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ABSTRACT
Motivation: Clinical data, such as patient history, laboratory analy-
sis, ultrasound parameters - which are the basis of day-to-day clinical
decision support - are often underused to guide the clinical mana-
gement of cancer in the presence of microarray data. We propose
a strategy based on Bayesian networks to treat clinical and microar-
ray data on an equal footing. The main advantage of this probabilistic
model is that it allows to integrate these data sources in several ways
and that it allows to investigate and understand the model structure
and parameters. Furthermore using the concept of a Markov Blan-
ket we can identify all the variables that shield off the class variable
from the influence of the remaining network. Therefore Bayesian
networks automatically perform feature selection by identifying the
(in)dependency relationships with the class variable.
Results: We evaluated three methods for integrating clinical and
microarray data: decision integration, partial integration and full inte-
gration and used them to classify publicly available breast cancer
patients into a poor and a good prognosis group. The partial integra-
tion method is most promising and has an independent test set area
under the ROC curve of 0.845. After choosing an operating point the
classification performance is better than frequently used indices.
Contact: olivier.gevaert@esat.kuleuven.be

1 INTRODUCTION
In the past decade microarrays have had a great impact on cancer
research. This technology allows to measure the expressionof thou-
sands of genes at once; possibly representing the whole genome.
Usually a microarray consists of a selection of probes whichare
applied onto a solid surface and represent a number of genes (Lock-
hartet al. (1996); Brown and Botstein (1999)). Reverse transcribed
mRNA extracted from a tumor sample can be hybridized with the
probes on this surface. This results in expression levels ofthousands
of genes for every tumor sample that is hybridized. The resulting
data has been used for many applications such as class discovery
and the prediction of diagnosis, prognosis or treatment response.
Several studies have been conducted using microarray technology
studying several types of cancer (Golubet al. (1999); Bhattacharjee
et al. (2001); Singhet al. (2002); van ’t Veeret al. (2002); van de
Vijver et al. (2002); Spentzoset al. (2004, 2005)).
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However, microarray data is high dimensional, characterized by
many variables and few observations. Moreover this technique suf-
fers from a low signal-to-noise ratio. In our opinion, integration of
other sources of information could be important to counter randomly
generated differences in expression levels. For example Shedden
et al. (2003) used a pathological framework and showed that this
information significantly lowered the number of genes required
in their model. Nevertheless, the focus in most studies is onthe
microarray analysis while the clinical data is not used in the same
manner. Clinical data includes for example: patient history, labo-
ratory analysis or ultrasound parameters. This data was thebasis
of research and fully guided the clinical management of cancer in
the pre-microarray era and is, in our opinion, often underused when
microarray data is available. Here we propose methods basedon
Bayesian networks that integrate clinical data and microarray data.
These methods treat both the clinical and the microarray variables
(i.e. the gene expression levels) in the same manner. For example,
Sheddenet al. (2003) also did not add clinical data to the gene
expression levels when classifying tumour samples.
Bayesian networks are popular decision support models (Husmeier
et al. (2005)) because they inherently model the uncertainty in the
data. They are a successful marriage between probability theory and
graph theory. They allow to model a multidimensional probability
distribution in a sparse way by searching independency relations in
the data. Furthermore this model allows different strategies to inte-
grate two data sources. First, it is possible to combine datasources
directly or, secondly, by combining them at the decision level. Fur-
thermore, because Bayesian networks are learned from data in two
independent steps, we can define a third method to integrate both
data sources. These three methods will be presented and evaluated
using Receiver Operator Characteristic (ROC) curves on thetraining
set. The method with the highest average ROC performance will be
evaluated on an independent test set. To the author’s knowledge, the
first two methods have not been previously applied in this context
and the third method has not been previously defined.
We will focus as an example on the prediction of the prognosisin
lymph node negative breast cancer (without apparent tumor cells in
local lymph nodes at diagnosis). We define the outcome as a varia-
ble that can have two values: poor prognosis or good prognosis.
Poor prognosis corresponds to recurrence within 5 years after dia-
gnosis and good prognosis corresponds to a disease free interval of
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Gene 1

