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Abstract

Motivation: Microarrays are capable of determining the
expression levels of thousands of genes simultaneously. In
combination with classification methods, this technology
can be useful to support clinical management decisions
for individual patients in for example oncology. The ob-
jective of this paper is to systematically benchmark the
role of nonlinear versus linear techniques and dimension-
ality reduction methods.
Results: A systematic benchmarking study is performed
by comparing linear versions of standard classification
and dimensionality reduction techniques with their non-
linear versions based on nonlinear kernel functions with
a radial basis function (RBF) kernel. Nine binary cancer
classification problems, derived from seven publicly avail-
able microarray data sets, and twenty randomizations of
each problem are examined.
Conclusions: Three main conclusions can be formulated
based on the performances on independent test sets. 1.
When performing classification with least squares support
vector machines (LS-SVM) (without dimensionality re-
duction), RBF kernels can be used without risking too
much overfitting. The results obtained with well-tuned
RBF kernels are never worse and sometimes even sta-
tistically significantly better compared to results obtained
with a linear kernel in terms of test set ROC and test set
accuracy performances. 2. Even for classification with
linear classifiers like LS-SVM with linear kernel, using
regularization is very important. 3. When performing
kernel principal component analysis (kernel PCA) before
classification, using an RBF kernel for kernel PCA tends
to result in overfitting, especially when using supervised
feature selection. It has been observed that an optimal se-
lection of a large number of features is often an indication
for overfitting. Kernel PCA with linear kernel gives bet-
ter results.
Availability: Matlab scripts are available on request.
Contact: Nathalie.Pochet@esat.kuleuven.ac.be
Supplementary Information:

http://www.esat.kuleuven.ac.be/∼npochet/Bioinformatics/

Introduction

Microarrays allow to determine the expression levels of
thousands of genes simultaneously. One important appli-
cation area of this technology is clinical oncology. Because
the dysregulated expression of genes lies at the origin of
the tumor phenotype, its measurement can be very help-

ful to model or to predict the clinical behavior of malig-
nancies. By these means the fundamental processes un-
derlying carcinogenesis can be integrated into the clinical
decision making.

For clinical applications, microarray data can be rep-
resented by an expression matrix of which the rows rep-
resent the gene expression profiles and the columns the
expression patterns of the patients. Using microarray
data allows optimized predictions for an individual pa-
tient, for example predictions about therapy response,
prognosis and metastatic phenotype. An example of the
first one can be found in (Iizuka et al., 2003). Hepatocel-
lular carcinoma has a poor prognosis because of the high
intrahepatic recurrence rate. Intrahepatic recurrence lim-
its the potential of surgery as a cure for hepatocellular
carcinoma. The current pathological prediction systems
clinically applied to patients are inadequate for predict-
ing recurrence in individuals who undergo hepatic resec-
tion. In this case it would be useful to predict therapy
response in order to be able to select the patients who
would benefit from surgical treatment. An example of the
second prediction is given in (Nutt et al., 2003). Among
high-grade gliomas, anaplastic oligodendrogliomas have
a more favorable prognosis than glioblastomas. More-
over, although glioblastomas are resistant to most avail-
able therapies, anaplastic oligodendrogliomas are often
chemosensitive. By predicting the prognosis, it is possible
to finetune treatment. An example of the third predic-
tion is presented in (van ’t Veer et al., 2002). For breast
cancer patients without tumor cells in local lymph nodes
at diagnosis (lymph node negative), it is useful to pre-
dict the presence of distant subclinical metastases (poor
prognosis) based on the primary tumor. Predicting the
metastatic phenotype allows selecting patients who would
benefit from adjuvant therapy as well as selecting patients
for whom this adjuvant therapy would mean unnecessary
toxicity.

Microarray data sets are characterized by high dimen-
sionality in the sense of a small number of patients and
a large number of gene expression levels for each patient.
Most classification methods have problems with the high
dimensionality of microarray data and require dimension-
ality reduction first. Support Vector Machines on the
contrary seem capable of learning and generalizing these
data well (Mukherjee et al., 1999; Furey et al., 2000).
Most classification methods like for example Fisher Dis-
criminant Analysis also rely on linear functions and are
unable to discover nonlinear relationships in microarray
data, if any. By using kernel functions, one aims at a
better understanding of these data (Brown et al., 2000),
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especially when more patient data may become available
in the future. A first aim of this study is to compare
linear versions of the standard techniques applied to mi-
croarray data with their kernel version counterparts both
with linear and RBF kernel. Even with a linear kernel,
least squares support vector machines techniques can be
more suitable as they contain regularization and do not
require dimensionality reduction as applied in the dual
space. A second aim is to find an optimal strategy for
the performance of clinical predictions. In this paper we
systematically assess the role of dimensionality reduction
and nonlinearity on a wide variety of microarray data sets,
instead of doing this in an ad hoc manner. Randomiza-
tions on all data sets are carried out in order to get a more
reliable idea of the to be expected performance and the
variation on it. The results on one specific partitioning
of training, validation and test set (as often reported in
literature) could easily lead to overly optimistic results,
especially in the case of a small number of patient data.

Systematic benchmarking

Data sets

This study considers 9 cancer classification problems, all
comprising 2 classes. For this purpose, 7 publically avail-
able microarray data sets are used: colon cancer data
(Alon et al., 1999), acute leukemia data (Golub et al.,
1999), breast cancer data (Hedenfalk et al., 2001), hep-
atocellular carcinoma data (Iizuka et al., 2003), high-
grade glioma data (Nutt et al., 2003), prostate cancer
data (Singh et al., 2002) and breast cancer data (van ’t
Veer et al., 2002). Since the data set in (Hedenfalk et al.,
2001) contains 3 classes, 3 binary classification problems
and corresponding data sets can be constructed from it by
taking each class versus the rest. In most of the data sets,
all data samples have already been assigned to a training
set or test set. In the cases of data sets for which a train-
ing set and test set have not been defined yet, 2/3 of the
data samples of each class are assigned to the training set
and the rest to the test set.

