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Abstract—In this article a primal barrier interior-point square-root recursions for KKT solution; second, it is show
method for moving horizon estimation (MHE) is presented. how covariances of within-horizon states, which are olgtdin
It exploits the structure of the KKT systems yielding an  oq 4 by nroduct, are naturally modified by the barrier; fipall

algorithm with linear complexity in the horizon length. Ideas . . . .
of square root covariance Kalman filtering are proposed in we demonstrate with some numerical simulations that MHE

order to efficiently update covariance matrices occurring h  Problems can be solved extremely fast.

the factorization of the KKT matrix. The algorithm is able to The article is organized as follows. In Section I, the state
compute - without any additional costs - the covariance of tB  estimation problem is introduced. In Section I, we give an
last estimate within the horizon, which reflects the accurag of interior-point algorithm for solving the quadratic progra

the estimate. . . .
Index Terms— State estimation; Matrix Riccati equations; formulated in Section Il. The key goal of this paper, namely

Optimal filtering; Optimization problems the structure exploiting algorithm for factorizing and\snb
the underlying KKT system is outlined in Section IV and
I. INTRODUCTION subsequently in Section V a numerical example is given to

The efficient solution of quadratic programs that arise iflemonstrate the efficiency of the proposed algorithms.
MPC has been addressed in [1], [2], [3], [4], [5], [6], [7],
18], [9], [10], [11], [12]. In [13] a primal barrier method fo Il. BACKGROUND
MPC problems was presented. A. Problem statement

Almost all of these publications focus on the control _ . . L
problem, i.e. MPC. The state estimation problem, i.e. MH In_ this section we describe the state e_:st|mat.|on probllem
is closely related to the control problem and has Iarg(;X; Ilnegr Gauss-MarKO\_/ models. Let the linear time-vagyin
the same optimal control structure. However, there are t namical system be given by
main differences; first, the initial state is free in MHE and

. ; A . . Th41 :fk+Akzk+kak; k=0,1,... (1)
second, the Hessian of the objective function is almost " _ Chan + Hown + E— 01 @)
always positive semidefinite as opposed to positive definite Yo = CkTE T HEWE T VR R=E L
in standard MPC formulations. where k denotes discrete timey, € R" is the state,

It turns out that MHE problems can be solved efficientlywk € R" is the state disturbance or process noisec R”

by a matrix Riccati recursion, more precisely a form ofg he output disturbance or sensor noise, apde R?
the covariance Kalman filter recursion, a forward and & tne observed output. The system matricks € R™¥"

backward vector solve. A _weII _known problem with t_heGk € R™™ H, € RP™ and (), € R”*" and the offsets
normal Kalman filter recursions is that they can result in € R" are assumed to be known. The goal is to find

covariance matrix which fails to be symmetric [14], [15]. Toe state sequence that is most likely, given the sequence of
cope with this difficulty Potter and Stern [16] introduce@ th jpservations and the model described above.

idea of expressing the Kglman filter recursions in terms of Rayark 1: The model described above is slightly more
a square-root, more precisely a Cholesky factor of the erm@nera| than other linear (time-varying) models encowuter
covariance matrix. By propagating such a Cholesky factof, ihe MHE literature. This model arises from linearizatin
the computed error covariance matrix remains Symmetric aRg,njinear MHE problems within the framework of Newton-
positive (semi-)definite at all times. Furthermore, dueht® t e methods. Our interest in this article is in the undegyi
numerically stable operations such as Householder refleGscture of the quadratic (sub)problems, hence, we will

tions and Given rotations usually employed in square—ro%{ccept the time-varying model without worrying about its
implementations, they are numerically better conditionegrigin_

than a direct implementation[17].

