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ABSTRACT

Motivation: Clinical data, such as patient history, laboratory analy-
sis, ultrasound parameters - which are the basis of day-to-day clinical
decision support - are often underused to guide the clinical mana-
gement of cancer in the presence of microarray data. We propose
a strategy based on Bayesian networks to treat clinical and microar-
ray data on an equal footing. The main advantage of this probabilistic
model is that it allows to integrate these data sources in several ways
and that it allows to investigate and understand the model structure
and parameters. Furthermore using the concept of a Markov Blan-
ket we can identify all the variables that shield off the class variable
from the influence of the remaining network. Therefore Bayesian
networks automatically perform feature selection by identifying the
(in)dependency relationships with the class variable.

Results: We evaluated three methods for integrating clinical and
microarray data: decision integration, partial integration and full inte-
gration and used them to classify publicly available breast cancer
patients into a poor and a good prognosis group. The partial integra-
tion method is most promising and has an independent test set area
under the ROC curve of 0.845. After choosing an operating point the
classification performance is better than frequently used indices.
Contact: olivier.gevaert@esat.kuleuven.be

1 INTRODUCTION

In the past decade microarrays have had a great impact oercanc

research. This technology allows to measure the expreesibiou-
sands of genes at once; possibly representing the wholargeno
Usually a microarray consists of a selection of probes wiaih
applied onto a solid surface and represent a number of genek-(

hartet al. (1996); Brown and Botstein (1999)). Reverse transcribed
mMRNA extracted from a tumor sample can be hybridized with the

probes on this surface. This results in expression levelsoofsands
of genes for every tumor sample that is hybridized. The tiegul
data has been used for many applications such as class eligcov
and the prediction of diagnosis, prognosis or treatmeriaese.
Several studies have been conducted using microarraydkegyn
studying several types of cancer (Gokttal. (1999); Bhattacharjee
et al. (2001); Singhet al. (2002); van 't Veeret al. (2002); van de
Vijver et al. (2002); Spentzost al. (2004, 2005)).
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However, microarray data is high dimensional, characteriby
many variables and few observations. Moreover this teclengyf-
fers from a low signal-to-noise ratio. In our opinion, intation of
other sources of information could be important to courdadomly
generated differences in expression levels. For exampésld&mn
et al. (2003) used a pathological framework and showed that this
information significantly lowered the number of genes reegli
in their model. Nevertheless, the focus in most studies ishen
microarray analysis while the clinical data is not used i shme
manner. Clinical data includes for example: patient histtabo-
ratory analysis or ultrasound parameters. This data wabdbis

of research and fully guided the clinical management of eaint
the pre-microarray era and is, in our opinion, often undsdwshen
microarray data is available. Here we propose methods baised
Bayesian networks that integrate clinical data and miceyedata.
These methods treat both the clinical and the microarraialvias
(i.e. the gene expression levels) in the same manner. Fan@za
Shedderet al. (2003) also did not add clinical data to the gene
expression levels when classifying tumour samples.

Bayesian networks are popular decision support modelsniidies

et al. (2005)) because they inherently model the uncertainty én th
data. They are a successful marriage between probabiigryrand
graph theory. They allow to model a multidimensional praligb
distribution in a sparse way by searching independencyioakin
the data. Furthermore this model allows different stra&gp inte-
grate two data sources. First, it is possible to combine slatiaces
directly or, secondly, by combining them at the decisiorelefFur-
thermore, because Bayesian networks are learned fromrdaia i
independent steps, we can define a third method to integadle b
data sources. These three methods will be presented anc&al
using Receiver Operator Characteristic (ROC) curves otrding
set. The method with the highest average ROC performantéavil
evaluated on an independent test set. To the author’s kdge/e¢he
first two methods have not been previously applied in thigedn
and the third method has not been previously defined.

