Katholieke Universiteit Leuven

Departement Elektrotechniek ESAT-SISTA /TR 04-135

The Efficient Computation of Polyhedral Invariant Sets
for Linear Systems with Polytopic Uncertainty !

B. Pluymers? , J.A. Rossiter® , J. Suykens? and B. De Moor?

June 2005

Proceedings of the American Control Conference 2005, Portland,
USA, pp. 804-809.

IThis report is available by anonymous ftp from ftp.esat.kuleuven.ac.be in the
directory pub/sista/pluymers/reports/ACC2005a_RobInvConf.pdf

2K.U.Leuven, Dept. of Electrical Engineering (ESAT), Research group
SCD-SISTA, Kasteelpark 10, 3001 Leuven, Belgium, Tel. 32/16/32 10
35, Fax 32/16/32 19 70, WWW: hitp://www.esat.kuleuven.ac.be/scd.
E-mail: {bert.pluymers,johan.suykens,bart. demoor} Qesat.kuleuven. ac.be.

Research supported by Research Council KUL: GOA-Mefisto 666, GOA-
Ambiorics, several PhD/postdoc & fellow grants; Flemish Government: FWO:
PhD/postdoc grants, projects, G.0240.99 (multilinear algebra), G.0407.02
(support vector machines), G.0197.02 (power islands), G.0141.03 (Identifi-
cation and cryptography), G.0491.03 (control for intensive care glycemia),
G.0120.03 (QIT), G.0452.04 (QC), G.0499.04 (robust SVM), research
communities (ICCoS, ANMMM, MLDM); AWI: Bil. Int. Collaboration
Hungary/ Poland; TWT: PhD Grants, GBOU (McKnow) Belgian Federal
Government: Belgian Federal Science Policy Office: TUAP V-22 (Dynamical
Systems and Control: Computation, Identification and Modelling, 2002-2006),
PODO-II (CP/01/40: TMS and Sustainibility); EU: FP5-Quprodis; ERNSI;
Eureka 2063-IMPACT; Eureka 2419-FliTE; Contract Research/agreements:
ISMC/IPCOS, Datads, TML, Elia, LMS, IPCOS, Mastercard; Bert Pluymers
is a research assistant with the LW.T. (Flemish Institute for Scientific and
Technological Research in Industry). Dr. Johan Suykens is an associate
professor at the Katholieke Universiteit Leuven. Dr. Bart De Moor is a full
professor at the Katholieke Universiteit Leuven, Belgium.

3University of Sheffield, Department of Automatic Control and Systems
Engineering, Mappin Street, Sheffield S1 3JD, United Kingdom, E-mail:
j.a.rossiter@sheffield.ac.uk



Abstract

In this paper the concept of maximal admissable set (MAS), introduced
by (Gilbert et al., 1991) for linear time-invariant systems, is extended to
linear systems with polytopic uncertainty under linear state feedback. It
is shown that by constructing a tree of state predictions using the vertices
of the uncertainty polytope and by imposing state and input constraints
on these predictions a polyhedral robust invariant set can be constructed.
The resulting set is proven to be the maximal admissable set. The num-
ber of constraints defining the invariant set is shown to be finite if the
closed loop system is quadratically stable (i.e. has a quadratic Lyapunov
function). An algorithm is also proposed that efficiently computes the poly-
hedral set without exhaustively exploring the entire prediction tree. This
is achieved through the formulation of a more general invariance condition
than that proposed in (Gilbert et al., 1991) and by the removal of redun-
dant constraints in intermediate steps. The efficiency and correctness of the
algorithm is demonstrated by means of a numerical example.
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Abstract— In this paper the concept of maximal admissable is proposed to construct low-complexity robust polyhedral
set (MAS), introduced by Gilbert et al [3] for linear time-  jnvariant sets for uncertain linear systems driven by a
invariant systems, is extended to linear systems with polgbic  |inear feedback controller. A set defined by component-wise

uncertainty under linear state feedback. It is shown that by b ds i imilarly t f d stat . idered
constructing a tree of state predictions using the verticeof ounds in a simiiarly transiormed state space Is considere

the uncertainty polytope and by imposing state and input and invariance is imposed by demanding that the Perron-
constraints on these predictions a polyhedral robust invaiant ~ Frobenius norm of the closed loop system matrices is

set can be constructed. The resulting set is proven to be the smaller than 1. However, this leads to conservative invria
maximal admissable set. The number of constraints defining sets and in some cases no invariant set can be obtained.

