
The potential of interpolation for simplifying

predictive control and application to LPV

systems

John Anthony Rossiter†, Bert Pluymers‡, Bart De Moor‡

† Department Automatic Control and Systems Engineering,
Mappin Street, University of Sheffield, S1 3JD, UK,
j.a.rossiter@sheffield.ac.uk
‡ Department of Electrical Engineering, ESAT-SCD-SISTA
Kasteelpark Arenberg 10, Katholieke Universiteit Leuven, B-3001 Heverlee
(Leuven), Belgium,
{bert.pluymers,bart.demoor}@esat.kuleuven.be

Key words: Predictive control, LPV systems, interpolation, computational

simplicity, feasibility

Summary. This paper first introduces several interpolation schemes, which have
been derived for the linear time invariant case, but with an underlying objective of
trading off performance for online computational simplicity. It is then shown how
these can be extended to linear parameter varying systems, with a relatively small
increase in the online computational requirements. Some illustrations are followed
with a brief discussion on areas of potential development.

1 Introduction

One of the key challenges in predictive control is formulating an optimisation which
can be solved fast enough while giving properties such as guaranteed closed-loop sta-
bility and recursive feasibility. Furthermore one would really like good expectations
on performance. A typical compromise is between algorithm or computational com-
plexity and performance/feasibility. This paper looks at how reparameterising the
input sequence using interpolation gives one possible balance, that is, it focuses on
maximising feasible regions for a given algorithm/computational complexity without
sacrificing asymptotic performance. The paper also considers some of the barriers to
progress and hence suggests possible avenues for further research and in particular
the potential for application to nonlinear systems. Several types of interpolation will
be discussed, including interpolation between control laws [19, 1], where complexity
is linked to the state dimension and interpolations based on parametric programming
solutions [4].



2 John Anthony Rossiter†, Bert Pluymers‡, Bart De Moor‡

Section 2 gives background information and Section 3 introduces the conceptual
thinking in how interpolation techniques can widen feasibility while restricting com-
plexity; to aid clarity, this is introduced using linear time invariant (LTI) models.
Section 4 then extends these concepts to allow application to LPV and some classes
of nonlinear systems. Section 5 gives numerical illustrations and the paper finishes
with a discussion.

2 Background

This section introduces notation, the LPV model used in this paper, basic concepts
of invariance, feasibility and performance, and some prediction equations.

2.1 Model and objective

Define the LPV model (uncertain or nonlinear case) to take the form:

x(k + 1) = A(k)x(k) + B(k)u(k), k = 0, . . . ,∞, (1a)

[A(k) B(k)] ∈ Ω , Co{[A1 B1], . . . , [Am Bm]}, (1b)

The specific values of [A(k) B(k)] are assumed to be unknown at time k. Other
methods [5, 6] can take knowledge of the current values of the system matrices or
bounded rates of change of these matrices into account but these cases are not con-
sidered in this paper. However, it is conceivable to extend the algorithms presented
in this paper to these settings as well.

When dealing with LTI models (m = 1), we will talk about the nominal case.
The following feedback law is implicitly assumed :

u(k) = −Kx(k); ∀k. (2)

For a given feedback, the constraints at each sample are summarised as:

x(k) ∈ X = {x : Axx ≤ 1}, ∀k
u(k) ∈ U = {u : Auu ≤ 1}, ∀k

⇒ x(k) ∈ S0 = {x : Ayx ≤ 1},∀k. (3)

where 1 is a column vector of appropriate dimensions containing only 1’s and
Ay = [Ax;−AuK]. We note that the results of this paper have been proven only for
feedback gains giving quadratic stabilisability, that is, for feedback K, there must
exist a matrix P = PT > 0 ∈ R

nx×nx such that

ΦT
j PΦj ≤ P, ∀j, Φj = Aj − BjK. (4)

Problem 1 (Cost Objective) For each of the algorithms discussed, the underly-
ing aims are: to achieve robust stability, to optimise performance and to guaran-
tee robust satisfaction of constraints. This paper uses a single objective throughout.
Hence the algorithms will seek to minimise, subject to robust satisfaction of (3), an
upper bound on:

J =
∞X

k=0

(x(k)TQx(k) + u(k)TRu(k)). (5)



Title Suppressed Due to Excessive Length 3

2.2 Invariant Sets

Invariant sets [2] are key to this paper and hence are introduced next.

