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using Synthetic Data Augmentation
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mina.mounir@esat.kuleuven.be

Abstract—Detecting the onset of notes in music excerpts is
a fundamental problem in many music signal processing tasks,
including analysis, synthesis, and information retrieval. When
addressing the note onset detection (NOD) problem using a data-
driven methodology, a major challenge is the availability and
quality of labeled datasets used for both model training/tuning
and evaluation. As most of the available datasets are manually
annotated, the amount of annotated music excerpts is limited
and the annotation strategy and quality varies across data
sets. To counter both problems, in this paper we propose
to use semi-synthetic datasets where the music excerpts are
mixes of isolated note recordings. The advantage resides in
the annotations being automatically generated while mixing the
notes, as isolated note onsets are straightforward to detect using
a simple energy measure. A semi-synthetic dataset is used in
this work for augmenting a real piano dataset when training
a convolutional Neural Network (CNN) with three novel model
training strategies. Training the CNN on a semi-synthetic dataset
and retraining only the CNN classification layers on a real dataset
results in higher average F;-score (F1) scores with lower variance.

Index Terms—CNN, data augmentation, note onset detection

I. INTRODUCTION

Many music processing and music information retrieval
(MIR) applications rely on an elementary music analysis task
known as NOD. In this task the detection algorithm is expected
to produce an ordered list of time instants marking the start
of the successive notes constituting a music excerpt. The
majority of NOD solutions follows a three-step processing
methodology: pre-processing, reduction function estimation,
and peak-picking. Most of the recent and ongoing work
focuses on the middle step, the objective of which is to yield an
onset detection function (ODF): a highly sub-sampled version
of the original signal, highlighting the note onsets while
suppressing irrelevant signal details. Existing algorithms for
ODF estimation fall into two main categories: data-driven and
non-data-driven. The latter represents the traditional solutions
exploiting the transient nature of a musical note onset in
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contrast to its subsequent steady-state portion or some other
onset properties. These algorithms are completely independent
from the data to be processed, as opposed to the data-
driven algorithms. Checking the results reported in the Music
Information Retrieval Evaluation eXchange (MIREX) NOD
challenge [1], the CNN suggested by [2] is currently the best
performing data-driven algorithm in terms of F;.

A crucial problem in the design of data-driven NOD algo-
rithms is the amount and quality of the available development
datasets. For instance, the previously mentioned CNN model
[2] is fitting around 290K parameters using one of the largest
NOD datasets, made available by the authors upon request.
This dataset was obtained by combining different datasets,
resulting in a total size of 102 minutes (321 files, 28K onsets).
A processing rate of 100 frames-per-second (fps) was used
and the results reported in [2] were based on an 8-fold cross-
validation, which implies the model was trained on 7/8 of the
entire dataset for each of the folds. This translates to 89.25
minutes or 535K training points, which is hardly twice the
number of model parameters. Despite the number of training
points being far from the rule-of-thumb of 10 times the number
of model parameters, a well performing model was obtained
in [2], presumably thanks to training the CNN over many
epochs, hence effectively increasing the number of training
points. Nevertheless, as for any data-driven model, it would
be beneficial to have more training data. which is difficult to
achieve for the NOD task because most of the available NOD
datasets are manually labeled. Manual labeling is typically
performed in two steps, listening to the music excerpt and
then visually assessing its time-frequency representation, and
is usually carried out independently by two or more expert
annotators. For these reasons it is a costly and time-consuming
operation. Moreover, as the resulting annotations are subjective
and context-dependent, these should be used with care. This is
usually handled by employing an evaluation window of about
50 ms around the onset ground truth [3].

One way to tackle the data availability problem, in particular
for deep-learning-based NOD algorithms, is data augmenta-
tion. To our knowledge, the only work done for NOD dataset
augmentation is reported in [4], where it was suggested to
increase the model complexity by two modifications to the
model proposed in [2]. These two modified models were



trained by using data augmentation strategies common in
music applications: transposition, time stretching, spectral
envelope transposition, and remixing of sinusoidal and noise
components. Unfortunately the modified models did not yield
an enhanced NOD performance, and sometimes even resulted
in a performance degradation.