the invariant set is shown to be finite if the closed loop syste is . . .
quadratically stable (i.e. has a quadratic Lyapunov functon). Another, but also conservative, approach is the constmcti

An algorithm is also proposed that efficiently computes the Of ellipsoidal invariant sets. We refer to [5] and [7] for
polyhedral set without exhaustively exploring the entire pe-  recent results in this direction.

diction tree. This is achieved through the formulation of a nore . - .
general invariance condition than that proposed in Gilbert 1 NiS paper proposes an efficient algorithm that constructs

et al (1991) and by the removal of redundant constraints the maximal admissable set [3] for linear systems with poly-
in intermediate steps. The efficiency and correctness of the topic model uncertainty, which are controlled by a linear
algorithm is demonstrated by means of a numerical example. feedback controller and are subject to linear state andtinpu
constraints. A more general invariance condition than that

I. INTRODUCTION proposed in [3, p. 1010, Theorem 2.2] is proposed, leading

The notion of invariant sets arises in many problems co0 an increased efficiency of our algorithm compared to [3,
cerning analysis of dynamical systems, controller desigd- 1011, Algorithm 3.2] and enabling the extension towards
and the construction of Lyapunov functions. An overviewinear systems with polytopic uncertainty.

of the concept of set invariance and many references camjs paper is organised as follows. In Section Il the problem
be found in the overview paper [2]. A systematic wayis formulated, after which, in Section Ill, a theoretical
for constructing polyhedral sets for linear systems wagpproach is taken towards the construction of the polyhe-
initially proposed in [3]. The proposed algorithm constsuc gra| invariant set. In Section IV a generalized invariance
an invariant set by iteratively adding additional consttsi condition is formulated leading to an efficient algorithnn fo
until invariance is obtained. This paper extends theSthSUConstructing a solution Satisfying this invariance coioit
towards linear systems with polytopic model uncertainty. The new algorithm is then applied to a numerical example

A number of contributions have been published in thié" Section V demonstrating the efficcacity of the proposed
direction. In [1] describes the construction of controilag ~ algorithm. Section VI then gives some conclusions and
sets for linear systems with polytopic model uncertaintyection Vil concludes by pointing out several areas of fitur
and polytopic disturbances. These sets do not take a givegsearch.

controller into account, but rather guarantee that for each

state inside the set, some control action exists that steers II. PROBLEM FORMULATION

the system further inside the set with a given convergence . , . )

rate. In [4] and related works, theoretical results related COnsider the linear time-varying (LTV) system

invariant sets for uncertain systems with disturbances are . — o(k)e (1a)
discussed, but no general algorithms for the setting con- ko F

sidered in this paper have been proposed. In [6] a method yr = Cuy, (1b)



with z;, € R"» denoting the state of the system at discretéerm polyhedral invariant setswe will use it throughout
time k, yr € R™ denoting the output of the system. Thethis paper to denote polytopic invariant sets of arbitrary
time-varying matrix®(k) belongs to a given uncertainty dimension.

polytope

I1l. THEORETICAL APPROACH

Q= {(b € Rnexne

L L
e = Z Ai®; ’Z Ai =12 = O} * The following theorem, though not practically executable,
=t =t (2) directly provides a solution t&1

The output is subject to linear constraints Theorem 1: The setS defined asS =2, S; with S; =
y€Y={ylAy<b}, k=0..,00 (3 THAsTbs} where
with 0 € ), which is equivalent withb, > 0. We will Asa = A C, b0 = by ®)
assume that the system is robustly asymptotically stable and fori =1, ...,
As, @ bs;
R (@(k)Gﬂr.,Ikli}())(,...,nl ”xn”2> =0 @) As, = 81:1 1 ) bs, = Séil G
llzol=1 As, P, bs;_,

The aim is to find the sef of initial stateszg for which
all corresponding outputg(0), . . ., y(co) satisfy the output
constraints) . Proof: It follows from the definition ofS, and the
fact that by definitionS c Sy, that Cx € Y, Va € S,
which shows thas is feasible In a next step we prove that
if xg € Sthaty, €Y for k=1,...,00. This can be seen
by observing thatry € S and by then making a convex
ombination of theL matrix blocks inAs, andbs, with

is a valid solution toP1.

