patient-history features, physical findings, 
and mammographic features to determine the probability of malignancy. We have 
also applied belief networks to the prediction of malignancy in ovarian tumors [3,4]. 

In statistical genetics, Excoffier et al. [19] introduced an EM algorithm leading to 
maximum-likelihood estimates of molecular haplotype frequencies (a haplotype is a 
combination of alleles of closely linked loci that are found in a single chromosome 
and tend to be inherited together) under the assumption of Hardy-Weinberg 
proportions. They evaluated their method on simulated data representing both DNA 
sequences and highly polymorphic loci with different levels of recombination. Long 
et al. [20] introduced an EM algorithm to obtain allele frequencies, haplotype 
frequencies, and gametic disequilibrium coefficients for multiple-locus systems. They 
validated their method on three unlinked dinucleotide repeat loci in Navajo Indians 
and to three linked HLA loci in Gila River (Pima) Indians. Recently, methods using 
Gibbs sampling have been use to extend these approaches. Niu et al. [21] proposed a 
Gibbs sampler algorithm that can accurately and rapidly infer haplotypes for a large 
number of linked single nucleotide polymorphisms. The algorithm is also robust to 
the violation of Hardy-Weinberg equilibrium, to the presence of missing data, and to 
occurrences of recombination hotspots. For linking genetic loci with disease, Liu et al. 
[22] proposed an MCMC method using a stochastic model describing the dependence 
structure among several variables characterizing the observed haplotypes and the 
location of the disease mutation. They validated their method cystic fibrosis and 
Friedreich ataxia data.  

For phylogenetic inference (the reconstruction of evolutionary trees from current 
day sequences), EM methods are by now a classical approach [23] while MCMC are 
making their appearance [24]. Recently, Friedman et al. [25] proposed a heuristic 
structural EM that performs more efficient topology searches over the possible 
phylogenetic trees, resulting in better solutions in a much shorter time thereby 
enabling phylogenetic analysis of large protein data sets in the maximum likelihood 
framework. 

For the analysis of DNA and amino-acid sequences, HMMs are a method of 
choice. HMMs have been used successfully for highly sensitive detection of new 
members of known protein families [26,27]. HMMs (sometimes in combination with 
neural networks) are a major approach for the prediction of genomes from raw 
genomic sequences [28,29]. GENSCAN predictions [28] were directly part of the 
annotation of the human genome produced by the Human Genome Project [30] and 
this is maybe the most significant application of graphical models to date. For the 
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discovery of motifs in protein sequences, MEME (multiple EM for motif elicitation) 
[9] provides an application of EM to motif discovery using multistart optimization to 
escape local optima. For the discovery of motifs both in DNA and protein sequences, 
Gibbs sampling [31,32] is a highly sensitive approach. We showed in [33] that the 
robustness of the method could be enhanced by the use of a higher-order Markov 
chain, similarly to what is done in many gene prediction algorithms. 

Microarrays [34] are a recent technique that allows the measurement of the 
activity of several thousands of genes in a single biological experiment. This 
technique is generating a massive amount of data (several orders of magnitude more 
than genome sequences) and the analysis of such data has become a major challenge 
for bioinformatics. Clustering of such data for discovery of new classes among 
samples or of groups of genes that share their expression pattern can be efficiently 
achieved by EM clustering [35]. Another major challenge for microarray data analysis 
is to attempt to reconstruct the network of interaction between genes from expression 
measurements. Promising initial results have been achieved using belief 
networks [36]. 

This list of applications of graphical models is certainly not exhaustive, but we 
hope that it illustrates clearly that these methods cover the scope of computational 
biomedicine. 

5. INTEGRATIVE USE OF GRAPHICAL MODELS 

To understand more efficiently the mechanisms underlying pathologies, medical 
and biological researchers attempt to integrate clinical, genetic, and molecular biology 
aspects more tightly. This stronger integration increases the number of clues available 
to identify important genes and proteins and to understand the cascades governing the 
relevant biological processes. Although alternatives to graphical models exist for each 
specific application, graphical models are the only approach for which we can 
envision a unified conceptual framework that encompasses computational 
biomedicine as a whole. As probabilistic models are already developed in medical 
informatics, statistical genomics, and bioinformatics, what is now necessary is (1) to 
master the methodologies available in these different fields (which few people do), (2) 
formulate these methodologies in a common language, and (3) identify synergies 
across these fields and develop new analysis methods that integrate different types of 
data. 

Several tracks are possible to initiate this integration. First of all, the development 
of algorithms that can handle heterogeneous types of data is an important research 
direction. For example, Segal et al. [37] proposed the use of probabilistic relational 
models to discover patterns in heterogeneous data such as microarray data coupled to 
experiment type, putative binding sites, or functional information. The patterns 
discovered could reveal context-specific relationships that exist only over a subset of 
the experiments. Another track is the integration of statistical genomics and molecular 
cell biology. For example, Janssen and Nap [38] proposed to combine microarray 
expression profiling with marker-based fingerprinting. The resulting setup allows a 
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precise control over the genetic background of the experiment while measuring results 
at the level of thousands of genes. With appropriate analysis tools, such approaches 
are likely to boost the further unraveling of metabolic, regulatory, and developmental 
pathways. 

Finally, and probably most importantly, a major link between medical informatics 
and bioinformatics is the fact that clinicians have access to patient information, which 
is the truly relevant phenotype information in understanding complex pathologies. 
Extrapolation to the clinical level from studies of the molecular behavior of cell 
cultures is extremely hazardous. Even extrapolation to humans from studies in 
animals is often inaccurate. Therefore, clinicians and biologists must collaborate so 
that clinical information can increase the relevance of biological studies to human 
health.   

6. CONCLUSIONS 

The different disciplines relating to the application of computational techniques to 
biology and medicine are converging into a field that we call computational 
biomedicine. We argued that this convergence takes place not only at the level of 
information technology but also at the computational level. Probabilistic graphical 
models provide a systematic framework to handle prior knowledge and uncertainty 
and are applicable to any of the disciplines composing computational biomedicine. 
We introduced graphical models (such as HMMs or belief networks) and the 
computational techniques necessary to perform data modeling with them. We further 
demonstrated their broad applicability through multiple applications in biostatistics, 
statistical genomics, sequence analysis, and expression analysis that we briefly 
surveyed. Furthermore, this computational framework opens up research directions 
for the integrative analysis of multiple and heterogeneous data types, which will be 
essential if we want to solve the puzzles behind complex pathologies.  

We conclude by asserting that the theory of probabilistic graphical models lies at 
the foundation of the application of computational techniques to biology and 
medicine. It should be as such integrated as a common basis in the curriculum of 
students entering these domains so as to enhance the later communication among 
these areas.  
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