We will focus as an example on the prediction of the prognsis
lymph node negative breast cancer (without apparent tugits io
local lymph nodes at diagnosis). We define the outcome asia var
ble that can have two values: poor prognosis or good prognosi
Poor prognosis corresponds to recurrence within 5 yeaes di-
gnosis and good prognosis corresponds to a disease freeainé
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Gene 1
P(on) 0.8
P(off) 0.2
Gene2 Genel Gene 1 Gene 1 Gene 1
on off on off
P(on) 0.3 0.6 0.3 0.6
P(off) 0.7 0.4 0.7 0.4
Prognosis Gene2on Gene2on Gene2off Gene 2 off
Gene3on Gene3off Gene2on Gene 3 off
P(good) 0.6 0.1 0.9 0.5
P(poor) 0.4 0.9 0.1 0.5

Fig. 1. A simple example of a Bayesian network with four binary viales.
The conditional probability tables are shown next to eaadttenohere each
column in such a table refers to a specific instantiation eftarents. Gene
1 has no parents therefore the node’s table specifies a prapabilities.

at least 5 years (van 't Veast al. (2002)). If we can distinguish
between these two groups, patients could be treated mareaiiyt
thus eliminating over- or under-treatment.

2 METHODS

2.1 Bayesian networks

2.1.1 Definition A Bayesian network is a probabilistic model that con-
sists of two parts: a dependency structure and local prbtyabiodels
(Pearl (1988); Neapolitan (2004)). The dependency stracipecifies how
the variables are related to each other by drawing direatigeé®between
the variables without creating directed cycles. Each bégialepends on a
possibly empty set of other variables which are called thera:

n

[ p(a:il Pa(e:))

=1

@

p(x1,.yn) =

where Pa(z;) are the parents of;. Usually the number of parents for
each variable is small therefore a Bayesian network is aspeaty of writing
down a joint probability distribution. The second part ofstimodel, the
local probability models, specifies how the variables ddpamtheir parents.
We used discrete-valued Bayesian networks which meandttasé local
probability models can be represented with ConditionabRbdity Tables
(CPTs). Such a table specifies the probability that a vaitdkes a certain
value given the value of its parents. Figure 1 shows an exaoffd Bayesian
network with four binary variables. The prognosis variailehis example
has two parents: gene 2 and gene 3. The CPTs for each variabddavn
alongside each node.

2.1.2 Markov Blanket An important concept of Bayesian networks is
the Markov blanket of a variable. The Markov blanket of a able is the
set of variables that completely shields off this varialbtef the other varia-
bles. This set consists off the variable’s parents, childred its children’s
other parents. A variable in a Bayesian network is condiiigrindependent
of the other variables given its Markov Blanket. Conditibimalependency
means that when the Markov blanket of a certain variab&eknown, adding
knowledge of other variables leaves the probabilityrafinchanged (Korb
and Nicholson (2004)). This is an important concept becaseMarkov
blanket is the only knowledge that is needed to predict theeur of that
variable. For classification purposes we will focus on thelda Blanket of

Fig. 2. The Markov blanket of variable A is composed of the variable’
parents, its children and its children other parents. HezeMarkov blanket
variables are shown in a grey circle.

the outcome variable. The concept of a Markov blanket is shiovFigure
2.

2.2 Bayesian network learning

Previously we mentioned that a discrete valued Bayesiamankiconsists of
two parts. Consequently, there are two steps to be perfoduedg model
building: structure learning and learning the parametétee@CPTs.

2.2.1 Structure learningFirst the structure is learned using a
search strategy. Since the number of possible structureases super-
exponentially with the number of variables, we used the-etwn greedy
search algorithm K2 (Cooper and Herskovits (1992)) in coration with
the Bayesian Dirichlet (BD) scoring metric:

n o q I(N',)
p(S|D) o p(S) ——
gg F(Nij"‘Nij)
i F(Ni/jk‘i‘Nijk)
Lk T YR
UGy @

with N ;. the number of cases in the data &&having variable: in state
k associated with thg-th instantiation of its parents in current structiffe
n is the total number of variables. Nexy};; is calculated by summing over
all states of a variableN;; = 37;* | Nyjj.. Nj;, and N/, have similar
meanings but refer to prior knowledge for the parametersem\fio know-
ledge is available they are estimated usmg.k = N/(r;q;) (Heckerman
et al. (1995)) with N the equivalent sample size; the number of states of
variable: and ¢; the number of instantiations of the parents of variable
I'(.) corresponds to the gamma distribution. Final() is the prior proba-
bility of the structurep(S) is calculated byp(S) =[]/, ]_[f;':l p(l; —
) Hfﬁizl p(m; - x;) with p; the number of parents of variabte and
o; all the variables that are not a parentigf Next, p(a — b) is the pro-
bability that there is an edge fromto b while p(a — b) is the inverse, i.e.
the probability that there is no edge framto b. Since we are interested in
the prediction of the prognosis, edges with the outcomeakibgiare given a
higher prior probability than other edges.