Definition 1 (Feasibility and robust positive invariance) Given a system, sta-
bilizing feedback and constraints (1,2,3), a set S ⊂ R

nx is feasible iff S ⊆ S0. More-
over, the set is robust positive invariant iff

x ∈ S ⇒ (A − BK)x ∈ S , ∀[A B] ∈ Ω. (6)

Definition 2 (MAS) The largest feasible invariant set (no other feasible invariant
set can contain states outside this set) is uniquely defined and is called the Maximal
Admissible Set (MAS, [7]).

Define the closed-loop predictions for a given feedback K as x(k) = Φkx(0); u(k) =
−KΦk−1x(0); Φ = A−BK, then, under mild conditions [7] the MAS for a controlled
LTI system is given by

S =
n\

k=0

{x : Φkx ∈ S0} = {x : Mx ≤ 1}, (7)

with n a finite number. In future sections, we will for the sake of brevity use the
shorthand notation λS ≡ {x : Mx ≤ λ1}. The MCAS (maximum control admissible
set) is defined as the set of states stabilisable with robust constraint satisfaction by
the specific control sequence:

ui = −Kxi + ci, i = 0, ..., nc − 1,
ui = −Kxi, i ≥ nc.

(8)

By computing the predictions given a model/constraints (1,3) and control law (8),
it is easy to show that, for suitable M, N , the MCAS is given as ([21, 22]):

SMCAS = {x : ∃C s.t. Mx + NC ≤ 1}; C = [cT
0 ... cT

nc−1]
T. (9)

In general the MAS/MCAS are polyhedral and hence ellipsoidal invariant sets
[9], SE = {x|xTPx ≤ 1}, are suboptimal in volume [13]. Nevertheless, unlike the
polyhedral case, a maximum volume SE is relatively straightforward to compute
for the LPV case. However, recent work [12, 3] has demonstrated the tractability
of algorithms to compute MAS for LPV systems. This algorithm requires an outer
estimate, e.g. S0, constraints at each sample (also S0) and the model Φ.

2.3 Background for interpolation

Define several stabilizing feedbacks Ki, i = 1, . . . , n, with K1 the preferred choice.

Definition 3 (Invariant sets) For each Ki, define closed-loop transfer matrices
Φij and corresponding robust invariant sets Si and also define the convex hull S :

Φij = Aj − BjKi, j = 1, ..., m; Si = {x : x ∈ Si ⇒ Φijx ∈ Si,∀j}, (10)

S , Co{S1, . . . ,Sn}. (11)



4 John Anthony Rossiter†, Bert Pluymers‡, Bart De Moor‡

Definition 4 (Feasibility) Let Φi(k) = A(k) − B(k)Ki, then [1] the following
input sequence and the corresponding state predictions are recursively feasible within
S:

u(k) = −
Pn

i=1 Ki

Qk−1
j=0 Φi(k − 1 − j)x̂i,

x(k) =
Pn

i=1

Qk−1
j=0 Φi(k − 1 − j)x̂i,

(12)

if one ensures that

x(0) =

nX
i=1

x̂i, with

8<: x̂i = λixi,Pn

i=1 λi = 1, λi ≥ 0,
xi ∈ Si.

(13)

Definition 5 (Cost) With x̃ = [x̂T
1 . . . x̂T

n ]T, Lyapunov theory gives an upper
bound x̃TP x̃ on the infinite-horizon cost J for predictions (12) using:

P ≥ ΓT
u RΓu + ΨT

i ΓT
x QΓxΨi + ΨT

i PΨi, i = 1, . . . , m, (14)

with Ψi = diag(Ai − BiK1, . . . , Ai − BiKn), Γx = [I, . . . , I ], Γu = [K1, . . . , Kn].

