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Abstract

In this paper the concept of maximal admissable set (MAS), introduced
by (Gilbert et al., 1991) for linear time-invariant systems, is extended to
linear systems with polytopic uncertainty under linear state feedback. It
is shown that by constructing a tree of state predictions using the vertices
of the uncertainty polytope and by imposing state and input constraints
on these predictions a polyhedral robust invariant set can be constructed.
The resulting set is proven to be the maximal admissable set. The num-
ber of constraints defining the invariant set is shown to be finite if the
closed loop system is quadratically stable (i.e. has a quadratic Lyapunov
function). An algorithm is also proposed that efficiently computes the poly-
hedral set without exhaustively exploring the entire prediction tree. This
is achieved through the formulation of a more general invariance condition
than that proposed in (Gilbert et al., 1991) and by the removal of redun-
dant constraints in intermediate steps. The efficiency and correctness of the
algorithm is demonstrated by means of a numerical example.
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Abstract— In this paper the concept of maximal admissable
set (MAS), introduced by Gilbert et al [3] for linear time-
invariant systems, is extended to linear systems with polytopic
uncertainty under linear state feedback. It is shown that by
constructing a tree of state predictions using the verticesof
the uncertainty polytope and by imposing state and input
constraints on these predictions a polyhedral robust invariant
set can be constructed. The resulting set is proven to be the
maximal admissable set. The number of constraints defining
the invariant set is shown to be finite if the closed loop system is
quadratically stable (i.e. has a quadratic Lyapunov function).
An algorithm is also proposed that efficiently computes the
polyhedral set without exhaustively exploring the entire pre-
diction tree. This is achieved through the formulation of a more
general invariance condition than that proposed in Gilbert
et al (1991) and by the removal of redundant constraints
in intermediate steps. The efficiency and correctness of the
algorithm is demonstrated by means of a numerical example.

I. INTRODUCTION

The notion of invariant sets arises in many problems con-
cerning analysis of dynamical systems, controller design
and the construction of Lyapunov functions. An overview
of the concept of set invariance and many references can
be found in the overview paper [2]. A systematic way
for constructing polyhedral sets for linear systems was
initially proposed in [3]. The proposed algorithm constructs
an invariant set by iteratively adding additional constraints
until invariance is obtained. This paper extends these results
towards linear systems with polytopic model uncertainty.

A number of contributions have been published in this
direction. In [1] describes the construction of controllability
sets for linear systems with polytopic model uncertainty
and polytopic disturbances. These sets do not take a given
controller into account, but rather guarantee that for each
state inside the set, some control action exists that steers
the system further inside the set with a given convergence
rate. In [4] and related works, theoretical results relatedto
invariant sets for uncertain systems with disturbances are
discussed, but no general algorithms for the setting con-
sidered in this paper have been proposed. In [6] a method

is proposed to construct low-complexity robust polyhedral
invariant sets for uncertain linear systems driven by a
linear feedback controller. A set defined by component-wise
bounds in a similarly transformed state space is considered
and invariance is imposed by demanding that the Perron-
Frobenius norm of the closed loop system matrices is
smaller than 1. However, this leads to conservative invariant
sets and in some cases no invariant set can be obtained.
Another, but also conservative, approach is the construction
of ellipsoidal invariant sets. We refer to [5] and [7] for
recent results in this direction.

This paper proposes an efficient algorithm that constructs
the maximal admissable set [3] for linear systems with poly-
topic model uncertainty, which are controlled by a linear
feedback controller and are subject to linear state and input
constraints. A more general invariance condition than that
proposed in [3, p. 1010, Theorem 2.2] is proposed, leading
to an increased efficiency of our algorithm compared to [3,
p. 1011, Algorithm 3.2] and enabling the extension towards
linear systems with polytopic uncertainty.

This paper is organised as follows. In Section II the problem
is formulated, after which, in Section III, a theoretical
approach is taken towards the construction of the polyhe-
dral invariant set. In Section IV a generalized invariance
condition is formulated leading to an efficient algorithm for
constructing a solution satisfying this invariance condition.
The new algorithm is then applied to a numerical example
in Section V demonstrating the efficcacity of the proposed
algorithm. Section VI then gives some conclusions and
Section VII concludes by pointing out several areas of future
research.

