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Abstract. We have used simulated data to show that the use of a struc-
ture prior for reverse-engineering genetic networks with Bayesian network
models can improve model selection. When using such a prior the num-
ber of errors between the selected model and the true model is lower and
significantly different when using an uninformative prior. Therefore we
introduced automatically generated priors based on pubmed abstracts
and publicly available taxonomies and ontologies to be used in combina-
tion with real data. In the future these and similar priors can be used to
construct more reliable models of genetic networks.

1 Introduction

Reverse engineering genetic networks has been a hot topic in bioinformatics for
several years. An important issue within this area is that mostly the data is lim-
ited or restricted to model organisms. Therefore, in our opinion, the integration
of other sources of information is very important to find reliable models that can
explain the data. Probabilistic models provide a natural solution to this problem
since information can be incorporated in the prior distribution over the model
space. This prior is then combined with the data to form a posterior distribution
over the model space which is a balance between the information incorporated
in the prior and the data. We investigated the use of prior information on the
structure of a genetic network in combination with Bayesian network learning on
simulated data and we suggest possible priors for real data. Bayesian networks
and extensions of Bayesian networks are popular models for reverse engineering
genetic networks ([5, 15, 9, 10]). However in most cases the data is limited and
the integration of other sources of information can improve results. For other
types of data we have already proven that structure prior information improves
model selection especially when few data is available ([6, 1]).

2 Bayesian networks

A Bayesian network is a probabilistic model that consists of two parts: a depen-
dency structure and local probability models ([12, 11]). The dependency struc-
ture specifies how the variables are related to each other by drawing directed



edges between the variables without creating directed cycles. Each variable de-
pends on a possibly empty set of other variables which are called the parents:

p(x1, ..., xn) =

n
∏

i=1

p(xi|Pa(xi)) (1)

where Pa(xi) are the parents of xi. Usually the number of parents for each
variable is small therefore a Bayesian network is a sparse way of writing down a
joint probability distribution. The second part of this model, the local probability
models, specifies how the variables depend on their parents. We used discrete-
valued Bayesian networks which means that these local probability models can
be represented with Conditional Probability Tables (CPTs).

2.1 Structure learning

The most important step when learning a Bayesian network is finding the depen-
dency structure that best explains the data. This is done using a scoring metric
combined with a search strategy. The scoring metric describes the probability of
the structure S given the data, D. When there are n variables x1, ..., xi, ..., xn

with ri the number of values of each variable and qi the number of instantiations
of the parents of each variable than the scoring metric is defined as:

p(S|D) ∝ p(S)
n
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, (2)

for details see [3, 8, 7]. Equation 2 allows to score structures combined with a
search strategy to find a good model. An exhaustive search is infeasible since the
number of structures becomes intractably large when there are much variables.
Therefore we used the greedy search algorithm K2 [3] to build a Bayesian net-
work structure. The next step consists of estimating the parameters of the local
probability models for the selected model. This amounts to filling in a CPT for
every variable and every possible value of its parents using the data.

2.2 Structure prior

p(S) in equation 2 is the prior probability of the structure and is calculated by
iterating over all the variables and each time multiplying the probability that
there is an edge between the parents of a variable xi and, the probability there
is no edge between the other variables and xi:

p(S) =

n
∏

i=1

pi
∏

l=1

p(Pal(xi) → xi)

oi
∏

m=1

p(NonPam(xi) 9 xi) (3)

with n the number of variables, Pal the l-th parent of xi and pi the number
of parents of variable xi. NonPa.(xi) is then the set of variables which are not a
parent of xi with NonPam(xi) the m-th variable in this list and oi the number



of variables that are not a parent of xi. Next, p(a → b) is the probability that
there is an edge from a to b while p(a 9 b) is the inverse, i.e. the probability that
there is no edge from a to b. This means that we have to specify a probability
for each directed edge between all combinations of two variables in the data set.
Suppose there are three variables then there are six possible edges and therefore
six probabilities that have to be specified (between two variables there are two
possible edges, one in each direction). After assessing these prior probabilities,
this results in a matrix that specifies the probability that a directed edge occurs
between any combination of two variables. The prior probability of a structure,
p(S) seems a good candidate to capture prior information and improve model
selection.

3 Simulated data

We used simulated data by generating random discrete-valued Bayesian net-
works. This was done by creating networks consisting of ten variables with three
states. Data sampled from these networks was then used to re-discover the origi-
nal network with or without a structure prior. We investigated if a noisy structure
prior, as defined earlier, could improve the model selection by comparing the se-
lected model with the real model. Then we counted the sum of the number of
missing edges, superfluous edges and reversed edges in the selected model com-
pared to the real model. Figure 3 shows that using a structure prior reduces the
number of errors made in the small sample range for ten variable-networks.
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Fig. 1. This figure shows that a structure prior reduces the number of errors made in
the small sample range.



4 Prior information

Since microarray data consists of thousands of genes, it is infeasible to construct
a structure prior manually. Therefore methods based on automatic elicitation of
a relationship between genes have to be used. Therefore we propose the use of
text based gene-by-gene-similarity matrices as priors. Genes are represented in
the Vector Space Model ([14]), where each position of a gene vector corresponds
to a term or phrase in a fixed vocabulary. Vocabulary are based on publicly avail-
able taxonomies and ontologies such as MeSH, OMIM and Gene Ontology ([2]).
For each gene, manually curated literature references are extracted from Entrez
Gene. All PUBMED abstracts linked to genes are indexed along the vocabu-
laries mentioned above. This procedure involves stemming ([4]) and stop word
removal. As a result, all PUBMED abstracts are represented in a high dimen-
sional vector space using IDF weights for non-zero vector positions. All vectors
are normalised. Gene vectors are then constructed by averaging the vectors of
all the abstracts referenced to that gene in Entrez Gene. The cosine measure is
used to obtain gene-to-gene distances using normalized gene vectors.

5 Discussion

We showed that a noisy structure prior improves the model selection when using
simulated data in a simple example. This example was used to illustrate that
even when there is noise in the structure prior, it can improve model selection.
Le Phillip et al performed a similar study by using prior edges and also found a
beneficial effect ([13]). The way that our structure prior is defined however allows
that it can be constructed automatically using publicly available data sources.
Therefore we proposed priors based on co-ocurrence of genes in PUBMED ab-
stracts. Moreover other sources of information are currently being investigated
(e.g. pathway information) and can be combined in a single prior. We have ap-
plied these priors on real data and are currenlty developing methods to evaluate
the results. Furthermore we will also combine structure priors with our method
to integrate clinical and microarray data ([7]).
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