In this article a primal barrier interior-point method for
MHE is presented. The contribution of this article is three- 7(N,x, w) = Jic(z0) + Jproc(N, W) + Jsens (N, x, W),
fold: first, we show how constrained MHE problems can

be efficiently factorized using an interior-point methodtwi WhereN is the estimation horizon and whexec R+
andw € RY™ denote, respectively, the stacked vectors of
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The objective is defined as
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z and corresponding covariance matfex in which case we B. Moving horizon estimation

define The least squares batch estimator described above cannot

Jic(wo) = 155" (x0 — @)|13, be applied to online estimation problems in general because
the problem grows unbounded with increasing horizon. In

where the matrixS is a square root of, i.e. P = S50, qgrder to bound the problem, people have proposed a moving

a Cholesky factorization for insta_nce generatgs_ a (loweforizon strategy [18], [19] relying on the ideas of dynamic
triangular So. The larger the covariance of the initial state

. = ) o ) programming. The idea is to summarize past information

error, the less weight it is given in the- ob!ectlve function. by an initial state estimate and a corresponding weighting
~The second termJ,,c, is a penalization of the state mairix. Evidently, one should use the best initial estinaate

disturbances. We assume that, for different values of, \yeighting available. From the previously computed optimal
are independently distributed, which implies state trajectory, a good initial estimate is already abééla

N—1 The weighting matrix is propagated using a Kalman filter

Toroe(N,w) =Y [[W, Twg |3 update (see e.g.,[20], [18]). The moving horizon problem
=0 is identical to (5) with growing horizormV until a horizon

. . . . ) . Nnor Is reached after which MHE problems of lengih,,,
Here, W}, is a weighting matrix, which in a stochastic setting, o being solved with propagatedP.

can be regarded as the square root of the covariance matrix
corresponding to the process noisg, i.e., Qr = W,/ W IIl. PRIMAL BARRIER INTERIOR-POINT
with @ the covariance matrix. METHOD

The third term, 7.5, IS @ penalization of the sensor noise.
Again, we assumey, to be independently distributed, which
implies

In this section a basic primal barrier interior-point fohso
ing (5) is described. Let us first define an overall optimmati
variable

N
u7sens(N7X,W) = Z HVk—TUng, o = ($07w0;5171 . -;wN717$N) c R(N-l-l)n-ﬁ-Nm,
k=0

. I . . . Then the QP
whereV}, is also a weighting matrix, which in a stochastic en the QP may be expressed as

setting can be regarded as the square root of the covariance min, 32THz+ g7z 5
matrix corresponding tey, i.e., Ry = VkTV;c with R, the s.t. Pz<h, Cz=b, ©6)
covariance matrix. In this article we will assume bdih, .
andV;, to be identity matrices, without loss of generality. with
Next, v, can be eliminated using output equation (2), Sy tsy T+ cy ¢ Hy
leading to - Hg Co I'm + Hg Ho
N-1 CTCN
Jsens(IN, x, W) = llyk—Crar—Hywg |5+ |lyn —Cnan||3. aTo N
Pt —85t55 Tz +CTho
Hl'ho fo
Finally, mixed linear inequality constraints are consater g= ; b= — ,
T
Teo,+ TPwe <ty k=01, ,N-1,  (3) T I
Tyzn < tw, (4) Ay Go —In
where TP € R™", T¥ € R™ ™, t), € R™, and T}, ¢ “- A G ]
R™*" ¢y € R™ are given, and where denotes vector re NobomNer T )
(componentwise) inequality. o o 0
Before continuing, let us summarize the state estimation P = , Jh = : ,
problem treated in this paper: TR TN N1
TY tn
minew [|1S5 7 (20 — )13 + Ypg lwkl3 where,, denotes the unit matrix of dimension
+ 3050 gk — Cravw — Hywg 13 _ _
+lyn — Cnzyl3 (5) A. Primal barrier method
St @1 = fi + Agz + Grwg, k=0,...,N -1, We will use a primal barrier method to solve the QP ([21,
Tray + TiPwy < ty, k=0,....,N—1, Chap. 11] [22]). The inequality constraints in the QP (6)
Tyrn < tn, are replaced with a barrier term in the objective, to get the