Using Equation 2 we can now score structures using the KZlsesrat-
egy. K2 consists of a greedy search combined with a priorroglef the
variables. This ordering restricts the search space byadlulying parents if
they precede the current variable in the ordering. Then &?2iively tries to
find the best parents for each variable separately by gjantith an empty
set of parents and incrementally adding the best parentenWhe addition
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of a parent does not increase the score, the algorithm stapsnaves on
to the next variable in the ordering. Since the ordering ef hriables is
not known in advance, the model building process is iteratedimber of
times with different permutations of the ordering. Thenrtleévork with the
highest score is chosen.

2.2.2 Parameter learning The second step of the model building pro-
cess consists of estimating the parameters of the locabpiiity models
corresponding with the dependency structure. In secti@ri 2ve reported
that we are using CPTs to model these local probability neodedr each
variable and instantiation of its parents there exists a @RT consists of
a set of parameters. Each set of parameters was given amriisichlet
prior:

Nl

fiks oo Nigr)

LT

p(0i5|S) = (3)

with 0;; a parameter set wheieefers to the variable angto thej-th instan-
tiation of the parents in the current structuée; contains a probability for
every value of the variable; given the current instantiation of the parents.
Dir corresponds to the Dirichlet distribution WII]h’V N’ ) @s
parameters of this Dirichlet distribution. Parametermmg then con5|sts
of updating these Dirichlet priors with data. This is strafgrward because
the multinomial distribution that is used to model the date] the Dirichlet
distribution that models the prior, are conjugate distidns. This results in

a Dirichlet posterior over the parameter set:

Dir (6 ”|Nwl,...,

p(0:;|D, S) =

Dir(035|Nij1 + Nij1, s Niji + Nijiey s Nijp, + Nijr,)  (4)

et al.(2001)). Then these genes were discretized into threea@sgbase-
line, over-expression or under-expression according édfmesholds. These
thresholds depended on the variance of the gene such thaeangih high
variance receives a higher threshold than a gene with loianee. The data
set that results from these steps was used as input for thesBaynetwork
software.

2.3.2 Model building We evaluated the performance of the different
methods for integrating both data sources (see sectiorugidgy the training
data. This was done by randomizing the training data set ib@€st in a
stratified way, into a set of 70% of the patients used to bhidhodel (model
building data set) and a set of 30% to estimate the Area UhddROC curve
(AUC). Then these 100 AUCs were averaged and reported.dmthnner we
can evaluate the generalizing performance of a specificadethd compare
with other methods.

Next, the method that performed best in the previous stepused to train
100 models with different orderings using the completentrj set. The
model with the highest AUC among these 100 models was chogamredict
the outcome on the test set.

2.4 Integration of data sources

2.4.1 Full integration Bayesian networks allow to combine the two
data sources, the clinical and microarray data, in diffevesys. The first
method, full integration, is equal to putting both data sesrtogether and
treating them as if it is one dataset. This means that botklthieal varia-
bles (e.g. age, diameter, grade, etc. ) and the microaremjables (MRNA
expressions for each gene) are offered as one data set t@aylesiBn net-
work learning algorithm. In this manner the developed madel contain

with N;;;, defined as before. We summarized this posterior by taking the2ny type of relationship between the clinical variables trelmicroarray

Maximum A Posteriori (MAP) parameterization of the DiriehHistribution
and used these values to fill in the corresponding CPTs faty everia-
ble. Using MCMC could improve our current set-up because tdthnique
allows devising the complete posterior distribution (NE£196)).