This problem includes the problem of finding the set o
allowable initial conditionsry for which a linear system
g1 = A(k)z,+ B(k)uy with polytopic model uncertainty
[A(k) B(k)] € €, controlled by a linear state feedback con
troller u;, = Fzy, satisfies linear state and input constraint _ : . !
Y — {;|Amx Sk b} andU = {ulAyu < bu}? This can - i(k—1),1 :Ll,...,L as weights, V_Vlth)\l-(k) (_1ef|ned as
be seen by replacin@(k),C, A, and b, in (1)-(3) with " O(k) = >.;_y Mi(k)®;. By recursively making convex
A(k) + B(E)E, L. .. [AT (Ao F)T]T and[pT b7 complnatlons of th@ mafmx blocks of the resulting two

matricesA and b with weights \;(k — 2) down to X;(0),
We first give a formal definition of the concept of robustye eventually get the set of inequalities

positive invariance and then formalize the problem that is

solved in this paper. As, ®(k = 1)®(k —2)...2(1)2(0)zo < bs,.  (10)
Definition 1 (Robust Positive Invariance): Given a sys- Thjs proves fork = 1,...,00 thatz, € S, and hence
tem(1)-(2) satisfying(4) thenS € R"* is a robust positive thaty, € V if 20 € S C S;. We now prove thatr; €
invariant set if S,Vzo € S. Assume thatyy € S and thatz; ¢ S. This
dreS, YeeS Ve (5a) would mean that there existsta> 0 for which As, andbs,

contain a row defining a linear inequality that is violated
by 21, which would in turn mean that for certain values
of (i) € Q',i = 1,...,k the corresponding outpuf.1
Cre), VYres. (6) Would violate the output constraint. This contradicts et f

) ) o ) ) ... thatwas previously proven that all future outputs satibfy t

It is clear that if a set is invariant and feasible, all ifitia output constraints. We therefore must conclude that also

statesz within that set guarantee that all correspondingC1 € S. This provesobust positive invariancef S, which
future outputs will stay within the imposed constraint Sebroves thatS is a valid solution toP1 -

V.
The problem tackled in this paper is the following :

Definition 2 (Feasibility): An invariant setS for a system
(2)-(2) is feasiblewith respect to constraintg3) if

Remark 2: By means of a similar argumentation it is
possible to prove that the above geis the largest possible
Problem 1 (P1): Given a system(1)-(2) satisfying (4), feasible and robust positive invariant set for the given
state constraintg(3), find a feasible and robust positive system and constraints. Indeed, one can see that any state
invariant setS of polyhedral form outsideS leads to a future output that violates the output
n constraints for at least one realization of the uncertainty

S ={z € R™[Asz < bs}. 7 which then means that any other feasible robust positive

In the following sections we refer to this problem R&. invariant setS’ cannot contain any states outsideand

!
Remark 1: Strictly speaking, polyhedrons are 3_that thereforeS’  S.
dimensional polytopes and hence both terms cann&®emark 3: Although Theorem 1 constructs using linear
be interchanged. However, due to the broad use of theequalities it is not guaranteed that the Seis polyhedral,



since an infinite humber of constraints is used. Only wheoan easily be verified that when the closed loop system is
a finite number of constraints is sufficien§ will be quadratically stable (i.e. has a quadratic Lyapunov famti
polyhedral. The following theorem shows whéncan be an ellipsoidal invariant sef = {z|z*Z 'z < 1} can be
described by a finite number of constraints. found and that the transformatiart = Z~2x enables the
use of Theorem 2. This observation essentially indicatas th
S can be described by a finite number of constraints if the
a=|4s,l, (11a) system (1)-(2) is quadratically stable.

Theorem 2: Considering the following definitions

bmin = min bs, (i), (11b) Remark 6: Theorem 2 also provides a method to show that
(11c) if dmax < 1, the resulting sef is non-empty. It can easily
be found that, under the same assumptions of Theorem 1,
c=max|z| st. z €S, (11d) all statesr with ||z|| < buyin/a will satisfy all constraints of
) ) N ) S, which proves the existence 6fif ¢, < 1. This also
with bs, (i) denoting the i-th element of vectdk, and  ghows that > bmin/a Will also hold and that therefore the

ass”ﬂin%bmgx < 1, then the setsS (as in Theorem 1) ,merator of (12) will always be negative, leading to the
and S, = (;_ S, with S; also defined as in Theorem 1 ,psernation that will always be positive.

and n defined as

¢max = miax Hq)zua

Although Theorem 2 provides a more practical way to

n— Lln bmin —Ina — mCJ 7 (12) calculateS by reducing the number of inequality constraints
In ¢rax to a finite number, the method provided by this theorom can
are identical. still become computationally intractable, even for refally

small values ofn, because of the fact that the number of
constraints increases exponentially withTherefore a more
practical algorithm is provided in Section IV.