The objective of the current paper is to propose a different
strategy for tackling the data availability problem, based on the
generation of automatically annotated semi-synthetic music
excerpts. We assess the effect of using datasets comprising
such excerpts on the performance of deep-learning-based NOD
algorithms. More specifically, three model training strategies
are proposed and evaluated. In the first strategy, the model is
simultaneously trained on a semi-synthetic and a real dataset.
In the second and third strategy, a Universal Onset model
(UOM) is trained on a semi-synthetic dataset, which is then
retrained (in two different ways resulting in two different
strategies) on a real dataset.

The paper is organized as follows. The data-driven ap-
proach to NOD is introduced in Section II, focusing on CNN
modeling and data annotation. The proposed model training
strategies are described in Section III. Section IV introduces
the different datasets used, and shows initial results regarding
the use of single vs. multiple instrument types in the semi-
synthetic dataset. Details of the CNN model [2] are provided
in Section V, after which the main results are presented in
Section VI and conclusions are formulated in Section VII.

II. DATA-DRIVEN MODELING AND ANNOTATION
A. Data-driven NOD with CNN model

In the data-driven approach to NOD, a model is trained
based on input data consisting of music excerpts each con-
taining multiple note onsets, and a corresponding annotation
consisting of the ground truth note onset times. In this paper,
we will consider a CNN model (detailed in Section V) for
NOD which can indeed be considered the state-of-the-art
data-driven solution [1]. A CNN is usually composed of
interleaved convolutional and pooling layers, constituting the
feature-learning layers, followed by a few fully connected
layers forming the classification layers. Alternatively, these
classification layers can be replaced by a Support Vector
Machine (SVM) or a K-Nearest Neighbours (KNN) classifier.

Considering the fact that NOD is a binary classification
problem with an extremely imbalanced distribution of classes
(i.e., there are many more time instants without note onsets
than with note onsets), the F; score is an appropriate evalua-
tion metric. It is defined as the harmonic mean of the precision
(P) and recall (R), i.e.,

2PR
~ P+R
A crucial question when assessing the CNN performance on
small datasets is how well the reported scores will generalize
to other evaluation datasets. One way to address this question
is to report the scores after a K -fold cross-validation instead of
using a straight train-validate-test workflow which would yield
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(D

a good generalization only when working with large datasets.
In a K-fold cross-validation, the dataset is first divided into K
folds, after which K train-test rounds are performed. In each
of the K rounds, it is common to use K — 1 folds for training
and 1 fold for testing. The final score is the average of the K
test scores. In this work, we adopt a different data split for the
K -fold cross-validation, using 1 fold for training and K — 1
folds for testing. Such data split has been shown useful to
assess the performance of data-driven models in applications
where a limited amount of training data is available [5], as is
typically the case in data-driven NOD.

B. Manually vs. automatically annotated datasets

As mentioned above, the manual annotation of note onsets
is a time-consuming and cumbersome procedure. Automatic
annotation is therefore an attractive alternative, which could
yield larger and more consistently annotated datasets. A first
approach to automatic annotation consists in building datasets
using musical instruments that have both an audio and MIDI
output (e.g., the MAPS dataset [6]). This is however only pos-
sible for a limited range of instruments, i.e. (semi-)electronic
instruments such as the Yamaha Disklavier used in [6].

A second approach, proposed in this paper, is to generate
semi-synthetic datasets in which the music excerpts are com-
posed by mixing recordings of isolated notes for which the
onsets are automatically annotated prior to mixing. Adopting
the definition of a note onset being “the first detectable part
of the note in an isolated recording” [7], it can be understood
that a simple energy measure suffices to automatically annotate
note onsets in isolated note recordings. In this way, we can
generate large datasets with consistent annotations obtained at
minimal cost. Even if the proposed approach strongly depends
on the availability of datasets with isolated note recordings, a
large amount of semi-synthetic NOD datasets can be generated
from just a limited amount of isolated note recordings, by
varying the mixing parameters. Also note that we apply a
random mixing strategy (i.e., random note selection, random
ordering and spacing of notes), hence resulting in excerpts
with somehow no musical structure. This can be justified by
observing that data-driven NOD algorithms generally do not
rely on such structure.