II. PROBLEM FORMULATION

Consider the linear time-varying (LTV) system

xk+1 = Φ(k)xk (1a)

yk = Cxk (1b)



with xk ∈ R
nx denoting the state of the system at discrete

time k, yk ∈ R
ny denoting the output of the system. The

time-varying matrixΦ(k) belongs to a given uncertainty
polytope

Ω =

{

Φ ∈ R
nx×nx

∣

∣

∣

∣

∣

Φ =
L
∑

i=1

λiΦi ,
L
∑

i=1

λi = 1, λi ≥ 0

}

.

(2)
The output is subject to linear constraints

yk ∈ Y = {y|Ayy ≤ by} , k = 0, . . . ,∞, (3)

with 0 ∈ Y, which is equivalent withby ≥ 0. We will
assume that the system is robustly asymptotically stable

lim
n→∞

(

max
Φ(k)∈Ω,k=0,...,n−1

‖x0‖=1

‖xn‖2

)

= 0. (4)

The aim is to find the setS of initial statesx0 for which
all corresponding outputsy(0), . . . , y(∞) satisfy the output
constraintsY.

This problem includes the problem of finding the set of
allowable initial conditionsx0 for which a linear system
xk+1 = A(k)xk+B(k)uk with polytopic model uncertainty
[A(k) B(k)] ∈ Ω′, controlled by a linear state feedback con-
troller uk = Fxk, satisfies linear state and input constraints
X = {x|Axx ≤ bx} and U = {u|Auu ≤ bu}. This can
be seen by replacingΦ(k), C, Ay and by in (1)-(3) with
A(k) + B(k)F, Inx×nx

, [AT
x (AuF )T]T and [bT

x bT
u ]T.

We first give a formal definition of the concept of robust
positive invariance and then formalize the problem that is
solved in this paper.

Definition 1 (Robust Positive Invariance): Given a sys-
tem (1)-(2) satisfying(4) thenS ∈ R

nx is a robust positive
invariant set if

Φx ∈ S, ∀x ∈ S, ∀Φ ∈ Ω. (5a)

Definition 2 (Feasibility): An invariant setS for a system
(1)-(2) is feasiblewith respect to constraints(3) if

Cx ∈ Y, ∀x ∈ S. (6)

It is clear that if a set is invariant and feasible, all initial
statesx0 within that set guarantee that all corresponding
future outputs will stay within the imposed constraint set
Y.

The problem tackled in this paper is the following :

Problem 1 (P1): Given a system(1)-(2) satisfying (4),
state constraints(3), find a feasible and robust positive
invariant setS of polyhedral form

S = {x ∈ R
nx |ASx ≤ bS} . (7)

In the following sections we refer to this problem asP1.

Remark 1: Strictly speaking, polyhedrons are 3-
dimensional polytopes and hence both terms cannot
be interchanged. However, due to the broad use of the

term polyhedral invariant sets, we will use it throughout
this paper to denote polytopic invariant sets of arbitrary
dimension.

III. THEORETICAL APPROACH

The following theorem, though not practically executable,
directly provides a solution toP1.

Theorem 1: The setS defined asS =
⋂∞

i=0 Si with Si =
{x|ASi

x ≤ bSi
}, where

AS0
= AyC, bS0

= by, (8)

and for i = 1, . . . ,∞

ASi
=







ASi−1
Φ1

...
ASi−1

ΦL






, bSi

=







bSi−1

...
bSi−1






, (9)

is a valid solution toP1.

Proof: It follows from the definition ofS0 and the
fact that by definitionS ⊂ S0, that Cx ∈ Y, ∀x ∈ S,
which shows thatS is feasible. In a next step we prove that
if x0 ∈ S that yk ∈ Y for k = 1, . . . ,∞. This can be seen
by observing thatx0 ∈ Sk and by then making a convex
combination of theL matrix blocks inASk

and bSk
with

λi(k − 1), i = 1, . . . , L as weights, withλi(k) defined as
in Φ(k) =

∑L

i=1 λi(k)Φi. By recursively making convex
combinations of theL matrix blocks of the resulting two
matricesA and b with weightsλi(k − 2) down to λi(0),
we eventually get the set of inequalities

AS0
Φ(k − 1)Φ(k − 2) . . . Φ(1)Φ(0)x0 ≤ bS0

. (10)

