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Abstract— In this article a primal barrier interior-point
method for moving horizon estimation (MHE) is presented.
It exploits the structure of the KKT systems yielding an
algorithm with linear complexity in the horizon length. Ideas
of square root covariance Kalman filtering are proposed in
order to efficiently update covariance matrices occurring in
the factorization of the KKT matrix. The algorithm is able to
compute - without any additional costs - the covariance of the
last estimate within the horizon, which reflects the accuracy of
the estimate.

Index Terms— State estimation; Matrix Riccati equations;
Optimal filtering; Optimization problems

I. INTRODUCTION

The efficient solution of quadratic programs that arise in
MPC has been addressed in [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12]. In [13] a primal barrier method for
MPC problems was presented.

Almost all of these publications focus on the control
problem, i.e. MPC. The state estimation problem, i.e. MHE,
is closely related to the control problem and has largely
the same optimal control structure. However, there are two
main differences; first, the initial state is free in MHE and
second, the Hessian of the objective function is almost
always positive semidefinite as opposed to positive definite
in standard MPC formulations.

It turns out that MHE problems can be solved efficiently
by a matrix Riccati recursion, more precisely a form of
the covariance Kalman filter recursion, a forward and a
backward vector solve. A well known problem with the
normal Kalman filter recursions is that they can result in a
covariance matrix which fails to be symmetric [14], [15]. To
cope with this difficulty Potter and Stern [16] introduced the
idea of expressing the Kalman filter recursions in terms of
a square-root, more precisely a Cholesky factor of the error
covariance matrix. By propagating such a Cholesky factor,
the computed error covariance matrix remains symmetric and
positive (semi-)definite at all times. Furthermore, due to the
numerically stable operations such as Householder reflec-
tions and Given rotations usually employed in square-root
implementations, they are numerically better conditioned
than a direct implementation[17].

In this article a primal barrier interior-point method for
MHE is presented. The contribution of this article is three-
fold: first, we show how constrained MHE problems can
be efficiently factorized using an interior-point method with

Corresponding author Niels Haverbeke Tel. +32 16 328652.
niels.haverbeke@esat.kuleuven.be

Department of Electrical Engineering, Katholieke Universiteit Leuven,
Kasteelpark Arenberg 10, 3001 Heverlee (Leuven), Belgium.

square-root recursions for KKT solution; second, it is shown
how covariances of within-horizon states, which are obtained
as a by-product, are naturally modified by the barrier; finally,
we demonstrate with some numerical simulations that MHE
problems can be solved extremely fast.

The article is organized as follows. In Section II, the state
estimation problem is introduced. In Section III, we give an
interior-point algorithm for solving the quadratic program
formulated in Section II. The key goal of this paper, namely
the structure exploiting algorithm for factorizing and solving
the underlying KKT system is outlined in Section IV and
subsequently in Section V a numerical example is given to
demonstrate the efficiency of the proposed algorithms.

II. BACKGROUND

A. Problem statement

In this section we describe the state estimation problem
for linear Gauss-Markov models. Let the linear time-varying
dynamical system be given by

xk+1 = fk + Akxk + Gkwk, k = 0, 1, . . . (1)

yk = Ckxk + Hkwk + vk, k = 0, 1, . . . (2)

where k denotes discrete time,xk ∈ Rn is the state,
wk ∈ Rn is the state disturbance or process noise,vk ∈ Rp

is the output disturbance or sensor noise, andyk ∈ Rp

is the observed output. The system matricesAk ∈ Rn×n,
Gk ∈ Rn×m, Hk ∈ Rp×m and Ck ∈ Rp×n and the offsets
fk ∈ Rn are assumed to be known. The goal is to find
the state sequence that is most likely, given the sequence of
observations and the model described above.

Remark 1: The model described above is slightly more
general than other linear (time-varying) models encountered
in the MHE literature. This model arises from linearizationof
nonlinear MHE problems within the framework of Newton-
type methods. Our interest in this article is in the underlying
structure of the quadratic (sub)problems, hence, we will
accept the time-varying model without worrying about its
origin.
The objective is defined as

J (N,x,w) = Jic(x0) + Jproc(N,w) + Jsens(N,x,w),

whereN is the estimation horizon and wherex ∈ R(N+1).n

andw ∈ RN.m denote, respectively, the stacked vectors of
states and disturbances. The first term,Jic is a penalty on
the initial condition. Usually, it is assumed that some prior
information is available in the form of an initial state estimate



x̄ and corresponding covariance matrixP̄ , in which case we
define

Jic(x0) = ‖S−T
0 (x0 − x̄)‖2

2,

where the matrixS0 is a square root of̄P , i.e. P̄ = ST
0 S0;

a Cholesky factorization for instance generates a (lower)
triangularS0. The larger the covariance of the initial state
error, the less weight it is given in the objective function.