2.3 Data

We used the data of van 't Veest al. (2002) which is available at
http://www.rii.com/publications/default.htm or in thentégrated Tumor
Transcriptome Array and Clinical data Analysis databa$@ACA (2006)).
This data set consists of two groups of patients. The firatgiaf patients,
which we call the training set, consists of 78 patients ofavh84 pati-
ents belonged to the poor prognosis group and 44 patiertsidged to the
good prognosis group. The second group of patients, theségstonsists
of 19 patients of which 12 patients belonged to the poor pwegngroup
and 7 patients belonged to the good prognosis group. DNAcaicay ana-
lysis was used to determine the mRNA expression levels afoxppately
25000 genes for each patient. Every tumour sample was hgdiigainst
a reference pool made by pooling equal amounts of RNA fronh geti-
ent. The ratio of the sample and the reference was used assuradar the
expression of the genes and they constitute the microamtey sbt. Each
patient also had the following clinical variables recordede, diameter,
tumor grade, oestrogen and progesterone receptor stariprésence of
angioinvasion and lymphocytic infiltration, which togetfierm the clinical
data.

2.3.1 PreprocessingThe microarray data consists of approximately
25000 expression values per patient, which was alreadygbaickd correc-
ted, normalized and log-transformed. An initial selectwes done (similar
to van 't Veeret al. (2002)) by removing the genes that did not meet the
following criteria using only the training data: at leastfold increase or
decrease and a P-value of less than 0.01 in more than 3 tulifosgesulted
in a subset of approximately 5000 genes. Then we calculaedarrelation
between the expression values of these genes with the binécpme and
selected the genes with a correlation>f0.3 or < —0.3. This resulted
in 232 genes that where correlated with the outcome. Misgihges were
estimated using a 15-weighted nearest neighbours algoifimoyanskaya

variables.

2.4.2 Decision integration The decision integration method amounts
to learning a separate model for the clinical and the micayadata. Then
the predictions for the outcome are fused. This comes dowartining the
probability of the outcome for the clinical model with theopability of the
outcome for the microarray model using weights. The weigitameter is
trained using only the model building data set (see secti®r2Pwithin each
randomization which, in the context of decision integnatiis called an outer
randomization. This is done by performing again 100 innadeomizations
of the model building data set within each outer randonmiraty again
splitting this data set in 70% of the data for training and 3if%he data for
testing. For each inner randomization the weight is in@édsom0.0to 1.0

in steps of0.1. Then the weight value with the highest average AUC on the
30% left out data of the 100 inner randomizations is chosemegght for the
outer randomization.

2.4.3 Partial integration Bayesian networks also allow a third
method, which we will call partial integration. This is duethe fact that
learning Bayesian networks is a two step process. Thereferean perform
the first step, structure learning, separate for both daeces. This results in
a structure for the clinical data and a structure for the ogimay data. Both
structures have only one variable in common, the outcomegshis varia-
ble is present in both data sources. The outcome varialdesbining the
separate structures into one structure. Then the secqndfdearning Baye-
sian networks (i.e. parameter learning) starts with thelined clinical and
microarray data. Partial integration is similar to impagarestriction during
structure learning where no links are allowed betweendadiniariables and
gene expression variables.

3 RESULTS

Model building was done as described in section 2.3.2 for the
three integration methods (full, partial and decision gnation)
and for both data sources (clinical and microarray) sepbrdor
comparison. In case of decision integration, we used raimiiim
ons to determine the weights to fuse the decisions as desciib
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2.4.2. This resulted in a weight of6 for predicted probabilites NPI we used the standard threshold of 3.4 to determine a good o
of the clinical model and a weight @f.4 for predicted probabili- a poor prognosis. Below this threshold the prognosis isidensd
ties of the microarray model, slightly favouring the cliaienodel.  good, above this threshold the prognosis is considered ratzder
After choosing these optimal weights, we can compare théodst  poor (Toddet al. (1987)). Table 3 shows the number of patients that
for integrating the data sources. Table 1 shows the AUCshfer t is assigned to the poor prognosis group for the completseégsthe
developed models. Partial integration and decision iatégm are  set of true poor prognosis patients (i.e. sensitivity) dmedset of true
significantly different from the other methods but not sfipaintly good prognosis patients (i.e. 1-specificity). We have applhe St
different from each other (Wilcoxon rank sum tests). Gallen consensus and the NIH index in the same manner as van 't
Veer et al. (2002). The results show that both the St Gallen con-
Table 1. Average AUC performance and standard deviation of the threeS€NSUS and the_ _NlH consensus criteria have a_tendency togerod
methods for integrating clinical and microarray data anchedata source ~More false positives than the other models which has beeer-obs
separately with 100 randomizations. The first two methodisical and ~ ved before (Boyagest al. (2002)). In the test set both indices also
microarray, are for comparison. The next three methodsigide; partial  have some false negatives which can be due to sample salaatio
and full) refer to the methods for integrating the clinicatlanicroarray data. ~ small sample size. Both BPIM and the 70 genes have similar per
formance and are better than the other models since theygeod
few false positives and false negatives. Both tables 2 angb® s