This problem is a convex QP. In Sections Il and IVapprOXImate problem

we present a structure exploiting interior-point method fo min, 2THz+ g7z + ko(2) 7
solving these quadratic programs efficiently. s.t. Cz =0, (7)



wherex > 0 is a barrier parameter, anglis the logarithmic In the next section a method is presented to compute
barrier associated with the inequality constraints, defiag the Newton stepAz and Av efficiently. Having obtained
N, this Newton step, we perform a feasibility search and a
o(z) = Z —log(hi — pTz), backtracking line ;earch on thg norm of the resiQué&ee,
e.g., [21,§9.2]). Finally, the primal and dual variables are
updatedz := z+ sAz andv := v+ sAv. This procedure is

T T I
wherepy ..., py, are the rows ofP. The problem (7) IS repeated until the norm of the residual is below an accegtabl
a convex optimization problem with smooth objective angy eshold.

linear equality constraints, and can be solved by Newton’s
method. IV. COMPUTING THE NEWTON STEP

In a basic primal barrier method, a sequence of problemss Factorization

of the form (7) is solved, using Newton’s method starting By rearranging the KKT system (9), the block diagonal

from the previously computed point, for a decreasmg. S%tructure of the KKT matrix is revealed. Let us write the
guence of values of. As « approaches zero, the SOIUt'On(rearranged) KKT system al/¢ = r, with

of (7) converges to a solution of the QP (6).

=1

o IT 0
B. Newton method v o 7T
We now focus on solving the problem (7) using a Newton 0 X ™
method [21,§10.3.2]. Let us introduce a dual variablec M= )
RY™ associated with the equality constraifit = b. The ?N—l F%(;l TOT
optimality conditions for (7) are then B oy
rg=Hz+g+rPTd+CTv =0 roT0
(8) Ta
r,=Cz—-b=0 Azo wo
with r4 the dual and-, the primal residual and wherg = Awo Ti
1/(hi — p¥'z), andp! denotes theth row of P. The term ¢ = An o | T
xPTd is the gradient of¢(z). We also have the implicit : ’ Co|
constraint here thaPz < h. Avy PUN
The algorithm is initialized with &° point that strictly Azy Z;N
Ta |

satisfies the inequality constraints but need not satiséy th L
equality constraints. An arbitrary initial value can be dise wherer?° denotes the dual residual associated with

for 1. andr,;* denotes the primal residual associated withand
We maintain an approximate (with Pz < h) andv  where we defined
at each step. If the residuals are small enough, we quit; T - T T T
otherwise we refine our estimate by linearizing the optitpali ®o = { So 5o+ Co Co -t wMy Mo Co Mo + wMo Lo }
HO Co+I€LO My Im+H0 H0+I€LO Lo ?

conditions (8) and computing primal and dual stéps Av

for which z+Az, v+ Av give zero residuals in the linearized &, — | CkCr+rM M, ClHy, + kM Ly
C k HIC, + wLiM, I+ HIH, +rLTL, |0
approximation. k k k i

The primal and dual search steps: and Av are found l<k=N-1
by solving a system of linear equations: Oy =[ CLCN +rMEMN ],
H + kPT diag(d)?P CT Az | [ ra )
C 0 Av | rp |’ Tpr=[4 Gi¢], 0<k<N-1
This system of equations is called the KKT system and the T — [ —1In } _
matrix in the left-hand side is called the KKT matrix. The 0

term xPT diag(d)?P is the Hessian of the barriet¢(z)
and has block diagonal structure in case of the mixed linear Lemma 4.1: The  KKT  matrix is  symmetric

inequality constraints (3)-(4). Let us define indefinite and can be factorized by an indefinite
Cholesky decomposition M = LDLT  with
M, = diag(l/(tk _ ijxk _ ng)wk»TJf, 0<k<N-1 D= blkdiag([n+m, 7In, ey In+m, 7In, In) and
Ly, = diag(1/(ty, — T¥xy — TPwp)) T, 0<k<N -1 st
. T T T
My = diag(1/(tx — THan)TS, T et s
then we obtain I — ‘
MIMy M{F Lo ' Syiiy
LMy L¥Lo ’n_1Shap SR
pPT diag(d)2P = . . 0 syt syl

ME My which can be recursively computed by Algorithm 1.