An overview of the characteristics of all the data sets
can be found in Table 1. The acute leukemia data in
(Golub et al., 1999) have already been used frequently
in previous microarray data analysis studies. Prepro-
cessing of this data set is done by thresholding and log-
transformation, similar as in the original publication.
Thresholding is realized by restricting gene expression lev-
els to be larger than 20, e.g. expression levels which are

D TR TR TR TE TE TE levels M
C1 C2 C1 C2

1 40 14 26 22 8 14 2000 T1

2 38 11 27 34 14 20 7129 T1

3 14 4 10 8 3 5 3226 T2

4 14 5 9 8 3 5 3226 T2

5 14 4 10 8 3 5 3226 T2

6 33 12 21 27 8 19 7129 T1

7 21 14 7 29 14 15 12625 T1

8 102 52 50 34 25 9 12600 T1

9 78 34 44 19 12 7 24188 T2

Table 1: Summary of the 9 binary cancer classification problems
datasets reflecting the dimensions and the microarray technology
of each dataset. Explanation of the abbreviations used: D = data
sets, TR = training set, TE = test set, C1 = class 1, C2 = class
2, M = microarray technology, T1 = oligonucleotide, T2 = cDNA,
1 = colon cancer data of (Alon et al., 1999), 2 = acute leukemia
data of (Golub et al., 1999), 3 = breast cancer data of (Hedenfalk et
al., 2001) taking the BRCA1 mutations versus the rest, 4 = breast
cancer data of (Hedenfalk et al., 2001) taking the BRCA2 mutations
versus the rest, 5 = breast cancer data of (Hedenfalk et al., 2001)
taking the sporadic mutations versus the rest, 6 = hepatocellular
carcinoma data of (Iizuka et al., 2003), 7 = high-grade glioma data
of (Nutt et al., 2003), 8 = prostate cancer data of (Singh et al.,
2002), 9 = breast cancer data of (van ’t Veer et al., 2002).

smaller than 20 will be set to 20. Concerning the log-
transformation, the natural logarithm of the expression
levels is taken. The breast cancer data set in (van ’t Veer
et al., 2002) contains missing values. Those have been es-
timated based on 5% of the gene expression profiles that
have the largest correlation with the gene expression pro-
file of the missing value. No further preprocessing is ap-
plied to the rest of the data sets.

Systematic benchmarking studies are important for ob-
taining reliable results allowing comparability and re-
peatability of the different numerical experiments. For
this purpose, this study not only uses the original divi-
sion of each data set in training and test set, but also
reshuffles (randomizes) all data sets. Consequently, all
numerical experiments are performed with 20 randomiza-
tions of the 9 original data sets as well. These randomiza-
tions are the same for all numerical experiments on one
data set (in Matlab with the same seed for the random
generator). They are also stratified, which means that
each randomized training and test set contains the same
amount of samples of each class compared to the original
training and test set. The results of all numerical ex-
periments in the tables represent the mean and standard
deviation of the results on each original data set and 20
randomizations.
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Methods

The methods used to set up the numerical experiments
can be subdivided in two categories: dimensionality re-
duction and classification. For dimensionality reduction,
classical Principal Component Analysis as well as kernel
Principal Component Analysis are used. Fisher Discrim-
inant Analysis and Least Squares Support Vector Ma-
chines (which can be viewed among others as a kernel
version of FDA) are used for classification.

Principal Component Analysis (PCA)

PCA looks for linear combinations of gene expression lev-
els in order to obtain a maximal variance over a set of
patients. In fact, those combinations are most informa-
tive for this set of patients and are called the principal
components. One formulation in order to characterize
PCA problems is to consider a given set of centered (zero
mean) input data {xk}

N
k=1 as a cloud of points for which

one tries to find projected variables wT x with maximal
variance. This means,

max
w

V ar(wT x) = wT Cw, (1)

where the covariance matrix C is estimated as C ∼=
1

N−1

∑N

k=1 xkxT
k . One optimizes this objective function

under the constraint that wT w = 1. Solving the con-
strained optimization problem gives the eigenvalue prob-
lem

Cw = λw. (2)

The matrix C is symmetric and positive semidefinite. The
eigenvector w corresponding to the largest eigenvalue de-
termines the projected variable having maximal variance.

Kernel Principal Component Analysis (Kernel
PCA)

Kernel PCA has the same goal as classical PCA, but is
capable of looking for nonlinear combinations too. The
objective of kernel PCA can be formulated (Schölkopf et
al., 1998; Suykens et al., 2003) as

max
w

N
∑

k=1

[wT (ϕ(xk) − µϕ)]2, (3)

with notation µϕ = (1/N)
∑N

k=1 ϕ(xk) used for centering
the data in the feature space, where ϕ(·) : R

n → R
nh is

the mapping to a high dimensional feature space, which
might be infinite dimensional. This can be interpreted as

first mapping the input data to a high dimensional fea-
ture space and next to projected variables. The following
optimization problem is formulated in the primal weight
space

max
w,e

JP (w, e) = γ
1

2

N
∑

k=1

e2
k −

1

2
wT w,

such that ek = wT (ϕ(xk) − µϕ), k = 1, ..., N. (4)

This formulation states that the variance of the projected
variables is maximized for the given N data points while
keeping the norm of w small by the regularization term.
By taking the conditions for optimality from the La-
grangian related to this constrained optimization prob-
lem, such as w =