III. PROPOSED MODEL TRAINING STRATEGIES

When using semi-synthetic datasets for NOD, one should
be cautious not to overfit the model to the way the semi-
synthetic data were generated. To this end, we propose three
strategies to train a CNN model for NOD based on both real
and semi-synthetic data. As a benchmark, we will compare
the models resulting from these three strategies with models
trained on only real or only semi-synthetic data, resulting in
the following five model training strategies, the performance
of which will be compared in Section VI:

o Real (R): the model is trained only on real music
excerpts. The excerpts could be manually annotated as
in, e.g., [2] or alternatively, automatically annotated when
using MIDI-supporting instruments as in, e.g., [8].



o Synthetic (S): the model is trained only on an automat-
ically annotated semi-synthetic dataset.

o Synthetic + Real (S+R): the first proposed model train-
ing strategy consists in simultaneously training the model
on excerpts from both datasets, by randomly interleaving
real and semi-synthetic excerpts in the training set.

o Synthetic pre-train followed by Real retrain (S>R): in
the second and third proposed model training strategy, the
model is first pre-trained on a semi-synthetic dataset then
retrained on a real dataset. This strategy resembles trans-
fer learning, adapting a UOM trained on semi-synthetic
data to real music excerpts. Given the CNN structure
composed of one or more feature layers (convolution,
pooling) followed by a number of classification layers
(fully connected), see Section II-A, the retraining in this
strategy is run only on the classification layers as it
can be assumed that the feature layers learned from one
dataset can be used to generate useful features for another
dataset as well. Moreover, this approach to retraining also
protects the model from overfitting to a specific dataset.
Two flavors of this strategy are proposed and evaluated
in this paper for a CNN having two feature layers, see
Section V:

— Partial freeze (S>R;): in this strategy only the first
feature layer is frozen, leaving the second layer open
to learn additional features that couldn’t be learned
only from the semi-synthetic dataset. Hence we will
use the symbol S>R; to denote this strategy of
freezing the first feature layer only.

— Full freeze (S>Rp): here, the model is only re-
learning the classification layers, assuming the semi-
synthetic dataset suffices to learn a generic feature
model for note onsets. This full freezing strategy is
denoted by the symbol S>Rp.

When training a data-driven model on datasets from different
origins, it is important to consider how to deal with their
respective annotations. Specifically for NOD evaluation, we
suggested in our recent work [9] to take into account the time
shift in annotations between the different datasets especially
when training a Deep Neural Network (DNN). For instance,
a semi-synthetic dataset may consistently have its onsets
annotated earlier or later than a real dataset. Here, we adopt
the approach of [9], by treating the annotations time shift as
a hyperparameter determining the optimal temporal alignment
of dataset annotations. Practically, given two datasets A and B
from different origins, this hyperparameter is tuned by using
the model learned on dataset A and estimate the annotations
time shift § that, when applied to the whole dataset, maximizes
the performance of this model on dataset B. When training a
model on dataset B, the annotations B are then time-shifted
by —d.

IV. DATASETS

Two semi-synthetic datasets were generated and tested in the
frame of this paper. First, a large semi-synthetic dataset was
generated for a wide range of instruments and it was termed

All Instruments Semi-Synthetic (AISS) dataset. It was created
using the isolated recordings for 138 different combinations
of instrument and playing style from the McGill University
Master Samples (MUMS) library [10]. The available notes per
instrument and playing style were divided into 3 groups: 60%
for training, 20% for validation and 20% for testing. Each of
these groups were then used to produce a number of semi-
synthetic music excerpts by mixing the isolated notes: 4 train-
ing mixes, 1 validation mix and 1 testing mix per instrument
and playing style. Every mix contained 150 randomly selected
notes with random inter-onset distances resulting in a tempo
uniformly distributed in the range [2,2646] beats per minute
(bpm). The note amplitudes were also randomized and the
mixing was polyphonic, i.e., notes could (partially) overlap in
time.

Despite the large amount of annotated examples, the opti-
mization of the CNN model parameters using the AISS dataset
stalled rapidly — after 10 epochs — for both the training and
validation. In other words, the model was not able to continue
learning which we believe may relate to the strong diversity
of onset characteristics over the different instruments in the
AISS dataset.