This proves fork = 1, . . . ,∞ that xk ∈ S0 and hence
that yk ∈ Y if x0 ∈ S ⊂ Sk. We now prove thatx1 ∈
S, ∀x0 ∈ S. Assume thatx0 ∈ S and thatx1 /∈ S. This
would mean that there exists ak ≥ 0 for whichASk

andbSk

contain a row defining a linear inequality that is violated
by x1, which would in turn mean that for certain values
of Φ(i) ∈ Ω′, i = 1, . . . , k the corresponding outputyk+1

would violate the output constraint. This contradicts the fact
that was previously proven that all future outputs satisfy the
output constraints. We therefore must conclude that also
x1 ∈ S. This provesrobust positive invarianceof S, which
proves thatS is a valid solution toP1.

Remark 2: By means of a similar argumentation it is
possible to prove that the above setS is the largest possible
feasible and robust positive invariant set for the given
system and constraints. Indeed, one can see that any state
outsideS leads to a future output that violates the output
constraints for at least one realization of the uncertainty,
which then means that any other feasible robust positive
invariant setS′ cannot contain any states outsideS and
that thereforeS′ ⊂ S.

Remark 3: Although Theorem 1 constructsS using linear
inequalities it is not guaranteed that the setS is polyhedral,



since an infinite number of constraints is used. Only when
a finite number of constraints is sufficient,S will be
polyhedral. The following theorem shows whenS can be
described by a finite number of constraints.

Theorem 2: Considering the following definitions

a = ‖AS0
‖, (11a)

bmin = min
i

bS0
(i), (11b)

φmax = max
i

‖Φi‖, (11c)

c = max
x

‖x‖ s.t. x ∈ S0, (11d)

with bS0
(i) denoting the i-th element of vectorbS0

and
assumingφmax < 1, then the setsS (as in Theorem 1)
and Sn ,

⋂n

i=0 Si, with Si also defined as in Theorem 1
and n defined as

n =

⌊

ln bmin − ln a − ln c

lnφmax

⌋

, (12)

are identical.

Proof: We prove thatS0 ⊂ Sk, ∀k > n, which then
proves the theorem. Therefore we assume thatx0 ∈ S ⊂ S0

and then calculate an upper bound to‖ASk
x0‖ as a function

of k :

‖ASk
x0‖ ≤ max

i0...ik−1

‖AS0
Φik−1

. . . Φi0x0‖ (13a)

≤ max
i0...ik−1

(

‖AS0
‖ · ‖Φik−1

‖ · . . . · ‖Φi0‖ · ‖x0‖
)

(13b)

≤ aφk
maxc. (13c)

The largest element ofASk
x0 is therefore bounded above

by aφk
maxc. The smallest element ofbSk

is the same as
the smallest element ofbS0

and is therefore equal tobmin.
Hence ifk satisfies the following condition, it is guaranteed
that all inequalities ofSk are satisfied ifx0 ∈ S0:

φk
max ≤

bmin

a c
, (14)

which is equivalent with

k ≥
ln bmin − ln a − ln c

lnφmax
. (15)

The inversion of the inequality is necessary sinceφmax < 1
and thereforelnφmax < 0. It is clear that, becausek ∈ N,
(15) is satisfied ifk > n, which proves the theorem.

Remark 4: Theorem 2 shows that if the closed loop system
satisfies a certain convergence condition then setS can be
constructed with a finite number of constraints, which then
guarantees thatS is polyhedral. Furthermore, (12) shows
that n increases proportional to 1

1−φmax

for values ofφmax

close to 1.

Remark 5: For systems with dynamics such that the eigen-
values of the differentΦi lie strictly within the unit circle,
but whereφmax ≥ 1, an appropriate state transformation
can also enable the use of Theorem 2 to calculaten. It

can easily be verified that when the closed loop system is
quadratically stable (i.e. has a quadratic Lyapunov function)
an ellipsoidal invariant setE = {x|xTZ−1x ≤ 1} can be
found and that the transformationx′ = Z− 1

2 x enables the
use of Theorem 2. This observation essentially indicates that
S can be described by a finite number of constraints if the
system (1)-(2) is quadratically stable.