∑N
k=1 αk(ϕ(xk) − µϕ) among others,

and defining λ = 1/γ, one obtains the eigenvalue prob-
lem

Ωcα = λα, (5)

with

Ωc,kl = (ϕ(xk) − µϕ)T (ϕ(xl) − µϕ), k, l = 1, ..., N, (6)

the elements for the centered kernel matrix Ωc. Since
the kernel trick K(xk, xl) = ϕ(xk)T ϕ(xl) can be applied
to the centered kernel matrix, one may choose any posi-
tive definite kernel satisfying the Mercer condition. The
kernel functions used in this paper are the linear ker-
nel K(x, xk) = xT

k x and the RBF kernel K(x, xk) =
exp{−‖x − xk‖

2
2/σ2}. The centered kernel matrix can

be computed as Ωc = McΩMc with Ωkl = K(xk, xl) and
Mc = I − (1/N)1N1T

N the centering matrix where I de-
notes the identity matrix and 1N is a vector of length N
containing all ones. The dimensionality reduction is done
by selecting the eigenvectors corresponding to the largest
eigenvalues.

Fisher Discriminant Analysis (FDA)

FDA projects the data xk ∈ R
n from the original input

space to a one-dimensional variable zk ∈ R and makes a
discrimination based on this projected variable. In this
one-dimensional space one tries to achieve a high discrim-
inatory power by maximizing the between-class variances
and to minimize the within-class variances for the two
classes. The data are projected as follows

z = f(x) = wT x + b, (7)
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with f(·) : R
n → R. One is interested then in finding a

line such that the following objective of a Rayleigh quo-
tient is maximized:

max
w,b

JFD(w, b) =
wT ΣBw

wT ΣW w
. (8)

The means of the input variables for class 1 and class
2 are E [x(1)] = µ(1), E [x(2)] = µ(2). The between and
within covariance matrices related to class 1 and class 2
are ΣB = [µ(1)−µ(2)][µ(1)−µ(2)]T , ΣW = E{[x−µ(1)][x−
µ(1)]T } + E{[x − µ(2)][x − µ(2)]T } where the latter is the
sum of the two covariance matrices ΣW1

, ΣW2
for the

two classes. Note that the Rayleigh quotient is indepen-
dent of the bias term b. By choosing a threshold z0, it is
possible to classify a new point as belonging to class 1 if
z(x) ≥ z0, and classify it as belonging to class 2 otherwise.
Assuming that the projected data is the sum of a set of
random variables allows invoking the central limit theo-
rem and modelling the class-conditional density functions
p(z| class 1) and p(z| class 2) using normal distributions.

Least Squares Support Vector Machine Classifiers
(LS-SVM)

LS-SVMs (Suykens and Vandewalle, 1999; Van Gestel et
al., 2002; Pelckmans et al., 2002) are a modified version
of Support Vector Machines (Vapnik, 1998; Schölkopf et
al., 1999; Cristianini and Shawe-Taylor, 2000; Schölkopf
et al., 2001; Schölkopf and Smola, 2002) and comprises
a class of kernel machines with primal-dual interpreta-
tions related to kernel FDA, kernel PCA, kernel PLS (ker-
nel Partial Least Squares), kernel CCA (kernel Canoni-
cal Correlation Analysis), recurrent networks and others.
For classification this modification leads to solving a lin-
ear system instead of a quadratic programming problem,
which makes LS-SVM much faster than SVM on microar-
ray data sets. The benchmarking study of (Van Gestel et
al., 2004) on 20 UCI datasets revealed that the results of
LS-SVM are similar to those of SVM. Given is a training
set {xk, yk}

N
k=1 with input data xk ∈ R

n and correspond-
ing binary class labels yk ∈ {−1, +1}. Vapnik’s SVM
classifier formulation was modified in (Suykens and Van-
dewalle, 1999) into the following LS-SVM formulation:

min
w,b,e

JP (w, e) =
1

2
wT w + γ

1

2

N
∑

k=1

e2
k,

such that yk[wT ϕ(xk) + b] = 1 − ek, k = 1, ..., N, (9)

for a classifier in the primal space that takes the form

y(x) = sign[wT ϕ(x) + b], (10)

where ϕ(·) : R
n → R

nh is the mapping to the high dimen-
sional feature space and γ the regularization parameter.
In the case of a linear classifier one could easily solve the
primal problem, but in general w might be infinite di-
mensional. For this nonlinear classifier formulation, the
Lagrangian is solved, which results in the following dual
problem to be solved in α, b:

[

0 yT

y Ω + I/γ

] [

b
α

]

=

[

0
1N

]

, (11)

where the kernel trick K(xk, xl) = ϕ(xk)T ϕ(xl) can be
applied within the Ω matrix

Ωkl = ykylϕ(xk)T ϕ(xl) = ykylK(xk, xl), k, l = 1, ..., N.
(12)

The classifier in the dual space takes the form

y(x) =

N
∑

k=1

αkykK(x, xk) + b. (13)

The chosen kernel function should be positive definite and
satisfy the Mercer condition. The kernel functions used
in this paper are the linear kernel K(x, xk) = xT

k x and
the RBF kernel K(x, xk) = exp{−‖x − xk‖

2
2/σ2}. Note

that using LS-SVM with a linear kernel without regular-
ization (γ → ∞) is in fact the counterpart of classical
linear FDA, but the latter needs dimensionality reduc-
tion while the former can handle the problem without
dimensionality reduction in the dual form as the size of
the linear system to be solved is (N + 1)× (N + 1) and is
not determined by the number of gene expression levels.
Hence, the advantage of using kernel methods like SVM
or LS-SVM is that they can be used without performing
dimensionality reduction first, which is not the case for
the classical linear regression method FDA.

