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Summary 
The upcoming availability of public microarray 
repositories and of large compendia of gene ex-
pression opens up a new realm of possibilities 
for microarray data analysis.  An essential chal-
lenge along this road (and still mostly an open 
problem) is the efficient integration of microar-
ray data generated by different research groups 
on different array platforms. This review fo-
cuses on the problems associated with this inte-
gration, which are (1) efficient access to and 
exchange of microarray data, (2) validation and 
comparison of data from different platforms 
(cDNA and short and long oligos), and (3) inte-
grated statistical analysis of multiple data sets. 

In the last years, a myriad of microarray experi-
ments has been produced, overwhelming the re-
search community with a wealth of potentially 
valuable data. Efficient access to these data and 
especially efficient comparison and integration of 
data obtained in related biological systems provide 
biologists and geneticists with an enormous oppor-
tunity to address complex questions in an effective 
way.  

Tellingly, larger microarray projects are gearing 
up towards the generation of large compendia of 
gene expression. Those will provide a comprehen-
sive view of the transcriptome in different organ-
isms at different stages of development [1] or un-
der different environmental [2] or genetic [3] con-
ditions, and of the changes in gene expression as-
sociated with a diverse series of human patholo-
gies [4]. We envision a radical change in microar-
ray studies – comparable to what happened in se-
quence analysis with the advent of the Genome 
Projects – where a division of labor takes place 
between a few large consortium-based projects on 
the one hand and the many smaller investigation-
specific projects on the other hand. The compen-
dium projects will chart big areas of the transcrip-

tome while smaller-scale projects will refine the 
mesh, starting from a careful analysis of publicly-
available microarray (and sequence) data to design 
experiments that sharpen and validate primary hy-
potheses.  

But what are the barriers to this bonanza of infor-
mation and how do we open them up? In this re-
view, we examine (1) how microarray standards 
and repositories allow data exchange,  (2) how a 
detailed understanding of the specifics of different 
platforms permits cross-center and cross-platform 
comparison and validation, and (3) how meta-
analysis enables integrated analysis of multiple 
data sets. 

Data access and exchange 
Until now, most of the publicly available microar-
ray data has been scattered around the web, often 
as supplementary data to a paper. Consequently it 
has been difficult for investigators to know where 
relevant data is available. Several databases have 
started to address this problem by making some 
published microarray data available for query after 
uniform processing and filtering – while providing 
links to the original publications for more detailed 
information. These databases have diverse pur-
poses: (1) platform specific (such as the Stanford 
Microarray Database [5]), (2) organism specific 
(such as the yeast Microarray Global Viewer [6]), 
or (3) project specific (such as the Lifecycle data-
base on Drosophila development [1], the Neuro-
Diff database on neuronal differentiation in mouse 
[7], or the HugeIndex database on normal expres-
sion in human tissues [8]). 

Although web supplements and microarray data-
bases provide access to many data sets, they have 
the drawbacks that (1) they lack direct access to 
the experimental information that is needed to 
judge the quality of the data, to repeat a study, or 
to reanalyze the data and (2) they do not use a 
standard format for microarray data and experi-
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ment description. These drawbacks make identify-
ing, collecting, and analyzing publicly available 
data sets a cumbersome and error-prone process.  

Microarray standards and repositories  

The Microarray Gene Expression Data (MGED) 
Society (http://www.mged.org) provides guide-
lines, formats, and tools to overcome these two 
problems. The Minimum Information About a Mi-
croarray Experiment (MIAME) specification [9] is 
practically a checklist that guides the investigator 
in the annotation of microarray experiments. As 
numerous biological and experimental factors in-
fluence gene expression measurements (from 
lighting conditions in plant experiments to the ex-
act histopathology of a tumor, from the difference 
in specificity of different reporter sequences for 
the same gene to the particularities of a single 
batch of slides or to the laser intensity at which a 
slide is scanned), this minimum information in-
cludes the experimental design, the array design, 
the details of the samples and any treatments, the 
hybridization conditions, the measurements, and 
the normalization controls. Furthermore, the 
MGED ontology [10] provides a framework of 
microarray concepts for this annotation and the 
MicroArray Gene Expression Object Model 
(MAGE-OM) and Markup Language (MAGE-
ML) conceptualize MIAME for data storage and 
exchange [11].  