Method average AUC Std that BPIM and the 70 genes have similar performance and &re be
Clinical data 0.751 0.086 ter than BDIM and the frequently used indices. BPIM and 70egen
Microarray data 0.750 0.073 can reliably be used to predict the prognosis in lymph nodmaiiee
Decision integration 0.790 0.072 breast cancer.

Partial integration 0.793 0.068

Full integration 0.747 0.099

Table 3. The number of patients assigned a poor prognosis for the letenp
test set and for the true poor and good prognosis patients.

Next, both decision integration and partial integratiorreveho- Total test Metastasis Disease
sen as the best methods of integrating the two data sourdes3én set within 5 yr free at 5 yr
models were built using the training set. Then the best pmifg (n=19) (n=12) (n=7)

model for each method was chosgn gnd useq to predict. thenoaitco StGallen 1998 13710 (68%) 10712 (83%) 377 (43%)
on the test data set. The best partial integration modefesresl to

: ' oy NIH 2000 15/19 (79%) 10/12 (83%)  5/7 (71%)
as BPIM (Best Partial Integration Model) and the best denigite- NPI 11/19 (58%) 9/12 (75%) 217 (29%)
gration model as BDIM (Best Decision Integration Model) blea 70 genes 14/19 (74%) 12/12 (100%) 2/7 (29%)
2 shows the AUC of these two models on the test set. We compa-gp 13/19 (68%) 11/12 (92%)  2/7 (29%)
red our models with the 70 genes prognosis profile by applfieg BDIMt 11/19 (58%) 9/12 (75%) 217 (29%)

methods described in van 't Veet al. (2002) and using the resul-
ting classifier on the test set. The AUC is also shown in tabtbe
standard deviations were estimated according to Hanleyweheil
(1983). Both BPIM and the 70 genes model perform in the same
manner on the data set while BDIM is worse. However, there are
no significant differences between the ROC curves of BDIMINBP
and the 70 genes model (Hanley and McNeil (1983)).

f Either one of the following criteria equals poor progno&g
negative, tumour diameter 2 cm, grade 3 or age: 35

o Poor prognosis if tumour diameter 1 cm.

& NPl is the sum of 0.2 times the tumour diameter in cms, lymph
node stage and the tumour grade.

1 The operating point is determined by maximizing the sum ef th
sensitivity and specificity on the training set.

Table 2. The AUC of the Bayesian network models (BPIM and BDIM) and
of the reconstructed model based on van 't Vieeal. (2002) based on 70

genes Figure 3 shows the complete network built with partial iméeg

tion. The outcome variable and its Markov Blanket is indéchtvith
triangle nodes. Figure 4 shows the Markov Blanket in detatih w

the gene names where possible. There are three clinicalblest

age, grade and angioinvasion and 13 genes, 12 annotated and 1
unannotated.

AUC std
70 genes 0.851 0.132
BPIM 0.845 0.132
BDIM 0.810 0.118

4 DISCUSSION

Next we chose an operating point for BDIM and BPIM by choo- We have developed Bayesian networks to integrate cliniodl a
sing a threshold that corresponds with a maximum for the sithreo microarray data using the data of van 't Vetral. (2002) and inve-
sensitivity and specificity (Smett al. (2004)). Then we compared stigated if an improvement was made for the prediction ofastesis
the classifications of our models with the 70 genes model dtid w in breast cancer. We investigated three methods for iniegréhe
the following indices: the St. Gallen consensus (Goldhirstal. two data sources with Bayesian networks: full integratipartial
(1998)), the National Institute of Health (NIH) index (Hifet al. integration and decision integration.