Remark 6: Theorem 2 also provides a method to show that
if φmax < 1, the resulting setS is non-empty. It can easily
be found that, under the same assumptions of Theorem 1,
all statesx with ‖x‖ ≤ bmin/a will satisfy all constraints of
S, which proves the existence ofS if φmax < 1. This also
shows thatc ≥ bmin/a will also hold and that therefore the
numerator of (12) will always be negative, leading to the
observation thatn will always be positive.

Although Theorem 2 provides a more practical way to
calculateS by reducing the number of inequality constraints
to a finite number, the method provided by this theorom can
still become computationally intractable, even for relatively
small values ofn, because of the fact that the number of
constraints increases exponentially withn. Therefore a more
practical algorithm is provided in Section IV.

IV. PRACTICAL APPROACH

In this section we first reformulateP1 into a different
but equivalent problemP2, for which we then propose an
efficient algorithm.

We first define the−-operator :

S− = {x|Φx ∈ S, ∀Φ ∈ Ω′} . (16)

S− can be interpreted as the set of allprevious statesfor
which it is guaranteed that thecurrent statelies insideS.
This now enables us to formulate a necessary and sufficient
condition for positive robust invariance for a set.

Lemma 1: A setS is a robust positive invariant set for the
system(1) iff

S ⊂ S−. (17)

Proof: If (17) is satisfied then ifx0 ∈ S, alsox0 ∈ S−

and therefore alsox1 ∈ S, which proves that (17) is a
sufficientcondition for robust positive invariance. On the
other hand, if there exists a statex ∈ (S \ S−) then there
existsΦ ∈ Ω′ such thatΦx /∈ S, which proves that (17) is
also anecessarycondition.

Remark 7: Lemma 1 is a generalisation of the invariance
condition proven in [3, p. 1010, Theorem 2.2] for the case
L = 1, stating thatSn is invariant if

Sn = Sn+1. (18)

This can be seen by observing thatSn+1 ≡ Sn ∩ Sn+1 =

Sn ∩ S
−

n and by then rewriting (18) asSn ⊂ S
−

n , which
is clearly a special case of (17), which does not impose a
specific structure onS.



Lemma 1 enables us to reformulate problemP1 into the
following problem.

Problem 2 (P2): Given a system(1)-(2) satisfying(4) and
given the constraints(3), find matricesAS andbS such that
the setS = {x ∈ R

nx |ASx ≤ bS} satisfies

S ⊂ S− ≡ {x ∈ R
nx |AS−x ≤ bS−}, (19a)

Cx ∈ Y, ∀x ∈ S, (19b)

with AS− ≡ [ASΦ1; . . . ; ASΦL] and bS− ≡ [bS ; . . . ; bS ].

In the rest of this paper we refer to this problem asP2.

We can now formulate an algorithm for solvingP2 that
starts with the setS0 and then iteratively adds constraints
from S1,S2, . . . in order to satisfy (17).

Algorithm 1: Given a linear system (1)-(2) satisfying (4)
and given the constraints (3).

1) Set the initial values forAS andbS to

AS := AyC bS := by. (20)

2) Initialize the indexi := 1.
3) Perform the following steps iteratively whilei is not

strictly larger than the number of rows inAS :

a) Select rowi from AS andbS :

a = (AS)(i,:), b = (bS)(i,:). (21)

b) Check whether adding any of the constraints
aΦix ≤ b, i = 1, . . . , L to AS , bS would
decrease the size ofS, by solving the following
LP for i = 1, . . . , L :

ci = max
x

aΦix − b (22a)

s.t. ASx ≤ bS (22b)

For eachi = 1, . . . , L, if ci > 0, then add the
constraintaΦix ≤ b to AS , bS as follows :

AS :=

[

AS

aΦi

]

, bS :=

[

bS
b

]

. (23)

c) Incrementi :

i := i + 1. (24)

We now prove correctness and convergence of Algorithm
1.

Lemma 2 (Correctness): If Algorithm 1 terminates in a fi-
nite number of iterations then the resulting matricesAS , bS
are a valid solution toP2.