Proof: We prove thatSy C Sk, Vk > n, which then
proves the theorem. Therefore we assumedthat S C Sy
and then calculate an upper bound|tbs, 2 || as a function

of k- IV. PRACTICAL APPROACH
A < As, @, ... D, 13 _ . , . .
[As.oll < iOI-I-l-’?;jil [As0®a_, ool (132) In this section we first reformulat®l1 into a different
< max (||ASOH R P I |1 Y ||x0|\) but equivalent problen®2, for which we then propose an
b0 th—1 efficient algorithm.
(13b) _ .
<adt . (13¢) We first define the -operator :

— ’
The largest element ofls, x( is therefore bounded above S™={zlez €5, Ve e} (16)
by a¢k ..c. The smallest element dfs, is the same as S~ can be interpreted as the set of ptevious stategor
the smallest element @fs, and is therefore equal t.in.  which it is guaranteed that theurrent statelies insideS.
Hence ifk satisfies the following condition, it is guaranteedThis now enables us to formulate a necessary and sufficient

that all inequalities ofS;, are satisfied itry € So: condition for positive robust invariance for a set.
k bmin Lemma 1: A setS is a robust positive invariant set for the
max — ? (14) 1
ac system(1) iff
which is equivalent with Scs. (17)
Inbyin —Ina —1 : - . _
k> - na—me (15) Proof: If (17) is satisfied then ity € S, alsozg € S

0 Gmax and therefore alsa; € S, which proves that (17) is a
The inversion of the inequality is necessary sigggx <1  sufficientcondition for robust positive invariance. On the
and thereforén ¢max < 0. It is clear that, because € N,  other hand, if there exists a statec (S \ S~) then there
(15) is satisfied ifc > n, which proves the theorem. B exists® e ' such thatdz ¢ S, which proves that (17) is

Remark 4: Theorem 2 shows that if the closed loop systen®lSO anecessarygondition. u

satisfies a certain convergence condition thenSseéin be Remark 7: Lemma 1 is a generalisation of the invariance

constructed with a finite number of constraints, which thegondition proven in [3, p. 1010, Theorem 2.2] for the case
guarantees tha$ is polyhedral. Furthermore, (12) showsy, — 1, stating thatS,, is invariant if

thatn increases proportional t?_l— for values of¢,y.x _ _
close to 1. e Sy =Sni1 (18)

Remark 5: For systems with dynamics such that the eigenithis can be seen by observing th@t.1 = S, N Snt1 =
values of the differen®; lie strictly within the unit circle, S, N'S,, and by then rewriting (18) as,, C S,,, which
but where¢,,.x > 1, an appropriate state transformationis clearly a special case of (17), which does not impose a

can also enable the use of Theorem 2 to calcutatdt specific structure ox.



. Alg. la Alg. 1b Alg. 1c
Lemma 1 enables us to reformulate probl& into the r ne  T(sec)| ne T(sec)| me T (sec)

following problem. [(03—01] | 118 316 | 30 539 | 30 144
Problem 2 (P2): Given a systen(l)-(2) satisfying(4) and [05-035] | 44 >5 |14 88 |14 59

given the constraint€3), find matricesds andbs such that TABLE |
the setS = {a: € Rn= |A5x < bs} satisfies NUMBER OF CONSTRAINTS AND CALCULATION TIMES FOR THE
INVARIANT SETS DEPICTED INFIGURES1 AND 2 FOR THREE
SCS ={reR™|Ag-xz < bs-}, (19@)  DIFFERENT VARIANTS OFALGORITHM 1 (1A : ALGORITHM 1 WITHOUT
Cxe), Vres, (1gb) ADDITIONAL GARBAGE COLLECTION, 1B : ALGORITHM 1A WITH

i q ADDITIONAL GARBAGE COLLECTION AFTER TERMINATION, 1C
with Ag- = [As®1;...; As®] andbs- = [bs; ... ; bs]. ALGORITHM 1B WITH ADDITIONAL GARBAGE COLLECTION AFTER

In the rest of this paper we refer to this problemR& EVERY 10ITERATIONS).