Gene 2 Gene 3

Prognosis

Gene 1

P(on) 0.8

P(off) 0.2

Gene 2    Gene 1 Gene 1
     on off

P(on)       0.3 0.6

P(off)       0.7 0.4

Gene 2    Gene 1 Gene 1
     on off

P(on)       0.3 0.6

P(off)       0.7 0.4

Prognosis Gene 2 on Gene 2 on Gene 2 off Gene 2 off
Gene 3 on Gene 3 off Gene 2 on Gene 3 off

P(good) 0.6 0.1 0.9 0.5

P(poor) 0.4 0.9 0.1 0.5

Fig. 1. A simple example of a Bayesian network with four binary variables.
The conditional probability tables are shown next to each node where each
column in such a table refers to a specific instantiation of the parents. Gene
1 has no parents therefore the node’s table specifies a prioriprobabilities.

at least 5 years (van ’t Veeret al. (2002)). If we can distinguish
between these two groups, patients could be treated more optimally
thus eliminating over- or under-treatment.

2 METHODS

2.1 Bayesian networks
2.1.1 Definition A Bayesian network is a probabilistic model that con-
sists of two parts: a dependency structure and local probability models
(Pearl (1988); Neapolitan (2004)). The dependency structure specifies how
the variables are related to each other by drawing directed edges between
the variables without creating directed cycles. Each variable depends on a
possibly empty set of other variables which are called the parents:

p(x1, ..., xn) =
n

Y

i=1

p(xi|Pa(xi)) (1)

wherePa(xi) are the parents ofxi. Usually the number of parents for
each variable is small therefore a Bayesian network is a sparse way of writing
down a joint probability distribution. The second part of this model, the
local probability models, specifies how the variables depend on their parents.
We used discrete-valued Bayesian networks which means thatthese local
probability models can be represented with Conditional Probability Tables
(CPTs). Such a table specifies the probability that a variable takes a certain
value given the value of its parents. Figure 1 shows an example of a Bayesian
network with four binary variables. The prognosis variablein this example
has two parents: gene 2 and gene 3. The CPTs for each variable are shown
alongside each node.

2.1.2 Markov Blanket An important concept of Bayesian networks is
the Markov blanket of a variable. The Markov blanket of a variable is the
set of variables that completely shields off this variable from the other varia-
bles. This set consists off the variable’s parents, children and its children’s
other parents. A variable in a Bayesian network is conditionally independent
of the other variables given its Markov Blanket. Conditional independency
means that when the Markov blanket of a certain variablex is known, adding
knowledge of other variables leaves the probability ofx unchanged (Korb
and Nicholson (2004)). This is an important concept becausethe Markov
blanket is the only knowledge that is needed to predict the behaviour of that
variable. For classification purposes we will focus on the Markov Blanket of

A

Fig. 2. The Markov blanket of variable A is composed of the variable’s
parents, its children and its children other parents. Here the Markov blanket
variables are shown in a grey circle.

the outcome variable. The concept of a Markov blanket is shown in Figure
2.

2.2 Bayesian network learning
Previously we mentioned that a discrete valued Bayesian network consists of
two parts. Consequently, there are two steps to be performedduring model
building: structure learning and learning the parameters of the CPTs.