A second semi-synthetic dataset was therefore created, con-
sisting of excerpts with only one type of instrument, namely
the piano. This so-called Piano Semi-Synthetic (PSS) dataset
was built from the piano recordings in the MUMS library,
corresponding to 8 different pianos and playing styles or
conditions: Concert Hall Steinway Soft, Hamburg Steinway
Loud, Harmonics, Mpp Loud, Mpp Medium, Mpp Soft, Right
Pedal Vol9 and Steinway Plucked. The PSS dataset generation
process and parameters were exactly as for the AISS dataset,
except for the amount of training mixes which was increased to
8 mixes to have a sufficiently large training set (see below).
Figure 1 compares the validation and testing F; scores for
the PSS and AISS datasets after training for 100 epochs,
selecting the hyperparameters (annotations time shift and
detection threshold) yielding the best validation F;, and using
the resulting model and hyperparameters to obtain the test Fy
scores. The box plots in the figure show the F; distribution
over the different instruments/playing styles. It is clear that
there is a higher average performance and less variance when
restricting the NOD task to a single instrument type. Therefore,
in the remainder of the paper we will focus on datasets of
a single instrument type, and will use the PSS dataset as
the semi-synthetic dataset when assessing the proposed model
training strategies.

Further, two real datasets were selected from the MAPS
dataset [6], more specifically the ENSTDkCI and ENSTD-
kAm datasets which will be referred to here as MAPS_CL
and MAPS_AM. Also these two datasets are of the single
instrument type (piano) and were recorded using a Yamaha
Disklavier with annotations generated automatically from the
output MIDI file. The suffixes “CL” and “AM” refer to close
and ambient recording, hence specifying the distance between
the microphone and the instrument.

Table I provides a summary of the datasets introduced here,
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Fig. 1. Comparison of validation and testing F; scores for CNN model trained
on synthetic datasets (piano and all instruments).

TABLE I
DATASET PROPERTIES

Name Files Time (min.)  Points (K) Onsets (K)
B.C. A.C.
AISS 828 597.3 3583 1242 1224
PSS 88 125.4 752 13.2 13.1
MAPS_CL 30 136.1 753 76.4 41.8
MAPS_AM 30 125.5 817 78.0 37.2

in terms of number of music excerpts (Files), total duration
(Time), number of input points fed to the CNN with 100 fps
processing, and amount of onsets per dataset. As in most other
NOD research, onsets less than 30 ms apart are combined into
a single onset for evaluation, therefore the last column in Table
I differentiates between number of onsets before combination
(B.C.) and after combination (A.C.).

Even though from Table I it may seem that the PSS dataset
is smaller than the MAPS datasets, that is not the case when
considering the data subsets used for training. The PSS dataset
is composed of 80% training, 10% validation and 10% testing
excerpts. The training subset of length 113 min (676K points,
11.8K onsets) will be the set “S” used in the model training
strategies proposed in Section III. On the other hand, each of
the MAPS datasets is divided for every training/validation/test
round in the K'-fold cross-validation (explained in Section II),
into 20% training, 10% validation and 70% testing. Hence,
the MAPS training subset length amounts to about 25-27 min,
which is 4 times less than the PSS training subset length.

V. CNN MODEL

In the following we summarize the characterization of the
CNN proposed by [2] and point out the minor differences to
the CNN used in our experiments. First, an input point is a
3D-tensor (3 x 15 x 80) containing 3 magnitude spectrograms
with different processing window sizes (23 ms, 46 ms and
93 ms) but same frame rate of 100 fps. The number of
logarithmically scaled MEL bands, from 27.5 Hz to 16 kHz,
per frame is 80 while the number of frames per data point
is 15. A data point is given a label “1” if the middle frame,
i.e. the 8th of the 15 frames per data point, is matching an
onset. Moreover, fuzziness in training is introduced by labeling

TABLE 11
CNN STRUCTURE [2]

Layer Cn Cou Sk Sm
convolution 3 10 7x3 640
max-pool 10 10 1x3 0
convolution 10 20 3x3 1820
max-pool 20 20 1x3 0
fully-connected 1120 256 1 286976
fully-connected 256 1 1 257

the two neighboring data points with “0.25” to account for
annotation ambiguity. Note that neighboring data points are
10 ms apart and jointly occur in 14 out of 15 frames. As
labeling starts by checking the middle frame, the complete
feature sequence per music excerpt is padded with 7 frames at
both the start and end, consisting of repetitions of the first and
last frames. No feature normalization is applied as it seemed
unnecessary for our experiments.