These considerations show that by on-line optimizing over x̃, one implicitly op-
timizes over a class of input and state sequences given by (12). Due to recursive
feasibility of these input sequences, this can be implemented in a receding horizon
fashion.

3 Interpolation schemes for LTI systems

Interpolation is a different form of methodology to the more usual MPC paradigms
in that one assumes knowledge of different feedback strategies with significantly
different properties. For instance one may be tuned for optimal performance and
another to maximise feasibility. One then interpolates between the predictions (12)
associated with these strategies to get the best performance subject to feasibility.
The underlying aim is to achieve large feasible regions with fewer optimisation vari-
ables, at some small loss to performance, and hence facilitate fast sampling. This
section gives a brief overview and critique of some LTI interpolation schemes; the
next section considers possible extensions to the LPV case.

3.1 One degree of freedom interpolations [19]

ONEDOF uses trivial colinear interpolation, hence in (12) use:

x = x̂1 + x̂2; x̂1 = (1 − α)x; x̂2 = αx; 0 ≤ α ≤ 1. (15)

Such a restriction implies that α is the only d.o.f., hence optimisation is trivial.
Moreover, if K1 is the optimal feedback, minimising J of (5) over predictions (15,12)
is equivalent to minimising α, α ≥ 0. Feasibility is guaranteed only in

S
i
Si.

Algorithm 1 [ONEDOFa] The first move is u = −[(1 − α)K1 + αK2]x where:

α = min
α

α s.t. [M1(1 − α) + M2α]x ≤ 1; 0 ≤ α ≤ 1. (16)



Title Suppressed Due to Excessive Length 5

M1 and M2 define mutually consistent [19] invariant sets corresponding to K1

and K2 respectively as Si = {x|Mix ≤ 1}.

Algorithm 2 [ONEDOFb] The first move is u = −[(1 − α)K1 + αK2]x where:

α = min
α,β

α s.t.

8<:M1(1 − α)x ≤ (1 − β)1,
M2αx ≤ β1,
0 ≤ β ≤ 1; 0 ≤ α ≤ 1.

(17)

This is solved by α = (µ − 1)/(µ − λ) where µ = max(M1x), λ = max(M2x).

Summary: It can be shown that ONEDOFa will, in general, outperform
ONEDOFb and have a larger feasible region. However, a proof of recursive feasibil-
ity has not been found for ONEDOFa whereas it has for ONEDOFb. Convergence
proofs only exist for some cases [19], although minor modifications to ensure this are
easy to include, e.g. [18]. However, the efficacy of the method relies on the existence
of a known controller K2 with a sufficiently large feasible region.

3.2 GIMPC: MPC using General Interpolation

GIMPC [1] improves on ONEDOF by allowing full flexibility in the decomposition
(12) of x and hence ensures (a priori): (i) a guarantee of both recursive feasibility
and convergence is straightforward and (ii) the feasible region is enlarged to S. But
the number of optimisation variables increases to nx + 1.

Algorithm 3 (GIMPC) Take a system (1), constraints (3), cost weighting matri-
ces Q,R, controllers Ki and invariant sets Si and compute a suitable P from (14).
Then, at each time instant, solve the following optimization:

min
x̂i,λi

x̃TP x̃, subject to (13), (18)

and implement the input u = −
Pn

i=1 Kix̂i.

Summary: The increased flexibility in the decomposition of x gives two benefits:
(i) a guarantee of both recursive feasibility and convergence is straightforward and
(ii) the feasible region is enlarged to S. The downside is an increase in the number
of optimisation variables.

3.3 GIMPC2 interpolations

GIMPC includes the restriction (13) that
Pn

i=1 λi = 1, λi ≥ 0. However, [17] showed
that such a restriction is unnecessary when the sets Si are polyhedral. Removing the

constraints on λi: (i) the feasible region may become substantially larger than S;
(ii) reduces the number of optimisation variables (computation) and (iii) facilitates
better performance.