The second term,Jproc, is a penalization of the state
disturbances. We assume thatwk, for different values ofk,
are independently distributed, which implies

Jproc(N,w) =

N−1
∑

k=0

‖W−T
k wk‖2

2.

Here,Wk is a weighting matrix, which in a stochastic setting
can be regarded as the square root of the covariance matrix
corresponding to the process noisewk, i.e., Qk = WT

k Wk

with Qk the covariance matrix.
The third term,Jsens, is a penalization of the sensor noise.

Again, we assumevk to be independently distributed, which
implies

Jsens(N,x,w) =

N
∑

k=0

‖V −T
k vk‖2

2,

whereVk is also a weighting matrix, which in a stochastic
setting can be regarded as the square root of the covariance
matrix corresponding tovk, i.e., Rk = V T

k Vk with Rk the
covariance matrix. In this article we will assume bothWk

andVk to be identity matrices, without loss of generality.
Next, vk can be eliminated using output equation (2),

leading to

Jsens(N,x,w) =

N−1
∑

k=0

‖yk−Ckxk−Hkwk‖2
2+‖yN−CNxN‖2

2.

Finally, mixed linear inequality constraints are considered:

T x
k xk + T w

k wk ≤ tk, k = 0, 1, . . . , N − 1, (3)

T x
NxN ≤ tN , (4)

whereT x
k ∈ Rrk×n, T w

k ∈ Rrk×m, tk ∈ Rrk , and T x
N ∈

RrN×n, tN ∈ RrN are given, and where≤ denotes vector
(componentwise) inequality.

Before continuing, let us summarize the state estimation
problem treated in this paper:

minx,w ‖S−T
0 (x0 − x̄)‖2

2 +
∑N−1

k=0 ‖wk‖2
2

+
∑N−1

k=0 ‖yk − Ckxk − Hkwk‖2
2

+‖yN − CNxN‖2
2

s.t. xk+1 = fk + Akxk + Gkwk, k = 0, . . . , N − 1,
T x

k xk + T w
k wk ≤ tk, k = 0, . . . , N − 1,

T x
NxN ≤ tN ,

(5)

This problem is a convex QP. In Sections III and IV
we present a structure exploiting interior-point method for
solving these quadratic programs efficiently.

B. Moving horizon estimation

The least squares batch estimator described above cannot
be applied to online estimation problems in general because
the problem grows unbounded with increasing horizon. In
order to bound the problem, people have proposed a moving
horizon strategy [18], [19] relying on the ideas of dynamic
programming. The idea is to summarize past information
by an initial state estimate and a corresponding weighting
matrix. Evidently, one should use the best initial estimateand
weighting available. From the previously computed optimal
state trajectory, a good initial estimate is already available.
The weighting matrix is propagated using a Kalman filter
update (see e.g.,[20], [18]). The moving horizon problem
is identical to (5) with growing horizonN until a horizon
Nhor is reached after which MHE problems of lengthNhor

are being solved with propagated̄x, P̄ .

III. PRIMAL BARRIER INTERIOR-POINT
METHOD

In this section a basic primal barrier interior-point for solv-
ing (5) is described. Let us first define an overall optimization
variable

z = (x0, w0, x1 . . . , wN−1, xN ) ∈ R(N+1)n+Nm,

Then the QP may be expressed as

minz
1
2zT Hz + gT z

s.t. Pz ≤ h, Cz = b,
(6)

with

H =
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whereIn denotes the unit matrix of dimensionn.

A. Primal barrier method

We will use a primal barrier method to solve the QP ([21,
Chap. 11] [22]). The inequality constraints in the QP (6)
are replaced with a barrier term in the objective, to get the
approximate problem

minz zT Hz + gT z + κφ(z)
s.t. Cz = b,

(7)



whereκ > 0 is a barrier parameter, andφ is the logarithmic
barrier associated with the inequality constraints, defined as

φ(z) =

Np
∑

i=1

− log(hi − pT
i z),

wherepT
1 , . . . , pT

Np
are the rows ofP . The problem (7) is

a convex optimization problem with smooth objective and
linear equality constraints, and can be solved by Newton’s
method.

In a basic primal barrier method, a sequence of problems
of the form (7) is solved, using Newton’s method starting
from the previously computed point, for a decreasing se-
quence of values ofκ. As κ approaches zero, the solution
of (7) converges to a solution of the QP (6).