Algorithm 1: [Riccati recursion]
1) Initialization: Ry = S,
2) Fork=0,...,N—1:

(a) Measurement update step
Ck Hy,
VEM, /KLy,

Compute QR-factorization:

D [Rf Im] _ [0 Qk] {%k}

In+m

Let D), = |:

Set Sy = R, " B I ]
(b) Mode forwarding step

LetT'y, = [ A, Gy ]
Compute QR-factorization:

Sp T = [Qk+1 QkJrl] [R%H]

SetSkH = Rk+1
endfor.
3) Final time step:
(a) Measurement update step

_| On
Let Dy (L\/EMN]

Compute QR-factorization:
DnRY - 1 [R
{ ]} N} =[Qn Qn] [ ON]

SetSN+ = RX,TRN

A proof of Lemma 4.1 is now given.
Proof: To find out howSy,, S1, S1+ etc. can be computed,
we multiply out LDLT and equate with\/. Then,

Soi Sy = o (10)

STS1 = ToSi,So+T4 (11)
Sitst TS, 1S IYT + @y, (12)
St 1Sk = TwSE Skalh (13)
SyhSyh = YSYSY YT + oy (14)

Let us compute the QR-factorization

RE
o)

In+m

~ 1 |R
=[Qr Q) {Ok} (16)
where@, and Qk are orthogonal matrices ang is upper
triangular. Then we can set

Skt = R,;T |:Rk I :|

To see that this is a valid choice {8, we invert both sides,
assuming without loss of generality th&f. is invertible,
and right-multiply withQ7:

(17)

_ R
Skin = k

D

")

where Eg. (16) was used in the second line. Now, siige
is orthogonal, we can write

St QRQuSiy = SipSiy
D .
_ A k R}:T
= | [R; Dy, ;
I, m
R'RT 0
:[kok Im]+D{Dk

which, after substitution of?;, and using (15), concludes the
proof for Equations (10) and (12). For Eq. (14) the reasoning
is similar.

Next, we prove the model forwarding step. From Eg. (13) it
can be seen that with any orthogonal matﬁ)gﬂ

Spr1 = QF . SiiTE, 0<k<N-1 (18)
We compute a QR-factorization
. _ R
ST = [Qrs1 Qri) [ %H} (19)

wherer+1 andQy.; are orthogonal matrices anfdﬁl is
upper triangular. ]

By applying this factorization to an arbitrary right hand

First we prove the measurement update step, i.e. Equside the KKT optimal vector is obtained after a forward

tions (10), (12) and (14).

Lo _ | Ck Hj,
Let us defineR, = S, and D;, = |:\/EMk \/EL;J' Note
that
—1g-T
Py = [SO 5 I }+DOTD0,
@ =" I ]+D£Dk, 1<ken-1 @9

oy = DL Dy,

and a backward vector solve. However, the residual vector
rio contains a termS; 'Sy (zy — ). Hence, if we
would solve L& = r and subsequently sovBLT¢ = ¢,
then we would come across a terfi” (z, — &) after

the forward vector solve, and invertibility of, would

be required. Fortunately, there is an elegant solution to
this. A block LU decomposition of the KKT matrix
would lead to the classical Kalman filter equations. By
applying it to the residual vector and after some matrix



. . . o . shift
manipulations the invertibility assumption can be removed . T
Next, the recursion can be reformulated to use the square- | %i !
root factors computed by Algorithm 1. The forward and ! " Kinit |
backward vector recursions are described in Algorithm 2 i 1 ‘;
and Algorithm 3. Proofs are omitted due to space limitations ! !
| |
| |
Algorithm 2: [Forward vector recursion] | l
1) Initialization: o 1 N N+1
T — xo Fig. 1. lllustration of the hot starting procedure. Solve ezjuigence of
dy = _ problems with decreasing until reasonable accuracy, shift the solution of
Wo the problem withx = kinj to the next time step.
cCo = Sg+ S()JFFgZQ