6 John Anthony Rossiter†, Bert Pluymers‡, Bart De Moor‡

Algorithm 4 (GIMPC2) Using the same notation as algorithm 3, at each time
instant, given the current state x, solve the following optimization problem on-line

min
x̂i

x̃TP x̃, subject to

�Pn

i=1 Mix̂i ≤ 1,
x =

Pn

i=1 x̂i,
(19)

and implement the input u = −
Pn

i=1 Kix̂i, where the Mi defines a generalized MAS
S ′

i with mutually consistent constraints. See Algorithm 6 for details.

Summary: If the constraints on λi implicit in algorithm 3 (or eqn.(13)) are re-
moved one gets two benefits: (i) the feasible region may become substantially larger
(illustrated later) than S and moreover (ii) the number of optimisation variables re-
duces. One still has guarantees of recursive feasibility and convergence. So GIMPC2
outperforms GIMPC on feasibility, performance and computational load. The main
downside is that the associated set descriptions S ′

i maybe more complex. This is
discussed later, for instance in Algorithm 6.

3.4 Interpolations to simplify parametric programming (IMPQP)

One area of research within parametric programming [4] solutions to MPC is how
to reduce the number of regions. Interpolation is an under explored and simple
avenue. Interpolation MPQP (IMPQP) [18] takes only the outer boundary of the
MCAS. In any given region, the associated optimal C (9) can be summarised as:
x ∈ Ri ⇒ C = −Kix + pi. For other x, for which a scaled version (by 1/ρ)
would lie in Ri on the boundary, then the following control law can be shown to
give recursive feasibility and convergence:

x

ρ
∈ Ri ⇒ C = ρ(−Kix + pi). (20)

Algorithm 5 (IMPQP) Offline: Compute the MPQP solution and find the re-
gions contributing to the boundary. Summarise the boundary of the MCAS in the
form Mbx ≤ 1 and store the associated regions/laws.
Online: Identify the active facet from ρ = maxj Mb(j, :)x. With this ρ, find a feasible
and convergent C from (20) and then perform the ONEDOFa interpolation

min
α

α s.t. Mx + NαC ≤ 1, (21)

and implement u = −Kx + αeT
1 C.

Summary: For many MPQP solutions, the IMPQP algorithm [18] can be used
to reduce complexity by requiring storage only of boundary regions and their associ-
ated control laws. Monte-carlo studies demonstrated that, despite a huge reduction
in set storage requirements, the closed-loop behaviour was nevertheless often close
to optimal.



Title Suppressed Due to Excessive Length 7

3.5 Other algorithms

For reasons of space we give only a brief statement here. Other avenues currently
being explored include so called Triple mode strategies [8], where the prediction
structure has an extra non-linear mode to enlarge the terminal region. The design
of this extra mode must take account of the LPV case. Another possibility, easily
extended to the LPV case, is based on interpolation between the laws associated to
the vertices of some invariant set. This technique, as with parametric methods, may
suffer from issues of complexity.

4 Extensions to the LPV case

The previous section dealt with the nominal case. This section shows how the inter-
polation methods can be extended to nonlinear systems which can be represented
by an LPV model. In particular, it is noted that recursive feasibility was established
via feasible invariant sets (MAS or MCAS). Hence, the main conjecture is that all of
the interpolation algorithms carry across to the LPV case, with only small changes,
as long as one can compute the corresponding invariant sets.

4.1 Invariant sets and interpolation for GIMPC and ONEDOFb

The GIMPC and ONEDOFb algorithms work on terms of the form maxj M(j, :)xi.
For any given MAS, this value is unique and hence one can use, the set descriptions
Si of minimal complexity. Thus extension to the LPV case is straightforward, as
long as polyhedral sets Si exist and one replaces J with a suitable upper bound [1].
The implied online computational load increases marginally because the sets Si for
the LPV case are likely to be more complex.