Numerical experiments

In this study, 9 classification problems are considered.
The numerical experiments applied to all these problems
can be divided into two subgroups, depending on the re-
quired parameter optimization procedure. First, three
kinds of experiments, all without dimensionality reduc-
tion, are performed to all 9 classification problems. These
are LS-SVM with linear kernel, LS-SVM with RBF kernel
and LS-SVM with linear kernel and infinite regulariza-
tion parameter (γ → ∞). Next, six kinds of experiments,
all using dimensionality reduction, are performed to all 9
classification problems. The first two of these are based
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on classical PCA followed by FDA. Selection of the prin-
cipal components is done both in an unsupervised and
a supervised way. The same strategy is used in the last
four of these, but kernel PCA with linear kernel as well
as RBF kernel are used instead of classical linear PCA.

Since building a prediction model requires good gener-
alization towards making predictions for previously un-
seen test samples, tuning the parameters is an important
issue. The small sample size characterizing microarray
data restricts the choice of an estimator for the gener-
alization performance. The optimization criterion used
in this study is the leave-one-out cross-validation (LOO-
CV) performance. In each LOO-CV iteration (number of
iterations equals the sample size), one sample is left out
of the data, a classification model is trained on the rest
of the data and this model is then evaluated on the left
out data point. As an evaluation measure, the LOO-CV
performance (# correctly classified samples

# samples in the data · 100)% is used.

All numerical experiments are implemented
in Matlab by using the LS-SVM and kernel
PCA implementations of the LS-SVMlab toolbox
(http://www.esat.kuleuven.ac.be/sista/lssvmlab/).

Tuning parameter optimization for the case with-
out dimensionality reduction

When using LS-SVM with a linear kernel, only the reg-
ularization constant needs to be further optimized. The
value of the regularization parameter corresponding to
the largest LOO-CV performance is then selected as the
optimal value. Using an RBF kernel instead requires op-
timization of the regularization parameter γ as well as
the kernel parameter σ. This is done by searching a two
dimensional grid of different values for both parameters.
Using LS-SVM with a linear kernel and infinite regular-
ization parameter, which corresponds to FDA, requires
no parameter optimization.

After preprocessing, which is specific for each data set
(as discussed in the section on data sets), normalization
is always performed on all the data sets before using them
for classification purposes. This is done by standardizing
each gene expression of the data to have zero mean and
unit standard deviation. Normalization of training sets as
well as test sets is done by using the mean and standard
deviation of each gene expression profile of the training
sets.

Tuning parameter optimization in the case of di-
mensionality reduction

When reducing the dimensionality of the expression pat-
terns of the patients with classical PCA and next build-
ing a prediction model by means of FDA, the number of
principal components needs to be optimized. This is re-
alized by performing LOO-CV on the training set. For
each possible number of principal components (ranging
between 1 and N − 2, with N the number of training
samples), the LOO-CV performance is computed. The
number of principal components with best LOO-CV per-
formance is then selected as the optimal one. If there
exist different numbers of principal components with the
same best LOO-CV performance, the smallest number
of principal components is selected. This choice can be
interpreted as minimizing the complexity of the model.
In case kernel PCA with a linear kernel is used instead of
the classical PCA, the same method is used. Using kernel
PCA with an RBF kernel not only requires optimization
of the number of principal components, but also the ker-
nel parameter σ needs to be tuned. A broad outline of
the optimization procedure is described in the sequel. For
several possible values of the kernel parameter, the LOO-
CV performance is computed for each possible number
of principal components. The optimal number of prin-
cipal components with the best LOO-CV performance,
is then selected for each value of the kernel parameter.
If there are several optimal numbers of principal com-
ponents, the smallest number of principal components is
selected, again for minimal model complexity reasons. In
order to find the optimal value for the kernel parame-
ter, the value of the kernel parameter with best LOO-CV
performance is selected. In case there are several possible
optimal values for the kernel parameter, also the optimal
number of principal components belonging to these opti-
mal kernel parameter values need to be considered. From
these values, the optimal kernel parameter value with the
smallest number of principal components is chosen. In
case there are still several possible optimal kernel param-
eter values, the smallest value of these is selected as the
optimal one. Remark the complexity of this optimiza-
tion procedure because both the kernel parameter and
the number of principal components of the kernel PCA
with RBF kernel need to be optimized in the sense of the
LOO-CV performance of the FDA classification.

Optimization algorithm: kernel PCA with RBF kernel
followed by FDA.

1. Generation of parameter grid

for each kernel parameter value within selected range
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for each possible # principal components

for each LOO-CV iteration

• leave one sample out

• normalization

• dimensionality reduction (kernel PCA)

• selection of the principal components (unsu-
pervised or supervised)

• classification (FDA)

• test sample left out

end

calculate LOO-CV performance

end

end

2. Optimization of parameters

for each kernel parameter value out of a range

optimal # principal components:

1. best LOO-CV performance

2. smallest # principal components *

end

optimal kernel parameter value:

1. best LOO-CV performance

2. smallest # principal components *

3. smallest kernel parameter value *

* if more than one

Normalization of the samples left out in each LOO-CV
iteration also needs to be done based on the mean and
standard deviation of each gene expression profile of each
accompanying training set. Concerning dimensionality
reduction, it should be remarked that this is also done
based on the training set. First, PCA is applied to the
training set, which results in eigenvalues and eigenvec-
tors going from 1 till N . The training and test set are
then projected onto those eigenvectors. Because the data
are centered, the last eigenvalue is equal to zero. There-
fore, the last principal component is left out, which results
in the number of principal components going from 1 till
N − 2. In fact, this corresponds to obtaining a low-rank
approximation starting from a full rank matrix.