We can now formulate an algorithm for solvirg2 that i js clear that this property will also still hold for the firs
starts with the seS, and then iteratively adds constraints; _ 1 rows. Hence. after termination of the algorithm and

from &y, S, ... in order to satisfy (17). due to the termination condition in step 3), this property
Algorithm 1: Given a linear system (1)-(2) satisfying (4) will hold for all the rows of As andbs, which is identical
and given the constraints (3). to satisfaction of (19a) and concludes the proof. ]

1) Set the initial values forls andbs to Remark 8: Correctness of Algorithm 1 can also be proven

in alternative ways, for example by considering the operato

As = A,C bs := by. (20) S =5 NS and then showing that the algorithm converges

2) Initialize the indexi := 1. to S = S, but this is left up to the reader.

3) Perform the following steps iteratively whiteis not Lemma 3 (Convergence):Under the same conditions as

strictly larger than the number of rows s : Theorem 2, Algorithm 1 will terminate in a finite number
a) Select rowi from As andbs : of iterations.
a=(As) (i, b= (bs) (i (1) _ Proof: Theorem 2 states tha& from Theorem 1 and

) S £ ﬂ?:o S; are identical and therefore, by virtue of
b) Check whether adding any of the constraint$ emma 1,5 also satisfies (17). Since step 3b) of Algorithm

a®ix < b, i = 1,...,L to As,bs would 1 only adds constraints also foundd, , bs,,i =1,. .., 00
decrease the size &, by solving the following and in the same order as they are found in these matrices
LPfori=1,....L: for increasingi, Algorithm 1 will never add any constraints
¢; = max a®;x — b (22a) from As,, bs,,i = m—l, ...,00 and therefore the ma_ximum
x number of rows inAs as constructed by Algorithm 1
st. Asr <bs (22b) is bounded by a finite number, namely the number of

constraints inds,, bs,,i = 0, ..., n. Sincei is incremented
in each iteration, Algorithm 1 must therefore also reach
the termination condition of step 3) in a finite nhumber of

For eachi = 1,...,L, if ¢; > 0, then add the
constrainta®;x < b to As,bs as follows :

Agim [ ;45 ] b= [ bl;g ] . (23) fterations, which proves the lemma. [
! Remark 9: After termination of Algorithm 1 it is advised
c) Increment : to check whether any of the constraintsdg, bs are redun-
=it 1. (24) dant, meaning that they can be removed without increasing

_the size ofS. This can occur when constraints added in
We now prove correctness and convergence of Algorithmter jterations modifyS in such a way that previously
1 added constraints become irrelevant. A way of checking

Lemma 2 (Correctness): If Algorithm 1 terminates in a fi- the redundance of a constraint is by solving an LP similar
nite number of iterations then the resulting matricés, bs  t0 (22). This process ofgarbage collectioncan also be

are a valid solution taP2. incorporated in the algorithm itself in order to speed up the
solution of (22) in each iteration. This does not invalidate

th F;roo_ft:h Frorr: th((ajcljn|t|aI|za;t|qntstepdl) and the fact thatthe arguments used in the proofs of Lemma’s 2 and 3 since
€ algorithm only adds constraints and NEver removes CoR-qa|t is not modified by the removal of the redundant
straints, it is clear that the resulting setwill satisfy (19b).

X . 2 /' _constraints.
Satisfaction of (19a) after termination of the algorithm

follows directly from the observation that after step 3bjyro V. EXAMPLE
1 of As andbs (denoted withe andb) satisfies the property
{z|Asz < bs} C {z]a®;x < b,i = 1,...,L}. Since In this section, a numerical example is presented in order to

constraints are only added tés,bs and never removed, show the validity of the theory and the effectiveness of the
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Fig. 1. Invariant polyhedral and ellipsoidal invariant &t the closed loop system formed by (25) and the feedbackuaw[—0.3 — 0.1]x. Left :
Structure of the constraints defining the invariant set. fbtion (i, M) denotes the constraimtl.TM:c < b;, with a;r, b; denoting thei-th rows of
Ay and by respectively.Right : Shape of the invariant set. 50 state trajectories startiog fthe leftmost vertex of the polyhedral invariant set are
depicted in dotted lines.