An alternative method to perform interpolation in the robust setting is given
in [24]. This method requires the use of nested ellipsoidal invariant sets, which can
significantly restrict the size of the feasible region, but which allow interpolation to
be performed without constructing a state decomposition as in (13).

4.2 Invariant sets and interpolation for GIMPC2 and ONEDOFa

The algorithm of [12] was defined to find the minimum complexity MAS of an LPV
system for a single control law. Thus redundant constraints are removed at each it-
erate. However, for the GIMPC2 algorithm, constraints may need to be retained [17]
even where they are redundant in the individual Si, because the implied constraints
may not be redundant in the combined form of (16,19). Thus, the MAS must be
constructed in parallel to identify and remove redundant constraints efficiently. One
possibility, forming an augmented system, is introduced next. (There are alterna-
tive ways of forming an augmented system/states [17]; investigations into preferred
choices are ongoing.)

Algorithm 6 (Method to find mutually consistent MAS for the LPV case)



8 John Anthony Rossiter†, Bert Pluymers‡, Bart De Moor‡

1. Define an augmented system

X(k + 1) = Ψ(k)X(k); (22)

Ψ(k) =

264A(k) − B(k)K1 . . . 0
...

. . .
...

0 . . . A(k) − B(k)Kn

375 ; X =

264 x̂1

...
x̂n

375 .

Define a set Ω̂ with Ψ ∈ Ω̂, describing the allowable variation in Ψ due to the
variations implied by [A(k) B(k)] ∈ Ω.

2. Constraints (3) need to be written in terms of augmented state X as follows:

Au [−K1,−K2, · · · ]| {z }
K̂

X(k) ≤ 1, k = 0, . . . ,∞, (23a)

Ax[I, I, · · · ]X(k) ≤ 1, k = 0, . . . ,∞. (23b)

3. Assume that an outer approximation to the MAS is given by (23). Then letting
u = −K̂X, this reduces to So = {X : MoX ≤ 1} where the definition of Mo is
obvious.

4. Follow steps 2-5 of Algorithm in [12] to find the robust MAS as Sa = {X :
MaX ≤ 1}.

Remark 1 (Feasible region for robust GIMPC2) Given the constraint x =Pn

i=1 xi, then one can find a projection of Sa to x-space from X-space as follows:

SG2 = {x : ∃X s.t. MaX ≤ 1, x = [I, I, . . . , I ]X}. (24)

Algorithm 7 (GIMPC2 for the LPV case) Given a system (1), constraints
(3), cost weighting matrices Q = QT > 0, R = RT > 0, asymptotically stabilizing
controllers Ki, corresponding polyhedral robust invariant sets Sa = {X : MaX ≤ 1}
and P satisfying (14), solve on-line at each time instant, the following problem:

min
x̂i

x̃TP x̃, subject to

�
x = [I, I, . . . , I ]X,
MaX ≤ 1,

(25)

and implement input u = −[K1, K2, . . . , Kn]X.

Theorem 1 Algorithm 7 guarantees robust satisfaction of (3) and is recursively
feasible and asymptotically stable for all initial states x(0) ∈ SG2.

Proof: from the invariance and feasibility of Sa, irrespective of the values
A(k), B(k) (or Ψ(k)):

x(k) ∈ SG2 ⇒ x(k + 1) ∈ SG2. (26)

As one can always choose new state components to match the previous predictions
(one step ahead), repeated choice of the same decomposition gives convergence from



Title Suppressed Due to Excessive Length 9

quadratic stability (4) associated to each Ki, and hence system Ψ . Deviation away
from this will only occur where the cost J = x̃TP x̃ can be made smaller still, so the
cost function (25) acts as a Lyapunov function. ⊔⊓

Summary: Extension to the LPV case is not straightforward for GIMPC2 and
ONEDOFa because the form of constraint inequalities implicit in the algorithms is
M1x1 + M2x2 + ... ≤ 1 and this implies a fixed and mutual consistent structure
in Mi; they can no longer be computed independently! This requirement can make
the matrices Mi far larger than would be required by say GIMPC. Once consistent
sets Si have been defined, the interpolation algorithms GIMPC2 and ONEDOFa
are identical to the LTI case, so long as the cost J is replaced by a suitable upper
bound.