B. Newton method

We now focus on solving the problem (7) using a Newton
method [21,§10.3.2]. Let us introduce a dual variableν ∈
RNn associated with the equality constraintCz = b. The
optimality conditions for (7) are then

rd = Hz + g + κPT d + CT ν = 0
rp = Cz − b = 0

(8)

with rd the dual andrp the primal residual and wheredi =
1/(hi − pT

i z), andpT
i denotes theith row of P . The term

κPT d is the gradient ofκφ(z). We also have the implicit
constraint here thatPz < h.

The algorithm is initialized with az0 point that strictly
satisfies the inequality constraints but need not satisfy the
equality constraints. An arbitrary initial value can be used
for ν0.

We maintain an approximatez (with Pz < h) and ν
at each step. If the residuals are small enough, we quit;
otherwise we refine our estimate by linearizing the optimality
conditions (8) and computing primal and dual steps∆z, ∆ν
for whichz+∆z, ν+∆ν give zero residuals in the linearized
approximation.

The primal and dual search steps∆z and ∆ν are found
by solving a system of linear equations:
[

H + κPT diag(d)2P CT

C 0

] [

∆z
∆ν

]

= −
[

rd

rp

]

. (9)

This system of equations is called the KKT system and the
matrix in the left-hand side is called the KKT matrix. The
term κPT diag(d)2P is the Hessian of the barrierκφ(z)
and has block diagonal structure in case of the mixed linear
inequality constraints (3)-(4). Let us define

Mk = diag(1/(tk − T x
k xk − T w

k wk))T x
k , 0 ≤ k ≤ N − 1

Lk = diag(1/(tk − T x
k xk − T w

k wk))T w
k , 0 ≤ k ≤ N − 1

MN = diag(1/(tN − T x
NxN ))T x

N ,

then we obtain

PT diag(d)2P =







MT

0
M0 MT

0
L0

LT

0
M0 LT

0
L0

. . .
MT

N
MN






.

In the next section a method is presented to compute
the Newton step∆z and ∆ν efficiently. Having obtained
this Newton step, we perform a feasibility search and a
backtracking line search on the norm of the residualr (see,
e.g., [21,§9.2]). Finally, the primal and dual variables are
updated:z := z + s∆z andν := ν + s∆ν. This procedure is
repeated until the norm of the residual is below an acceptable
threshold.

IV. COMPUTING THE NEWTON STEP

A. Factorization

By rearranging the KKT system (9), the block diagonal
structure of the KKT matrix is revealed. Let us write the
(rearranged) KKT system asMξ = r, with

M =

















Φ0 ΓT

0
0

Γ0 0 ΥT

0 Υ Φ1

. . .
ΦN−1 ΓT

N−1
0

ΓN−1 0 ΥT

0 Υ ΦN

















,
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∆x0
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∆νN

∆xN

















, r =























rx0

d

rw0

d

rν1
p

...
rνN
p

rxN

d























,

whererx0

d denotes the dual residual associated withx0,
and rν1

p denotes the primal residual associated withν1 and
where we defined

Φ0 =

[

S−1

0
S−T

0
+ CT

0
C0 + κMT

0
M0 CT

0
H0 + κMT

0
L0

HT

0
C0 + κLT

0
M0 Im + HT

0
H0 + κLT

0
L0

]

,

Φk =
[

CT

k
Ck + κMT

k
Mk CT

k
Hk + κMT

k
Lk

HT

k
Ck + κLT

k
Mk Im + HT

k
Hk + κLT

k
Lk

]

,

1 ≤ k ≤ N − 1

ΦN = [ CT

N
CN + κMT

N
MN ] ,

Γk = [ Ak Gk ] , 0 ≤ k ≤ N − 1

Υ =
[

−In

0

]

.

Lemma 4.1: The KKT matrix is symmetric
indefinite and can be factorized by an indefinite
Cholesky decomposition M = LDLT with
D = blkdiag(In+m,−In, . . . , In+m,−In, In) and

L =















S
−1
0+

Γ0ST
0+

ST
1

0 −ΥS
−1
1

S
−1
1+

.
.
.

S
−1
N−1+

ΓN−1ST
N−1+

ST
N

0 −ΥS
−1
N

S
−1
N+















which can be recursively computed by Algorithm 1.