algorithm presented in the previous section. We consideeems to be the best overall method in terms of calculation
a linear uncertain system representing a double integrattime. A significant decrease in calculation time is obtained
with an uncertainty polytope defined by the following twofor the set depicted in Figure 1, while only a small penalty

vertices : in calculation time is observed for the set depicted in Fégur
2. The mentioned calculation times are obtained on a P4-
1 0.1 0 .
A = { 0 1 } : By = { 1 ] ; (25a) 2GHz PC using Matlab 6.5.
1 0.2 0
Az = ; By = : (25b) VI. CONCLUSION
0 1 1.5
The system is subject to state and input constrdint$ —  In this paper the construction of polyhedral robust positiv
10]T <, <10 10]T and—1 < up < 1,k =0, ..., c0. invariant sets for linear systems with polytopic model unce

Figures 1 and 2 depict polyhedral invariant sets computd@iNty subject to linear constraints is explored. A theiosdt
with Algorithm 1. Redundant constraints are not depicte(f.‘ppr‘_)?‘Ch s initially pursue_d after which a New invariance
A comparison with the largest ellipsoidal invariant set i€ondition is proposed leading to a new efficient algorithm
also made indicating a significantly larger area for the_’:‘or the Constructpn of the myanant set. The resultl_ng s_et
polyhedral invariant set, especially when a high feedbadg ShOWn to consist of a finite number of constraints if
gain is used. To verify the invariance of the polyhedral setd1® Systém is quadratically stable and to be the maximal
50 trajectories are calculated, with the initial stateatita at admissable set for the system.

the leftmost vertex of the invariant set and with the systerihe resulting sets are shown to be larger than ellipsoidal
matrices[A(k) B(k)] randomly chosen fromi4d; B;] and invariant sets, especially if the invariant set can be repre
[A2 Bs] at each time instant. Both figures confirm that theented with a small number of constraints. Additionally the
polyhedral sets are indeed positively invariant. elimination of redundant constraintggrbage collectioh

The tree structures depicted in the figures indicate that nff the set description during and after the construction

all possible predictions have to be included in the invariarP’ the invariant set is shown to significantly improve the

sets. The maximum tree depths indicate that respectively 19°Mputation speed.

step and 7-step ahead predictions are needed to consiuctAmother advantage that is worth mentioning is the fact that
invariant sets. However, constructidgy; = ﬂ}io S; and  polyhedral invariant set can easily deal with non-symruoetri
S7 = ﬂZ:o S; (cfr. Theorem 1) would také(2!? — 1) =  constraints, whereas ellipsoidal sets can only deal with su
24570 and6(28 — 1) = 1530 constraints, out of which only constraints in a very conservative way. It is important to
respectively 30 and 14 constraints are considered to be namte that quadratic Lyapunov functions as in [5] can still
redundant according to Algorithm 1, as can be seen in th® used within the polyhedrons constructed in this paper.

figures. Due to the garbage collection and due to the fact that the

Table | shows calculation times for three variants of Algoalgorithm is based on a more general invariance condition,
rithm 1. Garbage collection duringnd after the algorithm it is also expected to have a lower computation time for
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Fig. 2. Invariant polyhedral and ellipsoidal invariant $at the closed loop system formed by (25) and the feedbackdaw [—0.5 — 0.3]z. Input
constraints were changed inte0.4 < u < 1. Left : Structure of the constraints defining the invariant set. mbtion (¢, M) denotes the constraint
a;FM z < by, with al.T, b; denoting thei-th rows of Ay and by, respectively.Right : Shape of the invariant set. 50 state trajectories startiogn tthe
leftmost vertex of the polyhedral invariant set are depidte dotted lines.

systems without uncertaintyL( = 1) compared to the PhD/postdoc grants, projects, G.0240.99 (multilineaelalg), G.0407.02

algorithm described in [3, p. 1011, Algorithm 3.2]. (support vector machines), G.0197.02 (power islands)]1&.®3 (Identifi-
cation and cryptography), G.0491.03 (control for inteastare glycemia),
VIl. FUTURE WORK G.0120.03 (QIT), research communities (ICCoS, ANMMM); AWgil.
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The results presented in this paper can be seen as s%ps) Belgian Federal Government: DWTC (IUAP IV-02 (198131)

enabling technology for several future applications. and 1UAP V-22 (2002-2006)), PODO-II (CP/40: TMS and Susiiy):
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