4.3 Extension of IMPQP to the LPV case

Extension of IMPQP to the LPV case is immediate given the robust MCAS (RM-
CAS) with the addition of a few technical details such as the use of an upper bound
on the cost-to-go. A neat algorithm to find the RMCAS makes use of an autonomous
model [10] (that is model (1) in combination with control law (8)) to represent d.o.f.
during transients, for instance:

zk+1 = Ψzk; z =

�
x
C

�
; Ψ =

�
Φ B 0

0 U

�
; U =

�
0 I(nc−1)nu×(nc−1)nu

0 0

�
. (27)

Given (1), Ψ has an LPV representation. Define the equivalent constraint set as
S0 = {x : Ãyz ≤ 1}. One can now form the MAS for system (27) with these
constraints using the conventional algorithm. This set, being linear in both x and
C, will clearly take the form of (9) and therefore can be deployed in an MPQP
algorithm. One can either form a tight upper bound on the cost [1] or a simpler,
but suboptimal choice, would be J = CT C. Guaranteed convergence and recursive
feasibility is easy to establish and the main downside is the increase in the complexity
of the RMCAS compared to the MCAS.

Summary: Application of IMPQP to the LPV case can be done through the
use of an autonomous model to determine the RMCAS. Apart from the increase
in offline complexity and obvious changes to the shape of the parametric solution,
there is little conceptual difference between the LTI and LPV solutions.

4.4 Summary

We summarize the changes required to extend nominal interpolation algorithms to
the LPV case.

1. The simplest ONEDOF interpolations can make use of a robust MAS, in min-
imal form, and apart from this no changes from the nominal algorithm are
needed. The simplest GIMPC algorithm is similar except that the cost needs to
be represented as a minimum upper bound.

2. More involved ONEDOF interpolations require non-minimal representations of
the robust MAS to ensure consistency between respective Si, and hence require
many more inequalities. The need to compute these simultaneously also adds
significantly to the offline computational load.



10 John Anthony Rossiter†, Bert Pluymers‡, Bart De Moor‡

3. The GIMPC2 algorithm requires both mutual consistency of the MAS and the
cost to be replaced by a minimum upper bound.

4. Interpolation MPQP requires the robust MCAS which can be determined using
an autonomous model representation, although this gives a large increase in the
dimension of the invariant set algorithm. It also needs an upper bound on the
predicted cost.

It should be noted that recent results [15] indicate that in the LPV case the
number of additional constraints can often be reduced significantly with a modest
decrease in feasibility.

5 Numerical Example

This section uses a double integrator example with non-linear dynamics, to demon-
strate the various interpolation algorithms, for the LPV case only. The algorithm of
[22] (denoted OMPC) but modified to make use of robust MCAS [14] is used as a
benchmark.

5.1 Model and constraints

We consider the nonlinear model and constraints:

x1,k+1 = x1,k + 0.1(1 + (0.1x2,k)2)x2,k,
x2,k+1 = x2,k + (1 + 0.005x2

2,k)uk,
(28a)

−0.5 ≤ uk ≤ 1, [−10 − 10]T ≤ xk ≤ [8 8]T, ∀k. (28b)

An LPV system bounding the non-linear behaviour is given as:

A1 =

�
1 0.1
0 1

�
, B1 =

�
0
1

�
, A2 =

�
1 0.2
0 1

�
, B2 =

�
0

1.5

�
. (29)

The nominal model ([A1 B1]) is used to design two robustly asymptotically stabiliz-
ing feedback controllers: the first is the LQR-optimal controller K1 = [0.4858 0.3407]T

for Q = diag(1, 0.01), R = 3 and the second K2 = [0.3 0.4]T has a large feasible re-
gion. Both controllers are robustly asymptotically stabilizing for system (29) and
are hence also stabilizing for system (28).