In laboratory practice, a local MIAME-supportive 
database will allow gradual recording of this in-
formation. Upon publication, the database can di-
rectly export the data to a public repository. For a 
compendium project (such as the Compendium of 
Arabidopsis Gene Expression that will contain 
about 4,000 full-genome Arabidopsis microarrays 
for the plant community; 
www.psb.rug.ac.be/CAGE), the data can be first 
transferred to a consortium database and later to a 
repository [10]. 

Currently, the only fully MIAME-supportive data-
base is the ArrayExpress repository  
(http://www.ebi.ac.uk/arrayexpress) [12], although 
most other databases are working towards MIAME 
support [13,14]. Some journals already require 
publication of MIAME-compliant data to one of 
the two current repositories: ArrayExpress or GEO 
(http://www.ncbi.nlm.nih.gov/geo/) [15]. 

Although at this early stage observance of the MI-
AME guidelines has yet to demonstrate actual im-
provements in comparability of microarray ex-
periments, it is clear that without this information 
meaningful comparison and integration of data 
generated by different labs or on different plat-
forms will be fatally impaired and that major er-
rors or misunderstandings could go undetected for 
a long time. Even with this information, however, 

comparison will remain difficult because so many 
factors come into play and new flexible statistical 
procedures will be needed that make the most of 
all this information. 

Comparison of microarray technolo-
gies and validation of microarray re-
sults 
Microarray data can be obtained from arrays of 
cDNA clones [16], of short (25-mer) [17] or long 
(60-mer) [18] oligonucleotides, or of gene-specific 
PCR products amplified from genomic DNA 
[19,20]. These platforms differ in sequence content 
and measurement methodologies (Box 1), and thus 
produce qualitatively different data. If we are to 
integrate data from multiple sources, we must un-
derstand the specifics and the trade-offs of the dif-
ferent technologies. 

Box 1. Sequence content and measurement 
principle 

cDNA microarrays consist of cDNA clones spotted 
orderly at high density at defined positions on glass 
slides.  In yeast, the full-length sequence of each cDNA 
is known, while in other species the cDNA clones may 
not be full length or may be only partially sequenced.  

The oligonucleotide microarrays are currently produced 
in two formats. On the short (25-mer) oligonucleotide 
platform, each transcript is probed with a set of several 
reporters, arranged as pairs of perfect match–mismatch, 
which permits estimation of the specificity (see Box 2) 
of the signal for each target. On the long oligonucleo-
tide platforms, each transcript is probed with a 60-mer 
reporter, providing higher sensitivity (as compared to 
the 25-mers), but no target-by-target estimation of 
specificity. 

Two principles of measurement of expression are em-
ployed: (1) hybridization of a single labeled sample 
derived from the RNA sample, followed by one-channel 
detection, in which the intensity of the hybridization 
signal is used to determine the concentration of the tar-
get (absolute quantification); and (2) competitive hy-
bridization of two labeled samples, each of them de-
rived from one of the two compared RNA samples 
(usually named test and reference) and labeled with a 
different fluorescent dye. The two labeled samples are 
mixed and hybridized to the same slide. After two-
channel detection the ratio of fluorescence intensities 
from the two dyes measures the ratio of concentrations 
of the same target between the two samples.  The short 
oligonucleotide platforms use single-channel measure-
ments while microarrays of cDNA clones, long oligos, 
or genomic DNA use two-channel measurements. 

Absolute measurements vs. expression ratios  

Upon careful design, the 25-mer oligochips of Af-
fymetrix provide an absolute measurement of ex-
pression in an RNA sample (Box 1). By contrast, 
cDNA microarrays perform a two-color competi-
tive hybridization (Box 1) that gives the ratio of 
transcript expression in two samples. Competitive 

http://www.mged.org/
http://www.psb.rug.ac.be/CAGE
http://www.ebi.ac.uk/arrayexpress
http://www.ncbi.nlm.nih.gov/geo/
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hybridization results in the cancellation of multiple 
unwanted effects (e.g., of reporter sequence and 
length) at the cost of losing the important informa-
tion [21] about the absolute levels of expression. 
Long oligonucleotide platforms (typically 60- to 
80-mers) also use the competitive hybridization, 
because on this platform relative measurements 
were shown to result in higher precision than abso-
lute ones [18].  