Supervised versus unsupervised selection of prin-
cipal components

Concerning the experiments with dimensionality reduc-
tion, two ways of selecting the principal components are
used. The first one simply looks at the eigenvalues of the
principal components, originating from PCA. Since this
method does not take into account the class labels, it is
in an unsupervised way. The other one is based on the

absolute value of the score introduced by Golub (Golub
et al., 1999), as also used in (Furey et al., 2000):

F (xj) = |
µ1

j − µ2
j

σ1
j + σ2

j

|. (14)

This method allows finding individual gene expression
profiles that help discriminating between two classes by
calculating for each gene expression profile xj a score
based on the mean µ1

j (respectively µ2
j) and the standard

deviation σ1
j (respectively σ2

j ) of each class of samples. In
our experiments, this method is applied onto the princi-
pal components instead of applying it directly to the gene
expression profiles. This method takes into account the
class labels and is therefore called supervised. The n most
important principal components now correspond to the n
principal components with either the highest eigenvalues
or the highest absolute value of the score introduced by
Golub.

Measuring and comparing the performance of the
numerical experiments

For the results, three kinds of measures are used. The
first one is the LOO-CV performance. This is estimated
by only making use of the training data sets for tun-
ing the parameters. The second measure is the accu-
racy, which gives an idea of the classification perfor-
mance by reflecting the percentage correctly classified
samples. When measured on independent test sets, this
gives an idea of the generalization performance. But
when measured on the training set, one can get an idea
of the degree of overfitting. The third measure is the
area under the Receiver Operating Characteristic (ROC)
curve (Hanley and McNeil, 1982). An ROC curve shows
the separation abilities of a binary classifier: by setting
different possible classifier thresholds, the performances
(# correctly classified samples

# samples in the data · 100)% are calculated resulting
in the ROC curve. If the area under the ROC curve equals
100% on a data set, a perfectly separating classifier is
found on that particular data set, if the area equals 50%,
the classifier has no discriminative power at all. This
measure can be evaluated on an independent test set or
training set. Statistical significance tests are performed
in order to allow a correct interpretation of the results.
A non-parametric paired test, the Wilcoxon signed rank
test (signrank in Matlab) (Dawson-Saunders and Trapp,
1994), has been used in order to make general conclusions.
A threshold of 0.05 is respected, which means that two
results are statistically significantly different if the value
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of the Wilcoxon signed rank test applied to both of them
is lower than 0.05.

Results

The tables with all results and the statistical significance
tests as well as a detailed description of all 9 classifica-
tion problems can be found on the supplementary web-
site. Only the most relevant classification problems are
treated in the following discussion and are represented
in Table 2. For each classification problem, the results
represent the statistical summary (mean and variance) of
the numerical experiments on the original data set and 20
randomizations of it. Since the randomizations (training
and test set splits) are not disjoint, the results as well as
the statistical significance tests given in the tables are not
unbiased and can in general also be too optimistic.

General comments

One general remark is that constructing the randomiza-
tions in a stratified way already seems to result in a large
variance (it would have been even larger if constructed in
a non-stratified way).

Another remark is that the LOO-CV performance is
not a good indicator for the accuracy or the area un-
der the ROC curve of the test set. This raises the ques-
tion whether or not this LOO-CV performance is a good
method for tuning the parameters. Since microarray data
are characterized by a small sample size, LOO-CV has to
be applied with care as one may easily overfit in this case.

For all data sets except the one containing the acute
leukemia data (Golub et al., 1999), the LOO-CV perfor-
mance, the test set accuracy and also the area under the
ROC curve of the test set of the experiment based on
LS-SVM with linear kernel and γ → ∞ (i.e. no regular-
ization) is significantly worse than all other experiments.
This clearly indicates that regularization is very impor-
tant when performing classification without previous di-
mensionality reduction, even for linear models. In the
further discussion treating the individual data sets, this
experiment will be left out.

The acute leukemia data (Golub et al., 1999) clearly
comprises an easy classification problem, since the vari-
ances on the results caused by the randomizations are
quite small compared to the other data sets. All experi-
ments on this data set also seem to end up in quite similar
results, so in fact it hardly doesn’t matter which classifi-
cation method is applied on this data set.

Observing the optimal values for the tuning parameters
leads to the following remarks. When LS-SVM with a lin-
ear kernel is applied, typical values for the mean regular-
ization parameter γ on each data set are ranging between
1e-3 and 1e+3. When using LS-SVM with an RBF ker-
nel, typical values for the mean regularization parameter
γ as well as the mean kernel parameter σ2 on each data
set both are ranging between 1e+10 and 1e+15. Optimal
values for the kernel parameter σ2 are quite large because
they are scaled with the large input dimensionality of mi-
croarray data. Using kernel PCA with an RBF kernel
before classification often results in test set performances
that are worse than when using kernel PCA with a linear
kernel, which means that overfitting occurs. Typical val-
ues for the mean kernel parameter σ2 of the kernel PCA
with RBF kernel on each data set highly depend on the
way the principal components are selected. When using
the unsupervised way for selecting the principal compo-
nents, the mean of kernel parameter values σ2 tends to
go to 1e+20. Using the supervised way for selecting the
principal components, 1e+0 is often selected as the opti-
mal value for the kernel parameter σ2, which leads to bad
test set performances compared to the other experiments
(seriously overfitting).