2.2.1 Structure learning First the structure is learned using a
search strategy. Since the number of possible structures increases super-
exponentially with the number of variables, we used the well-known greedy
search algorithm K2 (Cooper and Herskovits (1992)) in combination with
the Bayesian Dirichlet (BD) scoring metric:

p(S|D) ∝ p(S)
n

Y

i=1

qi
Y

j=1

"

Γ(N ′

ij)

Γ(N ′

ij + Nij)

ri
Y

k=1

Γ(N ′

ijk
+ Nijk)

Γ(N ′

ijk
)

#

, (2)

with Nijk the number of cases in the data setD having variablei in state
k associated with thej-th instantiation of its parents in current structureS.
n is the total number of variables. Next,Nij is calculated by summing over
all states of a variable:Nij =

Pri

k=1
Nijk. N ′

ijk
andN ′

ij have similar
meanings but refer to prior knowledge for the parameters. When no know-
ledge is available they are estimated usingN ′

ijk
= N/(riqi) (Heckerman

et al. (1995)) withN the equivalent sample size,ri the number of states of
variablei andqi the number of instantiations of the parents of variablei.
Γ(.) corresponds to the gamma distribution. Finallyp(S) is the prior proba-
bility of the structure.p(S) is calculated by:p(S) =

Qn
i=1

Qpi

li=1
p(li →

xi)
Qoi

mi=1
p(mi 9 xi) with pi the number of parents of variablexi and

oi all the variables that are not a parent ofxi. Next, p(a → b) is the pro-
bability that there is an edge froma to b while p(a 9 b) is the inverse, i.e.
the probability that there is no edge froma to b. Since we are interested in
the prediction of the prognosis, edges with the outcome variable are given a
higher prior probability than other edges.
Using Equation 2 we can now score structures using the K2 search strat-
egy. K2 consists of a greedy search combined with a prior ordering of the
variables. This ordering restricts the search space by onlyallowing parents if
they precede the current variable in the ordering. Then K2 iteratively tries to
find the best parents for each variable separately by starting with an empty
set of parents and incrementally adding the best parents. When the addition
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of a parent does not increase the score, the algorithm stops and moves on
to the next variable in the ordering. Since the ordering of the variables is
not known in advance, the model building process is iterateda number of
times with different permutations of the ordering. Then thenetwork with the
highest score is chosen.

2.2.2 Parameter learningThe second step of the model building pro-
cess consists of estimating the parameters of the local probability models
corresponding with the dependency structure. In section 2.1.1 we reported
that we are using CPTs to model these local probability models. For each
variable and instantiation of its parents there exists a CPTthat consists of
a set of parameters. Each set of parameters was given a uniform Dirichlet
prior:

p(θij |S) = Dir(θij |N
′

ij1, ...,N ′

ijk , ..., N ′

ijri
) (3)

with θij a parameter set wherei refers to the variable andj to thej-th instan-
tiation of the parents in the current structure.θij contains a probability for
every value of the variablexi given the current instantiation of the parents.
Dir corresponds to the Dirichlet distribution with(N ′

ij1, ...,N ′

ijri
) as

parameters of this Dirichlet distribution. Parameter learning then consists
of updating these Dirichlet priors with data. This is straightforward because
the multinomial distribution that is used to model the data,and the Dirichlet
distribution that models the prior, are conjugate distributions. This results in
a Dirichlet posterior over the parameter set:

p(θij |D, S) =

Dir(θij |N
′

ij1 + Nij1, ...,N ′

ijk + Nijk , ...,N ′

ijri
+ Nijri

) (4)

with Nijk defined as before. We summarized this posterior by taking the
Maximum A Posteriori (MAP) parameterization of the Dirichlet distribution
and used these values to fill in the corresponding CPTs for every varia-
ble. Using MCMC could improve our current set-up because this technique
allows devising the complete posterior distribution (Neal(1996)).