Another key difference between absolute meas-
urements and ratios is in the design of experiment 

[22-24], which aims at maximizing the statistical 
informativeness of the experiment. For a series of 
two-channel hybridizations, the easiest setup is to 
compare all the test samples against the same ref-
erence. However, this setup wastes almost half the 
resources by measuring the same reference again 
and again. In many situations, more powerful de-
signs are possible by putting both channels on an 
equal footing (e.g., dye swap, loop designs, or fac-
torial designs) [22].  

Biological sample
� Treatment
� Sampling

Labeled sample
� RNA extraction 

(total RNA, mRNA)
� Amplification

(in vitro transcription)
� Labeled nucleic acid synthesis

(cDNA, cRNA)

Array hybridization
� Hybridization
� Washing and staining
� Scanning

Biological replication

Technical replication

Technical repetition

 
Figure 1. The different steps of a microarray experiment and the different types of replication. Given the many plat-
forms, there are also many protocols for performing a microarray experiment. We can however distinguish three phases: 
(1) production of the biological sample, (2) RNA extraction and production of the sample of labeled nucleotides, and (3) 
array hybridization. For the biological sample, by treatment we mean almost any attribute of a biological experiment – 
which can range from a specific choice of microbial strain under given growth conditions, to treating a mouse with a spe-
cific drug, or to collecting a specific type of tumor from different patients. For the production of the labeled sample, 
many variants are possible, depending on the choice of cDNA or cRNA as the nucleic acids for hybridization and on the 
choice of labeling strategy (and possibly also the use of an amplification strategy).  

If a microarray experiment is replicated by producing a new biological sample, we talk about a biological replicate. If an 
experiment is replicated by producing a new sample of labeled nucleic acids from the same biological sample, we talk 
about a technical replicate. If the same labeled sample is hybridized to another array, we talk about a repetition. When 
performing a microarray experiment, biological replicates are crucial because conclusions drawn from an unreplicated 
microarray are applicable only to the observed individuals and not to the biological population it is intended for. When 
assessing the performance of a microarray platform, technical replicates are appropriate because biological variability is 
out of scope in this case. Technical repetitions are somewhat less appropriate for technology assessment because sample 
labeling is an integral part of the technology. 
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Assessment of technology performance 
Several indicators (precision, reporter identity, 
specificity, and sensitivity; see Box 2) capture the 
different aspects of platform performance.  

Box 2. Parameters of microarray performance 
Precision describes how accurately the measurement 
(here a hybridization signal intensity or a ratio of two 
intensities) can be reproduced and is usually reported as 
a standard deviation or average replicate error. It can be 
determined by running replicated experiments on the 
same RNA sample. 

Accuracy describes how close to a true value a meas-
urement lies. It can be estimated in experiments where a 
number of realistic targets are spiked at known concen-
trations into relevant RNA populations, or from com-
parisons with validation experiments. 

Specificity is the proportion of the signal of a reporter 
that originates from the intended target. Imperfect 
specificity is for the main part caused by cross-
hybridization from other transcripts. 

Sensitivity is the lowest target concentration at which an 
acceptable accuracy is obtained. 