In the context of parameter optimization, it is also im-
portant to address the number of selected features and in
particular the sparseness of the classical and kernel PCA
projections. Figure 1 represents the test set ROC perfor-
mance together with the sparseness when using a linear
and an RBF kernel for kernel PCA. It has been noticed
that classical PCA leads to approximately the same re-
sults as kernel PCA with linear kernel and therefore not
represented separately. Selection of the principal compo-
nents is done in a supervised way based on the LOO-CV
performance criterion. Two observations can be stated
when comparing the results of these two experiments.
First, when the optimal number of principal components
is relatively low in case of using a linear kernel and much
larger in case of using an RBF kernel, this is an indication
of overfitting. The colon cancer data set of (Alon et al.,
1999) (1) and the hepatocellular carcinoma data set of
(Iizuka et al., 2003) (6) are examples of this observation.
Second, when the optimal number of principal compo-
nents is very large both in case of using a linear kernel
and in case of using an RBF kernel, this is an indication
of overfitting too. The prostate cancer data set of (Singh
et al., 2002) (8) and the breast cancer data set of (van ’t
Veer et al., 2002) (9) are illustrating this observation.
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Hedenfalk et al., 2001: BRCA1 mutations LOO-CV performance ACC training set ACC test set AUC training set AUC test set

LS-SVM linear kernel 78.23±7.13 87.76±14.14 64.29±6.99 100.00±0.00 81.90±18.19 (+)
LS-SVM RBF kernel 82.65±8.12 98.64±6.08 75.00±12.20 (+) 100.00±0.00 82.22±17.38 (+)
LS-SVM linear kernel (no regularization) 46.94±21.21 47.62±9.94 52.98±19.25 (−) 47.14±14.38 52.70±24.16 (−)
PCA + FDA (unsupervised PC selection) 81.63±7.17 95.24±7.09 64.29±12.96 93.93±12.67 67.62±21.83
PCA + FDA (supervised PC selection) 84.01±9.58 97.96±4.49 68.45±15.25 97.86±5.25 71.75±21.12
kPCA lin + FDA (unsupervised PC selection) 81.29±7.13 95.24±6.73 63.10±13.07 96.55±5.64 66.35±20.23
kPCA lin + FDA (supervised PC selection) 84.35±8.99 98.30±4.36 67.86±15.70 98.45±4.12 72.38±22.23
kPCA RBF + FDA (unsupervised PC selection) 91.16±7.28 94.90±6.29 54.17±11.79 (−) 95.36±7.98 60.63±16.25
kPCA RBF + FDA (supervised PC selection) 92.52±5.16 98.30±5.36 63.69±10.85 97.68±7.72 64.13±18.54

Nutt et al., 2003 LOO-CV performance ACC training set ACC test set AUC training set AUC test set

LS-SVM linear kernel 75.74±8.93 90.02±14.16 61.25±11.75 99.47±1.03 79.25±6.06
LS-SVM RBF kernel 78.23±7.99 98.41±7.10 69.95±8.59 (+) 100.00±0.00 81.04±6.64 (+)
LS-SVM linear kernel (no regularization) 50.79±16.65 50.79±12.75 48.93±10.88 (−) 50.63±16.40 50.68±15.15 (−)
PCA + FDA (unsupervised PC selection) 80.95±7.49 92.29±7.12 67.82±7.24 97.72±2.80 77.48±10.50
PCA + FDA (supervised PC selection) 81.41±7.19 92.97±10.14 65.52±11.01 96.65±5.69 77.37±9.04
kPCA lin + FDA (unsupervised PC selection) 80.73±7.12 92.52±6.98 68.31±6.78 97.91±2.74 77.98±10.43
kPCA lin + FDA (supervised PC selection) 81.86±6.67 95.24±8.57 67.32±11.04 98.15±4.02 76.53±8.96
kPCA RBF + FDA (unsupervised PC selection) 86.62±5.99 94.78±9.05 64.20±11.19 (−) 97.30±6.60 70.80±15.44 (−)
kPCA RBF + FDA (supervised PC selection) 85.94±5.78 96.15±7.29 58.13±12.24 (−) 98.25±3.78 66.33±15.48 (−)

Singh et al., 2002 LOO-CV performance ACC training set ACC test set AUC training set AUC test set

LS-SVM linear kernel 90.10±1.42 100.00±0.00 84.31±13.66 100.00±0.00 91.28±5.20 (+)
LS-SVM RBF kernel 91.22±1.19 99.95±0.21 88.10±4.93 (+) 100.00±0.00 92.04±5.03 (+)
LS-SVM linear kernel (no regularization) 50.33±0.92 51.45±7.03 48.18±10.25 (−) 51.10±8.27 50.98±12.38 (−)
PCA + FDA (unsupervised PC selection) 90.38±1.83 97.62±1.95 83.89±13.63 99.67±0.38 88.93±11.39
PCA + FDA (supervised PC selection) 90.57±1.53 97.57±3.34 82.49±13.35 99.40±0.99 86.74±12.95
kPCA lin + FDA (unsupervised PC selection) 90.34±1.75 97.57±1.90 85.01±9.07 99.67±0.38 89.98±7.30
kPCA lin + FDA (supervised PC selection) 90.57±1.53 97.57±3.34 82.49±13.35 99.40±0.99 86.73±12.96
kPCA RBF + FDA (unsupervised PC selection) 91.60±1.50 98.97±1.75 85.01±11.00 99.84±0.32 89.90±9.64
kPCA RBF + FDA (supervised PC selection) 100.00±0.00 100.00±0.00 28.71±10.02 (−) 100.00±0.00 50.00±0.00 (−)

Van ’t Veer et al., 2002 LOO-CV performance ACC training set ACC test set AUC training set AUC test set