2.3 Data
We used the data of van ’t Veeret al. (2002) which is available at
http://www.rii.com/publications/default.htm or in the Integrated Tumor
Transcriptome Array and Clinical data Analysis database (ITTACA (2006)).
This data set consists of two groups of patients. The first group of patients,
which we call the training set, consists of 78 patients of which 34 pati-
ents belonged to the poor prognosis group and 44 patients belonged to the
good prognosis group. The second group of patients, the testset, consists
of 19 patients of which 12 patients belonged to the poor prognosis group
and 7 patients belonged to the good prognosis group. DNA microarray ana-
lysis was used to determine the mRNA expression levels of approximately
25000 genes for each patient. Every tumour sample was hybridized against
a reference pool made by pooling equal amounts of RNA from each pati-
ent. The ratio of the sample and the reference was used as a measure for the
expression of the genes and they constitute the microarray data set. Each
patient also had the following clinical variables recorded: age, diameter,
tumor grade, oestrogen and progesterone receptor status, the presence of
angioinvasion and lymphocytic infiltration, which together form the clinical
data.

2.3.1 PreprocessingThe microarray data consists of approximately
25000 expression values per patient, which was already background correc-
ted, normalized and log-transformed. An initial selectionwas done (similar
to van ’t Veeret al. (2002)) by removing the genes that did not meet the
following criteria using only the training data: at least a twofold increase or
decrease and a P-value of less than 0.01 in more than 3 tumors.This resulted
in a subset of approximately 5000 genes. Then we calculated the correlation
between the expression values of these genes with the binaryoutcome and
selected the genes with a correlation of≥ 0.3 or ≤ −0.3. This resulted
in 232 genes that where correlated with the outcome. Missingvalues were
estimated using a 15-weighted nearest neighbours algorithm (Troyanskaya

et al. (2001)). Then these genes were discretized into three categories: base-
line, over-expression or under-expression according to two thresholds. These
thresholds depended on the variance of the gene such that a gene with high
variance receives a higher threshold than a gene with low variance. The data
set that results from these steps was used as input for the Bayesian network
software.

2.3.2 Model building We evaluated the performance of the different
methods for integrating both data sources (see section 2.4)using the training
data. This was done by randomizing the training data set 100 times, in a
stratified way, into a set of 70% of the patients used to build the model (model
building data set) and a set of 30% to estimate the Area Under the ROC curve
(AUC). Then these 100 AUCs were averaged and reported. In this manner we
can evaluate the generalizing performance of a specific method and compare
with other methods.
Next, the method that performed best in the previous step wasused to train
100 models with different orderings using the complete training set. The
model with the highest AUC among these 100 models was chosen to predict
the outcome on the test set.

2.4 Integration of data sources
2.4.1 Full integration Bayesian networks allow to combine the two
data sources, the clinical and microarray data, in different ways. The first
method, full integration, is equal to putting both data sources together and
treating them as if it is one dataset. This means that both theclinical varia-
bles (e.g. age, diameter, grade, etc. ) and the microarrays variables (mRNA
expressions for each gene) are offered as one data set to the Bayesian net-
work learning algorithm. In this manner the developed modelcan contain
any type of relationship between the clinical variables andthe microarray
variables.

2.4.2 Decision integration The decision integration method amounts
to learning a separate model for the clinical and the microarray data. Then
the predictions for the outcome are fused. This comes down tocombining the
probability of the outcome for the clinical model with the probability of the
outcome for the microarray model using weights. The weight parameter is
trained using only the model building data set (see section 2.3.2) within each
randomization which, in the context of decision integration, is called an outer
randomization. This is done by performing again 100 inner randomizations
of the model building data set within each outer randomization by again
splitting this data set in 70% of the data for training and 30%of the data for
testing. For each inner randomization the weight is increased from0.0 to 1.0
in steps of0.1. Then the weight value with the highest average AUC on the
30% left out data of the 100 inner randomizations is chosen asweight for the
outer randomization.

2.4.3 Partial integration Bayesian networks also allow a third
method, which we will call partial integration. This is due to the fact that
learning Bayesian networks is a two step process. Thereforewe can perform
the first step, structure learning, separate for both data sources. This results in
a structure for the clinical data and a structure for the microarray data. Both
structures have only one variable in common, the outcome, since this varia-
ble is present in both data sources. The outcome variable allows joining the
separate structures into one structure. Then the second step of learning Baye-
sian networks (i.e. parameter learning) starts with the combined clinical and
microarray data. Partial integration is similar to imposing a restriction during
structure learning where no links are allowed between clinical variables and
gene expression variables.