Precision Reproducibility determines for statistical 
analysis the ability to detect the presence of a tran-
script or a difference in expression. In many ex-
perimental systems the biological variability of 
gene expression may be greater than the variability 
of measurements. In general, biologically repli-
cated experiments (i.e., repeated measurements on 
mRNA samples from independent experiments; 
see Figure 1) are needed to filter out the biological 
variability. However here, for platform compari-
son, we review the reproducibility of the techni-
cally replicated measurements taken on the same 
mRNA samples (see Figure 1 also). In a series of 
self-on-self hybridizations for cDNA microarrays 
[25], the standard deviation (SD) of replicated log2 
ratios (filtered and dye-normalized using lowess 
fit) was 0.27, with 5.5% of genes outside the 2 SD 
limit of 1.46 fold change. A similar percentage of 
false positives for differential expression can be 
expected when comparing different cDNA sam-
ples. To avoid these false positives, replicates (us-
ing different arrays) are essential, to filter out irre-
producible measurements. On 25-mer Affymetrix 
S98 yeast oligochips, the coefficient of variation of 
triplicate intensity measurements (calculated for 
the 86% genes with highest transcript abundance) 
ranged from 0.2 to 0.29 [26]. For a 60-mer array, 
the manufacturer (Box 5-a) reports for replicated 
self-on-self competitive hybridizations (of the 
same cDNA sample labeled with two fluorescent 
dyes) a median SD of log10 ratios of 0.018 with 
94% of ratios below 1.5.   

Reporter identity On cDNA microarrays, the cor-
rect identity of the reporter deposited on the slide 
cannot be taken for granted, given the incidence of 

errors in large clone collections, at least in mouse 
[27]. For example, a random sample of 119 clones, 
mostly from the mouse NIA 15K library, was 
shown to contain 91% correct clones [28]. Major 
errors in reporter design (identity) also happened 
with mouse oligochips [29]. To prevent such errors 
in the future, Affymetrix has published its reporter 
sequences and a detailed description of its design 
pipeline (Box 5-b).  

Specificity On cDNA microarrays, non-intended 
targets with sequence identity greater than 70% 
cross-hybridize to the spotted cDNA reporters 
[30], which makes it impossible to distinguish 
closely related gene family members. Oligonucleo-
tide reporters can have high specificity for the in-
tended targets [17,18,31] and the possibility of 
estimating the specificity for every probe set on 
25-mer oligochips (including a mismatch or dele-
tion control for each perfect match probe) (Box 5-
c,d) provides an additional level of assurance. To 
provide a similar level of specificity on a clone-
based platform for Arabidopsis, the CATMA pro-
ject designed gene-specific PCR amplicons from 
genomic DNA by choosing 150-500 bp regions of 
each transcript with less than 70% sequence iden-
tity to any other transcript [20], whenever possible.  

Sensitivity On HG-U95v2 oligochips (25-mers), 
transcripts spiked into human RNA were detected 
with 90% accuracy at 1 pm and with 100% at 2 pm 
(Box 5-e), corresponding to about 1 transcript in 
100,000. The 60-mer platform has a higher sensi-
tivity of 1 transcript in 1,000,000 [18], with a dy-
namic range of 0.05-5 pm (Box 5-a). In a study 
comparing the sensitivity of cDNA microarrays 
and Northern blots for 84 genes, the authors con-
cluded that sensitivity of the two methods was 
comparable [32]. Evans et al. [33] compared oli-
gochips with SAGE on a sample from a complex 
tissue (hippocampus) [34]. The RG-U34A oli-
gochip reproducibly detected 30% of transcripts 
with high-to-medium level of expression, as de-
termined by SAGE, while the 30% of genes with 
the lowest abundance by SAGE were never de-
tected.  

The above indicators show that, although grossly 
similar, the performance of the different microar-
ray technologies (cDNA, short oligonucleotides, 
long oligonucleotides, genomic amplicons) is far 
from identical. From the limited literature, it is 
difficult to predict which technology, if any, will 
prevail. 

Validation  
Although countless papers include validation of 
microarray results [35], this validation is most of-
ten subordinate to the study-specific biological 
conclusion and thus biased (i.e., only a small, non-
random sample of the changed genes is verified). 
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We focus here on dedicated studies that permit 
assessment or comparison of platform accuracy 
(Box 2).  

In a particularly careful study, Yuen et al. [36] as-
sessed the accuracy of the U74A mouse oligochip 
(25-mers) and of their cDNA microarray. They 
performed on both platforms triplicate measure-
ments for samples from two conditions. For the 47 
genes common to both platforms, they also per-
formed quantitative reverse transcription real-time 
PCR (QRTPCR) and identified among those genes 
17 genes with definitely changed expression and 
10 genes with unchanged expression. On either 
platform, the difference in expression was con-
firmed for 16 out of the 17 changed and for 0 out 
of the 10 unchanged genes. By comparing the rela-
tive expression measured by QRTPCR against 
cDNA and oligonucleotide microarrays, the au-
thors demonstrated that both platforms systemati-
cally underestimate high expression ratios.  