Algorithm 1: [Riccati recursion]
1) Initialization: R̂0 = S0

2) For k = 0, . . . , N − 1:

(a) Measurement update step

Let Dk =

[

Ck Hk√
κMk

√
κLk

]

Compute QR-factorization:




Dk

[

R̂T
k

Im

]

In+m



 =
[

Qk Q̃k

]

[

Rk

0

]

SetSk+ = R−T
k

[

R̂k

Im

]

(b) Model forwarding step

Let Γk =
[

Ak Gk

]

Compute QR-factorization:

Sk+ΓT
k =

[

Q̂k+1 Q̄k+1

]

[

R̂k+1

0

]

SetSk+1 = R̂k+1

endfor.
3) Final time step:

(a) Measurement update step

Let DN =

[

CN√
κMN

]

Compute QR-factorization:
[

DN R̂T
N

In

]

=
[

QN Q̃N

]

[

RN

0

]

SetSN+ = R−T
N R̂N

A proof of Lemma 4.1 is now given.
Proof: To find out howS0+, S1, S1+ etc. can be computed,
we multiply outLDLT and equate withM . Then,

S−1
0+S−T

0+ = Φ0 (10)

ST
1 S1 = Γ0S

T
0+S0+ΓT

0 (11)
...

S−1
k+S−T

k+ = ΥS−1
k S−T

k ΥT + Φk (12)

ST
k+1Sk+1 = ΓkST

k+Sk+ΓT
k (13)

...

S−1
N+S−T

N+ = ΥS−1
N S−T

N ΥT + ΦN (14)

First we prove the measurement update step, i.e. Equa-
tions (10), (12) and (14).

Let us defineR̂k = Sk andDk =

[

Ck Hk√
κMk

√
κLk

]

. Note

that

Φ0 =

[

S−1
0 S−T

0

Im

]

+ DT
0 D0,

Φk =

[

0
Im

]

+ DT
k Dk, 1 ≤ k ≤ N − 1

ΦN = DT
NDN ,

(15)

Let us compute the QR-factorization




Dk

[

R̂T
k

Im

]

In+m



 =
[

Qk Q̃k

]

[

Rk

0

]

(16)

whereQk and Q̃k are orthogonal matrices andRk is upper
triangular. Then we can set

Sk+ = R−T
k

[

R̂k

Im

]

(17)

To see that this is a valid choice forSk+, we invert both sides,
assuming without loss of generality thatSk+ is invertible,
and right-multiply withQT

k :

S−1
k+QT

k =

[

R̂−1
k

Im

]

RT
k QT

k

=

[

R̂−1
k

Im

]





[

R̂k

Im

]

DT
k

In+m





=





DT
k

[

R̂−1
k

Im

]





where Eq. (16) was used in the second line. Now, sinceQk

is orthogonal, we can write

S−1
k+QT

k QkS−T
k+ = S−1

k+S−T
k+

=





DT
k

[

R̂−1
k

Im

]





[

Dk

[

R̂−T
k

Im

]]

=

[

R̂−1
k R̂−T

k 0
0 Im

]

+ DT
k Dk

which, after substitution of̂Rk and using (15), concludes the
proof for Equations (10) and (12). For Eq. (14) the reasoning
is similar.
Next, we prove the model forwarding step. From Eq. (13) it
can be seen that with any orthogonal matrixQ̂k+1

Sk+1 = Q̂T
k+1Sk+ΓT

k , 0 ≤ k ≤ N − 1 (18)

We compute a QR-factorization

Sk+ΓT
k =

[

Q̂k+1 Q̄k+1

]

[

R̂k+1

0

]

(19)

whereQ̂k+1 andQ̄k+1 are orthogonal matrices and̂Rk+1 is
upper triangular.

By applying this factorization to an arbitrary right hand
side the KKT optimal vector is obtained after a forward
and a backward vector solve. However, the residual vector
rx0

d contains a termS−1
0 S−T

0 (x0 − x̄). Hence, if we
would solveLξ

′

= r and subsequently solveDLT ξ = ξ
′

,
then we would come across a termS−T

0 (x0 − x̄) after
the forward vector solve, and invertibility ofS0 would
be required. Fortunately, there is an elegant solution to
this. A block LU decomposition of the KKT matrix
would lead to the classical Kalman filter equations. By
applying it to the residual vector and after some matrix



manipulations the invertibility assumption can be removed.
Next, the recursion can be reformulated to use the square-
root factors computed by Algorithm 1. The forward and
backward vector recursions are described in Algorithm 2
and Algorithm 3. Proofs are omitted due to space limitations.