3 RESULTS
Model building was done as described in section 2.3.2 for the
three integration methods (full, partial and decision integration)
and for both data sources (clinical and microarray) separately for
comparison. In case of decision integration, we used randomizati-
ons to determine the weights to fuse the decisions as described in
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2.4.2. This resulted in a weight of0.6 for predicted probabilities
of the clinical model and a weight of0.4 for predicted probabili-
ties of the microarray model, slightly favouring the clinical model.
After choosing these optimal weights, we can compare the methods
for integrating the data sources. Table 1 shows the AUCs for the
developed models. Partial integration and decision integration are
significantly different from the other methods but not significantly
different from each other (Wilcoxon rank sum tests).

Table 1. Average AUC performance and standard deviation of the three
methods for integrating clinical and microarray data and each data source
separately with 100 randomizations. The first two methods, clinical and
microarray, are for comparison. The next three methods (decision, partial
and full) refer to the methods for integrating the clinical and microarray data.

Method average AUC Std
Clinical data 0.751 0.086
Microarray data 0.750 0.073
Decision integration 0.790 0.072
Partial integration 0.793 0.068
Full integration 0.747 0.099

Next, both decision integration and partial integration were cho-
sen as the best methods of integrating the two data sources and 100
models were built using the training set. Then the best performing
model for each method was chosen and used to predict the outcome
on the test data set. The best partial integration model is referred to
as BPIM (Best Partial Integration Model) and the best decision inte-
gration model as BDIM (Best Decision Integration Model). Table
2 shows the AUC of these two models on the test set. We compa-
red our models with the 70 genes prognosis profile by applyingthe
methods described in van ’t Veeret al. (2002) and using the resul-
ting classifier on the test set. The AUC is also shown in table 2, the
standard deviations were estimated according to Hanley andMcNeil
(1983). Both BPIM and the 70 genes model perform in the same
manner on the data set while BDIM is worse. However, there are
no significant differences between the ROC curves of BDIM, BPIM
and the 70 genes model (Hanley and McNeil (1983)).

Table 2. The AUC of the Bayesian network models (BPIM and BDIM) and
of the reconstructed model based on van ’t Veeret al. (2002) based on 70
genes.

AUC std
70 genes 0.851 0.132
BPIM 0.845 0.132
BDIM 0.810 0.118

Next we chose an operating point for BDIM and BPIM by choo-
sing a threshold that corresponds with a maximum for the sum of the
sensitivity and specificity (Smetet al. (2004)). Then we compared
the classifications of our models with the 70 genes model and with
the following indices: the St. Gallen consensus (Goldhirsch et al.
(1998)), the National Institute of Health (NIH) index (Eifel et al.
(2001)) and following (Edénet al.(2004)) also with the widely used
Nottingham Prognostic Index (NPI) (Blameyet al. (1979)). For the

NPI we used the standard threshold of 3.4 to determine a good or
a poor prognosis. Below this threshold the prognosis is considered
good, above this threshold the prognosis is considered moderate or
poor (Toddet al. (1987)). Table 3 shows the number of patients that
is assigned to the poor prognosis group for the complete testset, the
set of true poor prognosis patients (i.e. sensitivity) and the set of true
good prognosis patients (i.e. 1-specificity). We have applied the St
Gallen consensus and the NIH index in the same manner as van ’t
Veer et al. (2002). The results show that both the St Gallen con-
sensus and the NIH consensus criteria have a tendency to produce
more false positives than the other models which has been obser-
ved before (Boyageset al. (2002)). In the test set both indices also
have some false negatives which can be due to sample selection and
small sample size. Both BPIM and the 70 genes have similar per-
formance and are better than the other models since they produce
few false positives and false negatives. Both tables 2 and 3 show
that BPIM and the 70 genes have similar performance and are bet-
ter than BDIM and the frequently used indices. BPIM and 70 genes
can reliably be used to predict the prognosis in lymph node negative
breast cancer.