2) Fork=0,...,N—1:

|:hk + Crxr + kak]
9k =

VEe,
Az, 7 A7 | Drdr + gk
) - s
Az, + 2,
r k —
dosr = k [Awk erlj + [ — Tor
—Wk+1

If (k=N —1) then

CN = —S%+SN+VN
else
14
k1 = Sip14 Sk (Chpq Va2 — { kgl})
endif.
endfor.
3) Final time step:
. hy +Cnzn
N = VKes
’ Dndy +
Ary = dN_SJT\}+Q%|: M gN] —cN

Algorithm 3: [Backward vector recursion]

1) Initialization: Azy = Az
2) Fork=N—-1,...,0:
If (k=N —1) then

AZ/N = Tlgi“'N — TT@NA:L'N

else
Ayk+1 = T§k+1
Ax
fTT(QDkJrl |:A'LUIIZ-:—11:| + Fz+1AVk+2)
endif.

Axy, Az, A -
[AWJ = [Awﬂ — S Qre1 Rey1 Avgyy

endfor.

B. Hot starting

In MHE, similar optimal control problems are solved
successively. Therefore, it is a reasonable assumptian tha
the solution of an MHE problem can be shifted one time
step forward to yield a good starting point for the next MHE
problem. Unfortunately, as pointed out in [1], in interior-
point methods it is better to use a starting point away from
the boundary (a strictly feasible point). More specifically
recall that in interior-point methods a sequence of proklem
of the form (7) is solved for decreasing however if we
shift from one MHE problem to the next, we start a new
optimization problem, i.e. we start with = k;,;;. Hence it
turns out that the solution to the previous MHE problem (i.e.
with small k) is not a good initialization. The procedure we
suggest here, illustrated in Figure 1, is to solve a sequence
of problems for decreasing until reasonable accuracy is
obtained, but shift the solution of the problem with= ;¢
to the next time step as a good starting point.

V. EXAMPLES

The algorithm was implemented in C with calls to BLAS
and Lapack libraries [23]:dgeqgrf, the QR factorization
algorithm from LAPACK using Householder reflections, was
used; BLAS routinesdgemm and dgemv were used for
matrix-matrix and matrix-vector multiplications respeety.
Our platform is a 2Ghz AMD Athlon running Linux and the
computation times were obtained with the Unix command
gettimeofday.

A. Constrained linear system
Consider the following linear system [19]

0.99 0.2 0
Jik+1=[0.1 0'3}:5;@—1—{1}10;@, k=0,1,...

ye=[1 =3 ]an+u, k=0,1,...

We assume, to be zero-mean normally distributed random
noise with variancé.01, andwy, = |zx| with z; zero-mean
normally distributed random noise with unit variance. We
also assume:, to be normally distributed with zero mean
and unit covariance.

We formulate the constrained estimation problem with

Q=1, R=001, Py = I, andz — {8
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Fig. 2. Numerical example for estimation with growing horizand a fixed
number of iterations (ten)Top left: True and estimated first stateBop
right: True and estimated second statBsttom left: Computation times.
Bottom left: Computation times for single iteration (for comparison).

El

[10]

The results are shown in Figure 2. The computation times
are in the order of milliseconds. As an example, a constdainé!!]
MHE problem of horizord0 can be solved in arountmsec

for this two-state problem. [12]

VI. CONCLUSIONS AND FUTURE WORK [13]

In this paper a structure exploiting interior-point method
for moving horizon estimation is presented. The crucighy
step in the interior-point method, the computation of the
Newton direction, can be done efficiently and robustly witH15]
a Riccati recursion using square root factors. Covariances
of all within-horizon states are naturally modified with the[i6]
logarithmic barrier term and are obtained as a by-product
of the factorization. A numerical example demonstrates thg 7,
computation times in the range of milliseconds are feasible
Future research is directed towards embedding the methods
proposed in this paper within an SQP framework for nonlin[-
ear moving horizon estimation.
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