5.2 Feasible Regions and Computational Load

Figure 1(a) presents the feasible regions for the various interpolations and for com-
pleteness also demonstrates the improvement compared to using the largest volume
invariant ellipsoids. It is clear that GIMPC2 gives substantial feasibility increases
compared to GIMPC/ONEDOF and indeed also compared to IMPQP (Figure 1(b))
for nc = 6. The only increase in online computation arising due to the move from
LTI to LPV systems is from the number of inequalities describing the invariant sets
(work in progress may reduce this significantly). For completeness table 1 shows
the numbers of d.o.f. and the numbers of inequalities for each algorithm. IMPQP
is excluded from this table as the online computation is linked to the number of
regions and hence is fundamentally different.



Title Suppressed Due to Excessive Length 11

GIMPC GIMPC2 OMPC

No. inequalities 22 63 506

No. d.o.f. nx + 1 = 3 nx = 2 nc = 6

Table 1. Numbers of inequalities and d.o.f. required by GIMPC, GIMPC2 and
OMPC for model (29).

5.3 Control Performance and robust closed-loop behaviour

It is useful to consider how the closed-loop performance, within the respective fea-
sible regions, compares to ‘optimal’ (here taken as OMPC). Figure 2 depicts simu-
lation results for GIMPC, GIMPC2 and OMPC, starting from initial states on the
boundary of the intersection of the respective feasible regions. All three algorithms
are stabilizing and result in nearly identical trajectories. The average control cost
(according to (5)) of algorithms GIMPC and GIMPC2 is respectively 1.7% and 0.3%
higher than OMPC with nc = 6.

Evidence is also provided by way of closed-loop state trajectories in figure 3 that
each of these algorithms is robustly feasible and convergent for the entire feasible
region.

6 Conclusions and future directions

This paper has applied interpolation techniques to nonlinear systems which can be
represented, locally, by an LPV model. The interpolation algorithms allow a degree
of performance optimisation, have guarantees of recursive feasibility and conver-
gence, while only requiring relatively trivial online computation. In fact the main
requirement is the offline computation of the MAS or MCAS, with some structural
restrictions. Notably, interpolations such as GIMPC2 may give far larger feasible
regions than might be intuitively expected.

−10 −5 0 5

−10

−8

−6

−4

−2

0

2

4

6

8

x
1

x 2

ell. GIMPC
pol. GIMPC
GIMPC2

(a) Feasible regions of GIMPC using
ellipsoidal and polyhedral invariant
sets and GIMPC2.

−10 −5 0 5

−10

−8

−6

−4

−2

0

2

4

6

8

x
1

x 2

OMPC
GIMPC2

(b) Feasible regions of IMPQP for
nc = 0, . . . , 6 and GIMPC2.

Fig. 1. Feasible regions for different algorithms for model (29) using feedback laws
K1 and K2.



12 John Anthony Rossiter†, Bert Pluymers‡, Bart De Moor‡

−10 −5 0 5

−10

−8

−6

−4

−2

0

2

4

6

8

x
1

x 2

OMPC
GIMPC
GIMPC2

(a) State trajectories for the 3 dif-
ferent algorithms.

0 10 20 30 40 50

−0.5

0

0.5

1

G
IM

P
C

0 10 20 30 40 50

−0.5

0

0.5

1

G
IM

P
C

2

0 10 20 30 40 50

−0.5

0

0.5

1

time k

O
M

P
C

(b) Input sequences for the 3 differ-
ent algorithms.

Fig. 2. Trajectories for GIMPC, GIMPC2 and OMPC for plant model (28) using
feedback laws K1 and K2 and design model (29), starting from initial states at the
boundary and the inside of the intersection of the feasible regions.