Kothapali et al. [37], who used human cDNA mi-
croarrays and oligochips, concentrated on verify-
ing the results of the cDNA platform. Of 17 clones 
classified as differentially expressed by cDNA 
microarrays, 4 cDNA clones (24%) were not the 
ones claimed by the manufacturer, 8 genes were 
confirmed as differentially expressed by Northern 
blot (47%), and 5 were not confirmed (31%).  

Zirlinger et al. [38] used in situ hybridization to 
verify oligochip results that had shown differential 
expression of 35 transcripts between distinct ana-
tomical regions of mouse brain. They found that 
for approximately 60% of genes the results of in 
situ hybridization were consistent with the oli-
gochip results, for 20% the results were inconsis-
tent (7% regional pattern different from the oli-
gochip results, 13% expression high in all the re-
gions), and for 20% in situ hybridization did not 
produce any signal. 

Cross-platform comparison  

By contrast with low-throughput techniques that 
allow only limited validation, cross-platform com-
parisons could be an efficient way to validate re-
sults for large numbers of genes (by protecting us 
from the idiosyncrasies of a particular platform). 
Such comparisons are also necessary for develop-
ing techniques to integrate multiple data sets. 

Several comparisons between platforms producing 
the same type of measurements have revealed 
good agreement. The log ratios of intensities from 
hybridizations of two labeled samples from human 
brain and kidney to two generations of 25-mer oli-
gochips had high correlation r=0.89 (ngenes=2,910) 
(Box 5-f). The log ratios from a competitive hy-
bridization of two samples to a cDNA microarray 
and from a competitive hybridization of the same 
two samples to a 60-mer oligonucleotide microar-

ray had an even higher correlation: r=0.97 (nge-

nes=4,598) [18]. Correlation between intensity 
measurements and tag counts resulting from 
SAGE [39] was also good: r=0.817 (ngenes=224) 
[40]. 

The situation is less clear when ratio measure-
ments are compared with absolute intensity meas-
urements. On the one hand, Kuo et al. [41] com-
pared two published data sets from 56 human can-
cer cell lines for cDNA microarrays (ratios) and 
for HU6800 oligochips (intensities). The average 
gene correlation found in the study was worryingly 
low: r=0.278 (ngenes=2,895, nsamples=56). Kothapalli 
et al. [37] also remarked that “a large variation of 
expression profiles from the two platforms was 
clearly evident”. On the other hand, the correlation 
coefficient between the log ratios measured with 
cDNA microarrays and the log ratios of the inten-
sities measured with 25-mer oligochips by Yuen et 
al. [36] was high: 0.793 (n=47). Thus in this study 
the results with both microarrays were concordant 
between themselves and with results of QRTPCR. 
Also, in a study on hippocampal neurons [7], a 
comparison of cDNA microarray data of differen-
tiating hippocampal neurons in vitro against mouse 
11K oligochip (25-mers) data for the differentia-
tion of intact hippocampi in vivo [42] provided 
also a high average gene correlation between the 
log ratios from both platforms: r=0.646 (nge-

nes=475, nsamples=5) (even though the biological sys-
tems were not identical!). Very recently, Barczak 
et al. [43] found strong correlations (r=0.8-0.9) 
(using at least four replicate samples from K562 
erythroleukemia cells from a single culture) be-
tween expression ratios for a long oligo (70-mer) 
platform and for a short oligo (25-mer) platform 
(U95Av2).    

The key point is that the good agreement in [36] 
and [43] and between [7] and [42] was obtained 
after filtering or averaging out irreproducible pro-
files thanks to the use of replicates from different 
experiments, while no replicates were available to 
Kuo et al. [41] – seriously jeopardizing the value 
of these important data. We thus conclude that, 
after appropriate filtering, ratio and intensity data 
from different platforms can be compared and are 
thus amenable to integration and useful for results 
validation.  