LS-SVM linear kernel 68.99±4.22 100.00±0.00 67.92±8.58 (+) 100.00±0.00 73.30±11.01 (+)
LS-SVM RBF kernel 69.05±3.55 100.00±0.00 68.42±7.62 (+) 100.00±0.00 73.98±10.69 (+)
LS-SVM linear kernel (no regularization) 52.14±6.04 74.66±24.04 57.14±9.08 (−) 74.73±25.26 64.60±13.18 (−)
PCA + FDA (unsupervised PC selection) 71.31±3.57 91.27±10.04 57.39±15.57 94.61±6.80 65.16±12.30
PCA + FDA (supervised PC selection) 73.44±3.19 97.31±5.62 66.92±9.90 (+) 98.77±3.16 67.91±12.64
kPCA lin + FDA (unsupervised PC selection) 71.18±3.62 91.21±10.33 60.90±14.49 94.46±7.22 66.01±13.45
kPCA lin + FDA (supervised PC selection) 73.63±3.89 97.13±6.63 65.41±7.54 (+) 98.54±3.98 69.22±11.01
kPCA RBF + FDA (unsupervised PC selection) 74.91±6.54 90.66±11.08 51.38±15.91 93.77±8.75 60.26±16.57
kPCA RBF + FDA (supervised PC selection) 100.00±0.00 100.00±0.00 36.84±0.00 (−) 100.00±0.00 50.00±0.00 (−)

Table 2: Summary of the results of the numerical experiments on 4 binary cancer classification problems, comprising the leave-one-out cross-validation (LOO-CV)
performance, the accuracy (ACC) on training and test set, and the area under the ROC curve (AUC) on training and test set. Results visualized in bold followed
by (+) are statistically significantly better than the other results. Results in bold followed by (−) are statistically significantly worse than the other results.
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Figure 1: Illustration of the test set ROC performance (upper
part) and the sparseness (lower part) of the optimally selected fea-
ture set based on boxplots of the areas under the ROC curve of
the test set and boxplots of the optimal number of principal com-
ponents respectively of all 9 cancer classification problems. It has
been observed that an optimal selection of a large number
of features is often an indication for overfitting in case of
kernel PCA with RBF kernel (supervised feature selec-
tion) followed by FDA. For each data set, the areas under the
ROC curve of the test set and the optimal number of principal com-
ponents of kernel PCA with a linear kernel (selecting the principal
components in a supervised way) followed by FDA are represented
on the left, the areas under the ROC curve of the test set and
the optimal number of principal components of kernel PCA with
an RBF kernel (selecting the principal components in a supervised
way) followed by FDA on the right. Concerning the data sets, the
order of Table 1 is respected.

Results on specific data sets

Breast cancer data set (Hedenfalk et al., 2001): BRCA1
mutations versus the rest. Concerning the test set ac-
curacies, LS-SVM with RBF kernel obviously performs
better than all other methods. Using an RBF kernel
when doing kernel PCA on the other hand clearly per-
forms worse when the eigenvalues are used for selection
of the principal components. The results of the area under
the ROC curve of the test set show that using LS-SVM
results in much better performances than all other exper-
iments, even when using a linear kernel. Both methods
for selecting the principal components seem to perform
very similarly, but in some cases using the absolute value
of the Golub score tends to perform slightly better. Re-
markably in this case is that the test set accuracy of LS-
SVM with RBF kernel is much better than LS-SVM with
linear kernel, although the area under the ROC curve of

both experiments is practically equal. This is also an in-
dication of how important it is to find a good decision
threshold value, which corresponds to an operating point
on the ROC curve.

High-grade glioma data set (Nutt et al., 2003). Con-
cerning the test set performances, the experiment using
LS-SVM with RBF kernel is significantly better than us-
ing LS-SVM with linear kernel. For this data set both
methods for selection of the principal components give
similar results.

Prostate cancer data set (Singh et al., 2002). The test
set performances show that the experiment using kernel
PCA with RBF kernel and selecting the principal com-
ponents by means of the supervised method clearly gives
very bad results. Using the eigenvalues for selection of the
principal components seems to give better results than
using the supervised method. According to the test set
accuracy, the experiment applying LS-SVM with RBF
kernel even performs slightly better than those experi-
ments using the eigenvalues for selection of the principal
components. When looking at the area under the ROC
curve of the test set, both experiments applying LS-SVM
perform slightly better than those experiments using the
eigenvalues for selection of the principal components.

Breast cancer data set (van ’t Veer et al., 2002). When
looking at the test set performances, it is obvious that the
experiment using kernel PCA with RBF kernel and select-
ing the principal components by means of the supervised
method leads to very bad results. Using LS-SVM gives
better results than performing dimensionality reduction
combined with an unsupervised way for the selection of
the principal components. According to the area under
the ROC curve of the test set, using LS-SVM gives bet-
ter results than all experiments performing dimensional-
ity reduction. Both methods for selecting the principal
components seem to perform very similarly, but in some
cases using the absolute value of the Golub score tends to
perform slightly better.

Discussion

Assessing the role of nonlinearity for the case
without dimensionality reduction

When considering only the experiments without dimen-
sionality reduction, i.e. LS-SVM with linear kernel and
LS-SVM with RBF kernel, using a well-tuned RBF kernel
never resulted in overfitting on all tried data sets. The
test set performances obtained when using an RBF kernel
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often appear to be similar to those obtained when using
a linear kernel, but in some cases an RBF kernel ends up
in even better classification performances. This is illus-
trated in Figure 2. The fact that using LS-SVM with an
RBF kernel does not result in overfitting even for simple
classification problems, can be explained by looking to
the optimal values of the kernel parameter. When opti-
mizing the kernel parameter of the RBF kernel for such a
problem, the obtained value seems to be very large. Us-
ing an RBF kernel with the kernel parameter σ set to
infinity corresponds to using a linear kernel, aside from
a scale factor (Suykens et al., 2002). Up till now, most
microarray data sets are quite small and they may repre-
sent quite easily separable classification problems. It can
be expected that those data sets will become larger or
perhaps represent more complex classification problems
in the future. In this case the use of nonlinear kernels
as the commonly used RBF kernel becomes important.
Considering this, it may be useful to explore the effect of
using other kernel functions.
When comparing the experiments with and without di-
mensionality reduction, an important issue is that LS-
SVM with RBF kernel (experiment without dimensional-
ity reduction) never performs worse than all other meth-
ods.