(2001)) and following (Edéet al.(2004)) also with the widely used Table 1 showed that only partial integration and decisidagra-
Nottingham Prognostic Index (NPI) (Blameyal.(1979)). For the  tion perform significantly better than each data source regpia.
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Fig. 3. The complete Bayesian network for the best model usinggbartiegration of clinical and microarray data. The Markdariket of the outcome

variable is indicated with triangle white nodes.

Fig. 4. Markov blanket of the outcome variable for the BPIM modeln€e
names have been used where possible.

We believe that this is due to the different nature of the dataces.
Clinical data has a low noise level, there are mostly feweiates
than observations and there are both discrete and consrsued

variables. Microarray data on the other hand has a much highe
noise level. There are a lot more variables than obsenstonl

all the variables are continuous. Therefore, it could besay to
treat them separately in some way. Partial integration ssparate
structure learning while decision integration builds sepamodels
but fuses the outcome probabilities. Full integration doasmake

a distinction between these two heterogeneous data sowtiels
causes that the clinical variables are submerged by theoariay
variables and mostly have few connections. This leads to @emo
where the Markov Blanket only consists of microarray vadeatand
explains the similar performance between full integratiod using
only the microarray data.

Next, table 2 showed that BPIM generalizes best to unseemn dat
compared to BDIM. The difference between these two models is
that BPIM is integrated at the parameter level and BDIM atkbe-
sion level. The former combines clinical and microarrayialsles

in a more sophisticated way because combined parameteirigar
results in different parameters for every instantiatiortha clini-

cal variables. The latter method combines the outcome pilities
using a weighting scheme and relies on the weights for eacteimo
Furthermore BPIM outperforms the prognostic indices arsddom-
parable performance with the 70 genes prognosis profile'{(\Waer

et al. (2002)) despite having fewer genes. This suggests thag usin
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clinical data decreases the number of genes required &bhelre-  publicly available microarray data sets studying the salfimécal
dict the prognosis. Moreover the low number of genes in BPIMproblem can be combined via the prior.

could allow the design of a cheaper test for breast cancgnpro  Furthermore, since Bayesian networks are not tuned forsielas
sis while still benefiting from data at the molecular level. fication - they provide a more general framework by modeling
Next, we also looked more closely at the BPIM model to ingeg#  a multi-dimensional probability distribution - the repexdit perfor-
the performance of the model when the links of the outcomi@alblr  mance could be improved by using more traditional classifieur
with either the clinical variables or the microarray vatézbin the  ongoing research includes investigating the use of Bayesé-
Markov blanket are removed. This resulted in worse perfocea works as feature selector followed by Least Squares Supfpotor

of the model. When the links between the outcome and the- cliniMachines for classification (Pochetal. (2004)).

cal variables are removed the AUC performance drops to Q€884  In conclusion, the integrated use of clinical and microadata out-
0.130). Similarly when the links between the outcome andjgrees  performs the indices based on clinical data (NIH, St. Gaded
are removed the AUC performance drops to 0.798 (std 0.1283. T NPI) and has comparable performance with the 70 genes progno
is strong evidence that the combination between the cliniwdithe  sis profile. Therefore this approach offers possibilit@sthe use of
microarray variables boosts the performance. Also the dtion of Bayesian networks to integrate data sources for other typean-

a prognostic index from a combination of clinical variabtesd a  cer and data. Furthermore BPIM has comparable performasce a
small number of genes seems possible. the 70 genes prognosis profile (van 't Vegral. (2002)) but allows
Furthermore we searched the literature for relations of/#inmbles  interpretation and contains fewer genes. When more pulsia d
in the Markov blanket of BPIM (see Figure 4) with breast can- becomes available the described approach and BPIM in pkatic
cer prognosis and metastasis. The presence of the cliridables  can be validated.

can be explained because they are used as conventionalbptimgn

markers and in prognostic indices. Age in particular beeauati-
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