Meta-analysis of microarray data 
What if, in the light of our previous argument, 
several studies addressing the same question are 
available to us? Can we analyze those data sets in 
an integrated fashion and extract more information 
than from a single data set? Before considering 
more advanced data analyses, let us look at the 
most basic question, which is to determine which 
genes are differentially expressed between two 
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groups of samples. Meta-analysis is a set of classi-
cal statistical techniques [44] to combine results 
from several studies. Recently, its applicability to 
microarray data was demonstrated for the first 
time [45]. Such meta-analysis is built on top of 
statistical tests for the detection of differential ex-
pression (Box 3). These tests score genes generally 
by reporting a p value that expresses the chance 
that the observed level of differential expression 
could have occurred by chance. However, because 
such procedures test thousands of genes (and thus 
generate many false positives), there is a need to 
adjust p values to control this effect (Box 4). 

Box 3. Detecting differential expression  
The most basic setup of a microarray experiment is to 
measure gene expression for two distinct groups of 
samples (for example, mice with treatment vs. control 
mice) and to ask which genes are expressed differently 
between the two groups. Other more advanced experi-
ment designs are of course possible, but we leave this 
issue aside and refer to recent reviews on these topics 
[22,24]. The simplest approach to detecting differential 
expression is to consider a t statistic that expresses the 
difference between the observed average expression 
levels or ratios across the two groups divided by the 
estimated standard deviation over these groups. This 
approach can be extended in many ways as witnessed 
by the recent flurry of publications on the detection of 
differential expression [a]. We mention only a few pos-
sibilities, such as the nonparametric approach in Sig-
nificance Analysis of Microarrays [b], Bayesian tests 
[c], or analysis of variance (ANOVA) [d,e]. Most of 
these approaches then associate to each gene a p value 
that assesses the probability that the level of differential 
expression observed for this gene could have occurred 
by chance. If the p value is lower than some rejection 
threshold α (e.g., p<0.05=α) then the (null) hypothesis 
that the gene does not show any differential expression 
between the groups is rejected and the (alternative) hy-
pothesis that there is differential expression is accepted. 
It is thus possible that, by chance and because of ex-
perimental and biological noise, the observations for a 
gene that is truly not differentially expressed appear to 
indicate differential expression (such a gene is a false 
positive for our test). Conversely, a gene that is actually 
differentially expressed could have observations that 
suggest no differential expression (false negative). 
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Box 4. Controlling false positives  
The genomewide character of microarrays has a nasty 
statistical drawback when trying to detect differential 
expression. If we use the classical statistical threshold 
of α=0.05 on a microarray experiment with 20,000 
genes, 100 of which are truly differentially expressed, 
we can expect about (20.000-100)*0.05=995 false posi-
tives. Thus, the true positives get buried under the false 
positives. This situation can create a lot of confusion – 
for an example on the detection of cell cycle genes by 
microarrays, see [a,b]. 

Although there is no easy way out of this conundrum, 
there are several approaches to improve the situation. 
The first approach is to require that the probability of at 
least one false positive among all genes tested (called 
the familywise error rate) be lower than some thresh-
old. This approach leads to the Bonferroni correction 
[c] that consists in multiplying each p value by the 
number of genes tested to obtain a corrected p value. 
Unfortunately, because of large number of measure-
ments and the noisy nature of microarray data, this may 
lead to the reverse situation where most truly differen-
tially expressed genes get rejected because the statisti-
cal requirement becomes so stringent. Improvements to 
this procedure are available, such as Holm’s correction 
[d] and the Westfall and Young minP and maxT ad-
justed p values [e]. Another approach is more intuitive 
to the biologist. The validation of microarray data is 
strongly driven by economics: How many true hypothe-
ses can I discover after validation? How many genes 
can I afford to validate? Which proportion of the genes 
I try to validate turn out to be true? The false discovery 
rate (FDR) addresses this question and is the expected 
ratio of the number of true positives over the number of 
true positives plus false positives and procedures are 
available to correct p values according to the FDR [f]. 
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Genet. 18, 595-7 
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c. Miller, R.G. (1966) Simultaneous statistical infer-
ence, McGraw Hill 

d. Holm, S. (1979) A simple sequentially rejective 
multiple test procedure. Scand. J. Statist., 65-70 

e. Westfall, P.H. et al. (1993) On adjusting P-values 
for multiplicity. Biometrics 49, 941-45 

f. Benjamini, Y. et al. (1995) Controlling the false 
discovery rate: a practical and powerful approach 
to multiple testing. J. Royal Stat. Soc., Series B 57, 
289-300 