Algorithm 2: [Forward vector recursion]

1) Initialization:

d0 =

[

x̄ − x0

−w0

]

c0 = ST
0+S0+ΓT

0 ν1

2) For k = 0, . . . , N − 1:

gk =

[

hk + Ckxk + Hkwk√
κer

]

[

∆x
′

k

∆w
′

k

]

= dk − ST
k+QT

k

[

Dkdk + gk

0

]

− ck

dk+1 =





Γk

[

∆x
′

k + xk

∆w
′

k + wk

]

+ fk − xk+1

−wk+1





If (k = N − 1) then

cN = −ST
N+SN+νN

else

ck+1 = ST
k+1+Sk+1+(ΓT

k+1νk+2 −
[

νk+1

0

]

)

endif.
endfor.

3) Final time step:

gN =

[

hN + CNxN√
κes

]

∆x
′

N = dN − ST
N+QT

N

[

DNdN + gN

0

]

− cN

Algorithm 3: [Backward vector recursion]

1) Initialization: ∆xN = ∆x
′

N

2) For k = N − 1, . . . , 0:
If (k = N − 1) then

∆νN = rxN

d − ΥT ΦN∆xN

else

∆νk+1 = r
xk+1

d

−ΥT (Φk+1

[

∆xk+1

∆wk+1

]

+ ΓT
k+1∆νk+2)

endif.
[

∆xk

∆wk

]

=

[

∆x
′

k

∆w
′

k

]

− ST
k+Q̂k+1R̂k+1∆νk+1

endfor.

shift

0 1 N N + 1

κ↓

κinit

Fig. 1. Illustration of the hot starting procedure. Solve a sequence of
problems with decreasingκ until reasonable accuracy, shift the solution of
the problem withκ = κinit to the next time step.

B. Hot starting

In MHE, similar optimal control problems are solved
successively. Therefore, it is a reasonable assumption that
the solution of an MHE problem can be shifted one time
step forward to yield a good starting point for the next MHE
problem. Unfortunately, as pointed out in [1], in interior-
point methods it is better to use a starting point away from
the boundary (a strictly feasible point). More specificallywe
recall that in interior-point methods a sequence of problems
of the form (7) is solved for decreasingκ, however if we
shift from one MHE problem to the next, we start a new
optimization problem, i.e. we start withκ = κinit. Hence it
turns out that the solution to the previous MHE problem (i.e.
with small κ) is not a good initialization. The procedure we
suggest here, illustrated in Figure 1, is to solve a sequence
of problems for decreasingκ until reasonable accuracy is
obtained, but shift the solution of the problem withκ = κinit

to the next time step as a good starting point.

V. EXAMPLES

The algorithm was implemented in C with calls to BLAS
and Lapack libraries [23]:dgeqrf, the QR factorization
algorithm from LAPACK using Householder reflections, was
used; BLAS routinesdgemm and dgemv were used for
matrix-matrix and matrix-vector multiplications respectively.
Our platform is a 2Ghz AMD Athlon running Linux and the
computation times were obtained with the Unix command
gettimeofday.

A. Constrained linear system

Consider the following linear system [19]

xk+1 =

[

0.99 0.2
−0.1 0.3

]

xk +

[

0
1

]

wk, k = 0, 1, . . .

yk =
[

1 −3
]

xk + vk, k = 0, 1, . . .

We assumevk to be zero-mean normally distributed random
noise with variance0.01, andwk = |zk| with zk zero-mean
normally distributed random noise with unit variance. We
also assumex0 to be normally distributed with zero mean
and unit covariance.

We formulate the constrained estimation problem with

Q = 1, R = 0.01, P0 = I2, and x̄ =

[

0
0

]

.
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Fig. 2. Numerical example for estimation with growing horizon and a fixed
number of iterations (ten).Top left: True and estimated first states.Top
right: True and estimated second states.Bottom left: Computation times.
Bottom left: Computation times for single iteration (for comparison).

The results are shown in Figure 2. The computation times
are in the order of milliseconds. As an example, a constrained
MHE problem of horizon40 can be solved in around5msec
for this two-state problem.

VI. CONCLUSIONS AND FUTURE WORK

In this paper a structure exploiting interior-point method
for moving horizon estimation is presented. The crucial
step in the interior-point method, the computation of the
Newton direction, can be done efficiently and robustly with
a Riccati recursion using square root factors. Covariances
of all within-horizon states are naturally modified with the
logarithmic barrier term and are obtained as a by-product
of the factorization. A numerical example demonstrates that
computation times in the range of milliseconds are feasible.
Future research is directed towards embedding the methods
proposed in this paper within an SQP framework for nonlin-
ear moving horizon estimation.
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