We used the exact network structure as in [2] and as detailed
in Table II, where for each layer, Cj, denotes the number of
input channels, Cy, is the number of output channels, Sk is
the kernel size representing the (time x frequency) dimen-
sions, and Spr = (CinSk + 1) Coy is the number of model
parameters per layer. For the convolutional and max-pooling
layers, channels refer to feature maps while in case of fully-
connected layers, channels refer to neurons. A 50 % dropout
is applied to the input of each of the fully-connected layers.
Convolutional layers use the ReLU activation functions, and
the fully-connected layers use the logistic sigmoid function.
The training is done on mini-batches of 256 data points for
100 epochs using the adaptive moment estimation (Adam)
optimizer [11] with its default parameters and minimizing
the binary cross-entropy error. The order of training excerpts
is shuffled after each epoch. This was found to result in a
performance comparable to what has been reported in [2] when
applied on their datasets with 8-fold cross validation and using
the same folds.

VI. RESULTS

Here we compare the performance of the different model
training strategies proposed in Section III. Two experiments
are run, i.e., separately testing with each of two the real
piano datasets MAPS_CL and MAPS_AM, and the resulting
F; scores are shown in Fig. 2 and Fig. 3, respectively. Each
boxplot shows the F; distribution among the different folds
used per model training strategy (see Section IV for details
on the size of the folds for the different datasets).

For both close and ambient recordings, we see that the
average performance is better when training on only real
data (R) than only semi-synthetic data (S), despite having
many more semi-synthetic than real training points. This is
not surprising as in the (R) setup, training/validation/testing
excerpts originate from the same dataset and are hence much
more similar in terms of note onset characteristics. Still,
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Fig. 2. Fj scores for the different model training strategies tested on the
MAPS_CL real dataset. Every boxplot is summarizing the 5-fold cross-
validation test results.

training on the semi-synthetic dataset results in a lower F;
variance compared to training on the real data, which is
an observation that can be extended to all model training
strategies involving the semi-synthetic data (i.e., S+R, S> Rp
and S > R;) in both experiments. Moreover, a better average
performance is obtained for almost all strategies in which
real and semi-synthetic are combined. The S > Rp strategy,
in which the model was trained to learn note onset features
from semi-synthetic excerpts and then retrained on real data,
consistently outperforms the other model training strategies
in terms of both mean and variance of F;. This confirms our
rationale that a more generic NOD model can be learned from
a large semi-synthetic dataset, and that such model can serve
as a UOM for onset detection. Comparing the results in Fig. 2
and Fig. 3, we notice that the onset detection becomes more
challenging with ambient microphone recordings, presumably
due to the presence of reverberation.

VII. CONCLUSION AND FUTURE WORK

We proposed three new model training strategies that allow
to augment the scarce datasets for NOD with automatically
annotated semi-synthetic data. The best performing strategy
consists in training a CNN model on semi-synthetic data for a
single instrument type, effectively obtaining a UOM of which
the classification layers can then be retrained on a real dataset.
We suggest three directions for the further development of this
work:

« Single instruments: To investigate the effect of further
increasing the size and variability of the semi-synthetic
dataset on the resulting CNN model performance. Dataset
size can be increased by collecting more isolated note
recordings and generating more mixes, whereas the vari-
ability can be increased by more strongly varying the
density of onsets in semi-synthetic mixes, and adding
background noise and reverberation.

o Multiple instruments: To study the effect of combining
different instrument types into a joint semi-synthetic
dataset for multi-instrument NOD. In this work, only
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Fig. 3. Fi scores for the different model training strategies tested on the

MAPS_AM real dataset. Every boxplot is summarizing the 5-fold cross-
validation test results.

two extreme cases (single instrument type vs. all pos-
sible instruments types) were considered, while a natural
way of grouping instrument types would be to consider
datasets of instrument families, e.g., winds, pianos, brass
and strings.

o Model complexity: Due to the automated procedure for
creating and annotating semi-synthetic mixes, the dataset
size that can be generated in this way is practically
unlimited. Having an unlimited amount of training ex-
amples opens perspectives to increase the CNN model
complexity and enhancing the NOD performance by
adding more feature maps or layers.
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