 - 7 - 

Once p values are available for each gene in each 
study, some simple methods (called omnibus pro-
cedures) [44] are available to test the statistical 
significance of p values combined from several 
tests. Since p values from continuous statistics are 
(as a result of their definition) uniformly distrib-
uted between 0 and 1, combining only p values 
frees us from any dependency on the statistical test 
or on the distribution of the data. The hypotheses 
tested on the different data sets need not even be 
the same! For example, we could imagine combin-
ing a data set for tumors with good and bad re-
sponses to chemotherapy with a data set for the 
same type of tumors with good and bad prognosis 
(as we might be interested in identifying genes 
associated with both bad response and bad progno-
sis).  

A first method [46] to test the significance of 
combined results is to take for one gene the mini-
mum p value pmin observed over the k different 
data sets but test this minimum p value at a more 
stringent level than the single-study rejection 
threshold α (see Box 3):  

Reject ‘no differential expression’ if 
1/

min 1 (1 ) .kp α< − −  

This method is sensitive to outliers, so a variant 
uses the nth smallest value as the test statistic [47].  

Another method is Fisher’s inverse chi-square 
method [48]. It consists in computing a combined 
statistic S from the different p values, 

12 log 2log ,kS p p= − − −�  

and using this statistic for testing. It is also possi-
ble to extend Fisher’s method by giving each data 
set a different weight [49], which will be important 
for microarray data where the quality of different 
data sets can be highly variable. How to determine 
good weights given the data of a microarray ex-
periment remains an open question at this moment; 
but weights will probably summarize the discrimi-
nation power and the noise in the data.  

Although omnibus procedures are versatile and 
easy to implement, they have the major drawback 
that, by working only with the p values, it is im-
possible to estimate the level of differential ex-
pression observed (effect size: (µ1-µ2)/SD). Many 
procedures can tackle this question [44] and they 
often closely resemble the procedures for the de-
tection of differential expression (Box 1) but they 
incorporate the study as an additional explanatory 
variable [50].  

In the first application of meta-analysis to microar-
rays, Rhodes et al. [45] combined four data sets on 
prostate cancer (two cDNA microarray studies 
[51,52] and two oligochip studies [53,54]) to de-

termine genes differentially expressed between 
benign prostate tissue and clinically localized pros-
tate cancer. The procedure they propose is a vari-
ant of Fisher’s method followed by a multiple test-
ing correction through false discovery rate (FDR) 
adjustment (Box 4). While the individual studies 
called, at an FDR adjusted value of 0.1, respec-
tively 758 [51], 665 [52], 0 [53], and 1194 [54] 
genes as overexpressed, the meta-analysis identi-
fied 50 genes as consistently overexpressed across 
the studies at the same FDR adjusted value. The 
method used by Rhodes et al. is however highly 
conservative because of a particular choice of null 
hypothesis and we do not recommend it. In our 
reanalysis of the data of the three reliable studies 
[50,51,54] using the classical version of Fisher’s 
method, we found 233 out of the 2126 genes 
common to the three studies to be reliably overex-
pressed at the same FDR adjusted value. 

Microarray analysis in the era of re-
positories and compendia 

A new era is dawning upon microarray analysis 
with large public resources of microarray easily 
available for retrieval and integrated analysis 
across platforms. But what are the obstacles lying 
ahead? And can we expect benefits bigger than 
just the improved statistical efficiency offered by 
meta-analysis? 