Table 3. The number of patients assigned a poor prognosis for the complete
test set and for the true poor and good prognosis patients.

Total test Metastasis Disease
set within 5 yr free at 5 yr
(n=19) (n=12) (n=7)

St Gallen 1998♮ 13/19 (68%) 10/12 (83%) 3/7 (43%)
NIH 2000◦ 15/19 (79%) 10/12 (83%) 5/7 (71%)
NPI♦ 11/19 (58%) 9/12 (75%) 2/7 (29%)
70 genes† 14/19 (74%) 12/12 (100%) 2/7 (29%)
BPIM† 13/19 (68%) 11/12 (92%) 2/7 (29%)
BDIM† 11/19 (58%) 9/12 (75%) 2/7 (29%)
♮ Either one of the following criteria equals poor prognosis:ER
negative, tumour diameter≥ 2 cm, grade 3 or age< 35

◦ Poor prognosis if tumour diameter> 1 cm.
♦ NPI is the sum of 0.2 times the tumour diameter in cms, lymph
node stage and the tumour grade.
† The operating point is determined by maximizing the sum of the
sensitivity and specificity on the training set.

Figure 3 shows the complete network built with partial integra-
tion. The outcome variable and its Markov Blanket is indicated with
triangle nodes. Figure 4 shows the Markov Blanket in detail with
the gene names where possible. There are three clinical variables:
age, grade and angioinvasion and 13 genes, 12 annotated and 1
unannotated.

4 DISCUSSION
We have developed Bayesian networks to integrate clinical and
microarray data using the data of van ’t Veeret al. (2002) and inve-
stigated if an improvement was made for the prediction of metastasis
in breast cancer. We investigated three methods for integrating the
two data sources with Bayesian networks: full integration,partial
integration and decision integration.
Table 1 showed that only partial integration and decision integra-
tion perform significantly better than each data source separately.
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Fig. 3. The complete Bayesian network for the best model using partial integration of clinical and microarray data. The Markov blanket of the outcome
variable is indicated with triangle white nodes.
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Fig. 4. Markov blanket of the outcome variable for the BPIM model. Gene
names have been used where possible.

We believe that this is due to the different nature of the datasources.
Clinical data has a low noise level, there are mostly fewer variables
than observations and there are both discrete and continuous-valued