Proof: From the initialization step 1) and the fact that
the algorithm only adds constraints and never removes con-
straints, it is clear that the resulting setS will satisfy (19b).
Satisfaction of (19a) after termination of the algorithm
follows directly from the observation that after step 3b) row
i of AS andbS (denoted witha andb) satisfies the property
{x|ASx ≤ bS} ⊂ {x|aΦix ≤ b, i = 1, . . . , L}. Since
constraints are only added toAS , bS and never removed,

Alg. 1a Alg. 1b Alg. 1c
F nc T (sec.) nc T (sec.) nc T (sec.)

[−0.3 − 0.1] 118 31.6 30 53.9 30 14.4
[−0.5 − 0.3] 44 5.5 14 8.8 14 5.9

TABLE I

NUMBER OF CONSTRAINTS AND CALCULATION TIMES FOR THE

INVARIANT SETS DEPICTED INFIGURES1 AND 2 FOR THREE

DIFFERENT VARIANTS OFALGORITHM 1 (1A : ALGORITHM 1 WITHOUT

ADDITIONAL GARBAGE COLLECTION, 1B : ALGORITHM 1A WITH

ADDITIONAL GARBAGE COLLECTION AFTER TERMINATION, 1C :

ALGORITHM 1B WITH ADDITIONAL GARBAGE COLLECTION AFTER

EVERY 10 ITERATIONS).

it is clear that this property will also still hold for the first
i − 1 rows. Hence, after termination of the algorithm and
due to the termination condition in step 3), this property
will hold for all the rows ofAS andbS , which is identical
to satisfaction of (19a) and concludes the proof.

Remark 8: Correctness of Algorithm 1 can also be proven
in alternative ways, for example by considering the operator
S = S−∩S and then showing that the algorithm converges
to S = S, but this is left up to the reader.

Lemma 3 (Convergence):Under the same conditions as
Theorem 2, Algorithm 1 will terminate in a finite number
of iterations.

Proof: Theorem 2 states thatS from Theorem 1 and
Sn ,

⋂n

i=0 Si are identical and therefore, by virtue of
Lemma 1,S also satisfies (17). Since step 3b) of Algorithm
1 only adds constraints also found inASi

, bSi
, i = 1, . . . ,∞

and in the same order as they are found in these matrices
for increasingi, Algorithm 1 will never add any constraints
from ASi

, bSi
, i = n+1, . . . ,∞ and therefore the maximum

number of rows inAS as constructed by Algorithm 1
is bounded by a finite number, namely the number of
constraints inASi

, bSi
, i = 0, . . . , n. Sincei is incremented

in each iteration, Algorithm 1 must therefore also reach
the termination condition of step 3) in a finite number of
iterations, which proves the lemma.

Remark 9: After termination of Algorithm 1 it is advised
to check whether any of the constraints inAS , bS are redun-
dant, meaning that they can be removed without increasing
the size ofS. This can occur when constraints added in
later iterations modifyS in such a way that previously
added constraints become irrelevant. A way of checking
the redundance of a constraint is by solving an LP similar
to (22). This process of ‘garbage collection’ can also be
incorporated in the algorithm itself in order to speed up the
solution of (22) in each iteration. This does not invalidate
the arguments used in the proofs of Lemma’s 2 and 3 since
S itself is not modified by the removal of the redundant
constraints.

V. EXAMPLE

In this section, a numerical example is presented in order to
show the validity of the theory and the effectiveness of the
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Fig. 1. Invariant polyhedral and ellipsoidal invariant setfor the closed loop system formed by (25) and the feedback lawu = [−0.3 − 0.1]x. Left :
Structure of the constraints defining the invariant set. Thenotation (i, M) denotes the constraintaT

i
Mx ≤ bi, with aT

i
, bi denoting thei-th rows of

AY and bY respectively.Right : Shape of the invariant set. 50 state trajectories starting from the leftmost vertex of the polyhedral invariant set are
depicted in dotted lines.

algorithm presented in the previous section. We consider
a linear uncertain system representing a double integrator
with an uncertainty polytope defined by the following two
vertices :

A1 =

[

1 0.1
0 1

]

, B1 =

[

0
1

]

, (25a)

A2 =

[

1 0.2
0 1

]

, B2 =

[

0
1.5

]

. (25b)

The system is subject to state and input constraints[−10 −
10]T ≤ xk ≤ [10 10]T and−1 ≤ uk ≤ 1, k = 0, . . . ,∞.