At the technological level, trade-offs in costs and 
available expertise probably mean that several 
constantly evolving platforms will coexist for a 
long time. However, sequence identity error in 
cDNA clones (at least in higher organisms) is wor-
ryingly high and sequence specificity is not opti-
mal. So we can expect spotted cDNA arrays to be 
progressively replaced by spotted arrays of long 
oligos or other methodologies that improve se-
quence identity and specificity [20]. For compen-
dium projects on two-channel platforms, where the 
use of a common reference is standard practice, 
using a specific and calibrated reference (such as 
an equimolar mixtures of PCR products or oligos 
complementary to all array features [55,56] or ex-
ternal normalization spikes [57]) could greatly im-
prove precision and accuracy – and may even al-
low recovering absolute measurements. 

At the methodological level, there is now more 
than enough evidence that replicates of microarray 
experiments are essential if the data is to be of any 
value [41]. It must become standard practice to 
require sufficient biological replication before 
lending any credit to claims based on microarray 
data. 

At the sociological level, we should not underes-
timate the burden placed on investigators to keep 
the annotation and data of each experiment MI-
AME compliant. This burden will be carried only 
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if good software tools that minimize it are devel-
oped and if the return on this effort becomes rap-
idly clear. 

At the infrastructure level, we can expect many 
new powerful features (much beyond simple stor-
age and query). For example, data alerts could be 
automatically generated when a new data set rele-
vant to your research is deposited – just like 
MEDLINE can generate publication alerts based 
on keywords. Extensive gene-centric views of the 
transcriptome could be made available with, for 
each gene, a virtual expression profile summariz-
ing all the available expression data [58,59]. Even 
automatic discovery alerts could be possible, after 
semi-automated data collection, by repeatedly per-
forming a standard analysis script as new data be-
comes available and dispatching each incremental 
discovery to the investigator – just like automatic 
daily BLASTing of a sequence of interest for ho-
molog detection.  

At the data analysis level, we limited ourselves to 
meta-analysis for the improvement of the detection 
of differential expression because this is the cur-
rent state of affairs. But the underlying ideas are 
clearly more broadly applicable. For example, 
clustering of gene expression profiles across mul-
tiple data sets will probably be achieved through 
the integration of clustering techniques with meta-
analysis techniques. Similarly, classification meth-
ods could benefit from similar treatments. In fact, 
because decent statistics lies at the basis of any 
serious data mining, an improved statistical treat-
ment of microarray data across platform probably 
means that most data mining techniques applied to 
microarray data will eventually be able to deal 
with multiple data sets. 

If we address properly these real difficulties and 
boldly pursue these exciting opportunities, we can 
hope that, in the next decade, exploring transcrip-
tomes will become almost as natural as exploring 
genomes. 

Box 5. Technical notes from microarray 
manufacturers (non peer reviewed)  
a. Fulmer-Smentek SB. Performance of Agilent 

Technologies 60 mer in situ synthetized oli-
gonucleotide microarrays. 2001. Technical 
note: Publication number 5988-5063EN. 
http://www.chem.agilent.com/scripts/Literatur
eRe-
sults.asp?iProdGroup=10&iProdLine=15&iM
odel=1245&iProdInfotype=68  

b. Array Design for the GeneChip Human Ge-
nome U133 Set. 2001. Technical note: Part 
No. 701133 rev 1. 
http://www.affymetrix.com/support/technical/t
echnotesmain.affx 

c. Brzoska P. Background Analysis and Cross 
Hybridization. 2001. Technical note: Publica-
tion number 5988-2363EN. 
http://www.chem.agilent.com/scripts/Literatur
eRe-
sults.asp?iProdGroup=10&iProdLine=15&iM
odel=1188&iProdInfotype=68  

d. Statistical Algoritm Description Document. 
2002. White paper: Part Number 701137 Rev 
3. 
http://www.affymetrix.com/support/technical/
whitepapers.affx 

e. New Statistical Algorithms for Monitoring 
Gene Expression on GeneChip Probe Arrays. 
2001. Technical note: Part No. 701097 Rev 3. 
http://www.affymetrix.com/support/technical/t
echnotesmain.affx 

f. Performance and Validation of the GeneChip 
Human Genome U133 Set. 2002. Technical 
note: Part No. 701211 Rev 1. 
http://www.affymetrix.com/support/technical/t
echnotesmain.affx 
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