The importance of regularization

When looking at the experiment using LS-SVM with lin-
ear kernel and the regularization parameter γ set to infin-
ity, i.e. without regularization, the following issue can be
seen. Using LS-SVM without regularization corresponds
to FDA (Suykens et al., 2002). Figure 3 shows that this
experiment hardly performs better than random classifi-
cation on all data sets, except on the acute leukemia data
set of (Golub et al., 1999), which represents an easily sep-
arable classification problem. Regularization appears to
be very important when applying classification methods
onto microarray data without doing a dimensionality re-
duction step first.

Assessing the role of nonlinearity in case of di-
mensionality reduction

When considering only the experiments using dimension-
ality reduction, another important issue becomes clear.
Comparing the results of using an RBF kernel with those
of using a linear kernel when applying kernel PCA before
classification, reveals that using an RBF kernel easily re-
sults in overfitting. This is represented by Figure 4. The

best results are obtained by simply using a linear kernel
when doing kernel PCA, which are similar to those when
using classical PCA. (Gupta et al., 2002) states a simi-
lar conclusion for face recognition based on image data.
When comparing both methods for selection of the prin-
cipal components, namely the unsupervised way based
on the eigenvalues with the supervised way based on the
absolute value of the score introduced by (Golub et al.,
1999), no general conclusions can be made. It depends on
the data set whether one method is better than the other
or not. The combination of using kernel PCA with RBF
kernel and selection of the principal components tends to
result in overfitting. All this can be explained by ignoring
relevant principal components (Bishop, 1995).
In the context of feature selection, some interesting is-
sues become clear when studying the ROC performance
and the sparseness of the classical and kernel PCA pro-
jections. When comparing the results of using a linear
kernel with those of using an RBF kernel for kernel PCA
when selection of the principal components is done in a
supervised way as shown in Figure 1, two situations in-
dicating overfitting can be recognized. First, overfitting
occurs when the optimal number of principal components
is relatively low in case of using a linear kernel for kernel
PCA and much larger in case of using an RBF kernel.
Second, overfitting also occurs when the optimal number
of principal components is very large both in case of us-
ing a linear kernel for kernel PCA and in case of using an
RBF kernel.
When comparing the experiments with and without di-
mensionality reduction, also worth mentioning is the fact
that performing dimensionality reduction requires opti-
mization of the number of principal components. This
parameter, belonging to the unsupervised PCA, needs to
be optimized in the sense of the subsequent supervised
FDA (see outline of the optimization algorithm in the
section on numerical experiments). In practice, this ap-
pears to be quite time-consuming, especially in combi-
nation with other parameters that need to be optimized
(e.g. kernel parameter of kernel PCA with RBF kernel).
However, numerical techniques can be used to speed up
the experiments.

Conclusion

In the past, using classification methods in combination
with microarrays has shown to be promising for guiding
clinical management in oncology. In this study, several
important issues have been formulated in order to op-
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Figure 2: Illustration of the first main conclusion based on boxplots (boxplot in Matlab, see supplementary website) of the test set
accuracies of all 9 binary cancer classification problems: When performing classification with LS-SVM (without dimensionality reduction),
using well-tuned RBF kernels can be applied without risking overfitting. The results obtained with well-tuned RBF kernels
are never worse and sometimes even statistically significantly better compared with using a linear kernel. For each data set, the test set
accuracies of LS-SVM with a linear kernel are represented on the left, the test set accuracies of LS-SVM with an RBF kernel on the right.
Concerning the data sets, the order of Table 1 is respected.
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Figure 3: Illustration of the second main conclusion based on boxplots of the test set accuracies of all 9 cancer classification problems:
Even for classification with linear classifiers like LS-SVM with linear kernel, performing regularization is very important. For each
data set, the test set accuracies of LS-SVM with a linear kernel without regularization are represented on the left, the test set accuracies
of LS-SVM with a linear kernel with regularization on the right. The latter shows much better performance. Concerning the data sets,
the order of Table 1 is respected.
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Figure 4: Illustration of the third main conclusion based on boxplots of the test set accuracies of all 9 cancer classification problems:
When performing kernel principal component analysis (kernel PCA) before classification, using an RBF kernel for kernel PCA
tends to result in overfitting. Kernel PCA with linear kernel gives better results. For each data set, the test set accuracies
of kernel PCA with an RBF kernel (selecting the principal components in a supervised way) followed by FDA are represented on the left,
the test set accuracies of kernel PCA with a linear kernel (selecting the principal components in a supervised way) followed by FDA on
the right. Concerning the data sets, the order of Table 1 is respected.
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timize the performance of clinical predictions based on
microarray data. Those issues are based on nonlinear
techniques and dimensionality reduction methods, tak-
ing into consideration the probability of increasing size
and complexity of microarray data sets in the future. A
first important conclusion from benchmarking 9 microar-
ray data set problems is that when performing classifi-
cation with least squares SVM (without dimensionality
reduction), using an RBF kernel can be applied without
risking overfitting on all tried data sets. The results ob-
tained with an RBF kernel are never worse and sometimes
even better than when using a linear kernel. A second
conclusion is that using LS-SVM without regularization
(without dimensionality reduction) ends up in very bad
results, which stresses the importance of applying reg-
ularization even in the linear case. A final important
conclusion is that when performing kernel PCA before
classification, using an RBF kernel for kernel PCA tends
to lead to overfitting, especially when using supervised
feature selection. It has been observed that an optimal
selection of a large number of features is often an indica-
tion for overfitting. Kernel PCA with linear kernel gives
better results.
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