variables. Microarray data on the other hand has a much higher
noise level. There are a lot more variables than observations and
all the variables are continuous. Therefore, it could be advisory to
treat them separately in some way. Partial integration usesseparate
structure learning while decision integration builds separate models
but fuses the outcome probabilities. Full integration doesnot make
a distinction between these two heterogeneous data sourceswhich
causes that the clinical variables are submerged by the microarray
variables and mostly have few connections. This leads to a model
where the Markov Blanket only consists of microarray variables and
explains the similar performance between full integrationand using
only the microarray data.
Next, table 2 showed that BPIM generalizes best to unseen data
compared to BDIM. The difference between these two models is
that BPIM is integrated at the parameter level and BDIM at thedeci-
sion level. The former combines clinical and microarray variables
in a more sophisticated way because combined parameter learning
results in different parameters for every instantiation ofthe clini-
cal variables. The latter method combines the outcome probabilities
using a weighting scheme and relies on the weights for each model.
Furthermore BPIM outperforms the prognostic indices and has com-
parable performance with the 70 genes prognosis profile (van’t Veer
et al. (2002)) despite having fewer genes. This suggests that using
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clinical data decreases the number of genes required to reliably pre-
dict the prognosis. Moreover the low number of genes in BPIM
could allow the design of a cheaper test for breast cancer progno-
sis while still benefiting from data at the molecular level.
Next, we also looked more closely at the BPIM model to investigate
the performance of the model when the links of the outcome variable
with either the clinical variables or the microarray variables in the
Markov blanket are removed. This resulted in worse performance
of the model. When the links between the outcome and the clini-
cal variables are removed the AUC performance drops to 0.804(std
0.130). Similarly when the links between the outcome and thegenes
are removed the AUC performance drops to 0.798 (std 0.128). This
is strong evidence that the combination between the clinical and the
microarray variables boosts the performance. Also the formation of
a prognostic index from a combination of clinical variablesand a
small number of genes seems possible.
Furthermore we searched the literature for relations of thevariables
in the Markov blanket of BPIM (see Figure 4) with breast can-
cer prognosis and metastasis. The presence of the clinical variables
can be explained because they are used as conventional prognostic
markers and in prognostic indices. Age in particular because pati-
ents with breast cancer at young age have been correlated with poor
prognosis (Goldhirschet al. (1998)) while grade is part of the NPI
(Blameyet al. (1979)). Moreover, recently a large study has shown
that lymphovascular invasion, which is related to angioinvasion, is
an independent prognostic factor in node-negative breast cancer and
improves the NPI (Leeet al. (2006)). Furthermore there are 13
genes, 12 annotated and 1 unannotated. Among the annotated genes,
MMP9, HRASLS and RAB27B have strong associations with can-
cer (Owenet al. (2004); Kanedaet al. (2004)). MMP9 is associated
with tumor invasion and angiogenesis since matrix metalloproteases
are an important family of proteases that degrade a path through
the extra-cellular matrix and the stroma. This process allows tumor
cells to invade the surrounding tissue (Pecorino (2005)). HRASLS
is associated with the RAS pathway (Malaney and Daly (2001))and
is thought to function as a tumor suppressor. Furthermore RAB27B
is a member of the RAS oncogene family.
On the other hand BDIM also showed interesting characteristics.
This decision integration model used a weight of 0.6 for the clinical
model and a weight of 0.4 for the microarray model. This emphasi-
zes the importance of the clinical data for classification compared
to the microarray data. In addition, the clinical data generalizes
better to new data since the test set performance is similar to the
training set performance (average training set AUC of 100 clinical
data models is 0.838) while the microarray data allows bitter fit-
ting but with the danger of overfitting (average training setAUC
of 100 microarray data models is 0.981) (also see Table 1). There-
fore combining both data sources can lead to models benefiting from
the complementary advantages of each data source separately. The
results of BDIM and BPIM show that this is possible.
The advantages of the probabilistic approach are that the current
models can be extended with prior information. This can be done
both at the structure level and the parameter level. This will influ-
ence the variables that show up in the Markov blanket and results
in a feature selection method based on data and prior biological
knowledge with automatic tuning of the balance between dataand
prior knowledge. Possible sources of prior information areliterature
abstracts (Glenissonet al. (2004)), known pathways (e.g. KEGG or
BIOCARTA) or motif information (Thijset al. (2002)). Moreover

publicly available microarray data sets studying the same clinical
problem can be combined via the prior.
Furthermore, since Bayesian networks are not tuned for classi-
fication - they provide a more general framework by modeling
a multi-dimensional probability distribution - the reported perfor-
mance could be improved by using more traditional classifiers. Our
ongoing research includes investigating the use of Bayesian net-
works as feature selector followed by Least Squares SupportVector
Machines for classification (Pochetet al. (2004)).
In conclusion, the integrated use of clinical and microarray data out-
performs the indices based on clinical data (NIH, St. Gallenand
NPI) and has comparable performance with the 70 genes progno-
sis profile. Therefore this approach offers possibilities for the use of
Bayesian networks to integrate data sources for other typesof can-
cer and data. Furthermore BPIM has comparable performance as
the 70 genes prognosis profile (van ’t Veeret al. (2002)) but allows
interpretation and contains fewer genes. When more public data
becomes available the described approach and BPIM in particular
can be validated.
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