Figures 1 and 2 depict polyhedral invariant sets computed
with Algorithm 1. Redundant constraints are not depicted.
A comparison with the largest ellipsoidal invariant set is
also made indicating a significantly larger area for the
polyhedral invariant set, especially when a high feedback
gain is used. To verify the invariance of the polyhedral sets,
50 trajectories are calculated, with the initial state situated at
the leftmost vertex of the invariant set and with the system
matrices[A(k) B(k)] randomly chosen from[A1 B1] and
[A2 B2] at each time instant. Both figures confirm that the
polyhedral sets are indeed positively invariant.

The tree structures depicted in the figures indicate that not
all possible predictions have to be included in the invariant
sets. The maximum tree depths indicate that respectively 11-
step and 7-step ahead predictions are needed to construct the
invariant sets. However, constructingS11 =

⋂11
i=0 Si and

S7 =
⋂7

i=0 Si (cfr. Theorem 1) would take6(212 − 1) =
24570 and6(28−1) = 1530 constraints, out of which only
respectively 30 and 14 constraints are considered to be non-
redundant according to Algorithm 1, as can be seen in the
figures.

Table I shows calculation times for three variants of Algo-
rithm 1. Garbage collection duringand after the algorithm

seems to be the best overall method in terms of calculation
time. A significant decrease in calculation time is obtained
for the set depicted in Figure 1, while only a small penalty
in calculation time is observed for the set depicted in Figure
2. The mentioned calculation times are obtained on a P4-
2GHz PC using Matlab 6.5.

VI. CONCLUSION

In this paper the construction of polyhedral robust positive
invariant sets for linear systems with polytopic model uncer-
tainty subject to linear constraints is explored. A theoretical
approach is initially pursued after which a new invariance
condition is proposed leading to a new efficient algorithm
for the construction of the invariant set. The resulting set
is shown to consist of a finite number of constraints if
the system is quadratically stable and to be the maximal
admissable set for the system.

The resulting sets are shown to be larger than ellipsoidal
invariant sets, especially if the invariant set can be repre-
sented with a small number of constraints. Additionally the
elimination of redundant constraints (garbage collection)
in the set description during and after the construction
of the invariant set is shown to significantly improve the
computation speed.

Another advantage that is worth mentioning is the fact that
polyhedral invariant set can easily deal with non-symmetric
constraints, whereas ellipsoidal sets can only deal with suc
constraints in a very conservative way. It is important to
note that quadratic Lyapunov functions as in [5] can still
be used within the polyhedrons constructed in this paper.

Due to the garbage collection and due to the fact that the
algorithm is based on a more general invariance condition,
it is also expected to have a lower computation time for
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Fig. 2. Invariant polyhedral and ellipsoidal invariant setfor the closed loop system formed by (25) and the feedback lawu = [−0.5 − 0.3]x. Input
constraints were changed into−0.4 ≤ u ≤ 1. Left : Structure of the constraints defining the invariant set. Thenotation(i, M) denotes the constraint
aT

i
Mx ≤ bi, with aT

i
, bi denoting thei-th rows ofAY and bY respectively.Right : Shape of the invariant set. 50 state trajectories starting from the

leftmost vertex of the polyhedral invariant set are depicted in dotted lines.

systems without uncertainty (L = 1) compared to the
algorithm described in [3, p. 1011, Algorithm 3.2].

VII. FUTURE WORK

The results presented in this paper can be seen as an
enabling technology for several future applications.

One possible future research direction is the use of robust
invariant polyhedral sets in Modelbased Predictive Control,
where invariant sets are generally used as a terminal state
constraint in order to ensure stability and avoid infeasi-
bilities in future time steps. Polyhedral invariant sets have
the advantage of being larger that ellipsoidal invariant sets,
can be non-symmetrical and that they can be imposed on
a terminal state by means of linear inequality constraints
instead of quadratic constraints.

Another possible research direction is the further reduction
of the number of constraints at the cost of the volume of
the invariant set.

Other interesting future research directions are the con-
struction of Lyapunov functions induced by polyhedral
robust invariant sets or robust controller synthesis basedon
polyhedral invariant sets, similar to [5] where ellipsoidal
invariant sets are used.

Finally, inclusion of robustness with respect to disturbance
inputs is also an interesting future research area.
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