Nevertheless some questions are outstanding: (i) There is interest in whether in-
terpolation concepts can be used effectively for more complicated non-linearities. (ii)
This paper tackles only parameter uncertainty whereas disturbance rejection/noise
should also be incorporated - some current submissions tackle that issue. (iii) It is
still unclear what may be a good mechanism for identifying the underlying feedbacks
Ki or strategies which give large feasible regions although Triple mode ideas [8] seem
potentially fruitful. (iv) Interpolation has yet to be tested extensively on high order
processes. (v) Finally, there is a need to devise efficient algorithms for computing
low complexity, but large, invariant sets for high order systems.

Acknowledgments: To the Royal Society and the Royal Academy of Engineer-
ing of the United Kingdom.

Bert Pluymers is a research assistant with the IWT Flanders. Prof. Bart De Moor
is a full professor with the KULeuven. Research partially supported by research
council KUL: GOA AMBioRICS, CoE EF/05/006 Optimization in Engineering,
Flemish Government:POD Science: IUAP P5/22.

−10 −5 0 5

−10

−5

0

5

x
1

x 2

(a) State trajectories for
OMPC.

−10 −5 0 5

−10

−5

0

5

x
1

x 2

(b) State trajectories for
GIMPC.

−10 −5 0 5

−10

−5

0

5

x
1

x 2

(c) State trajectories for
GIMPC2.

Fig. 3. Trajectories for OMPC, GIMPC and GIMPC2 for plant model (28) using
feedback laws K1 and K2 and design model (29), starting from initial states at the
boundaries of the respective feasible regions.



Title Suppressed Due to Excessive Length 13

References

1. M. Bacic, M. Cannon, Y. I. Lee, and B. Kouvaritakis. General interpolation in
MPC and its advantages. IEEE Transactions on Automatic Control, 48(6):1092–
1096, 2003.

2. F. Blanchini. Set invariance in control. Automatica, 35:1747–1767, 1999.
3. F. Blanchini, S. Miani, and C. Savorgnan. Polyhedral lyapunov functions com-

putation for robust and gain scheduled design. In Proceedings of the Symposium
on nonlinear Control Systems (NOLCOS), Stuttgart, Germany, 2004.

4. F. Borrelli. Constrained Optimal Control for Linear and Hybrid Systems.
Springer-Verlag, Berlin, 2003.

5. A. Casavola, F. Domenico, and F. Giuseppe. Predictive control of constrained
nonlinear systems via lpv linear embeddings. International Journal of Robust
and Nonlinear Control, 13:281–294, 2003.

6. L. Chisci, P. Falugi, and G. Zappa. Gain-scheduling MPC of nonlinear systems.
International Journal of Robust and Nonlinear Control, 13:295–308, 2003.

7. E.G. Gilbert and K. T. Tan. Linear systems with state and control constraints
: The theory and application of maximal output admissible sets. IEEE Trans-
actions on Automatic Control, 36(9):1008–1020, 1991.

8. L. Imsland and J.A. Rossiter. Time varying terminal control. In Proceedings of
the IFAC World Congress 2005, Prague, Czech Republic, 2005.

9. M. V. Kothare, V. Balakrishnan, and M. Morari. Robust constrained model
predictive control using linear matrix inequalities. Automatica, 32:1361–1379,
1996.

10. B. Kouvaritakis, J.A. Rossiter, and J. Schuurmans. Efficient robust predictive
control. IEEE Transactions on Automatic Control, 45(8):1545–1549, 2000.

11. H. Michalska and D. Mayne. Robust receding horizon control of constrained
nonlinear systems. IEEE Transactions on Automatic Control, 38:1623–1633,
1993.

12. B. Pluymers, J. A. Rossiter, J. A. K. Suykens, and B. De Moor. The efficient
computation of polyhedral invariant sets for linear systems with polytopic uncer-
tainty description. In Proceedings of the American Control Conference (ACC),
Portland, USA, pages 804–809, 2005.

13. B. Pluymers, J. A. Rossiter, J. A. K. Suykens, and B. De Moor. Interpolation
based MPC for LPV systems using polyhedral invariant sets. In Proceedings of
the American Control Conference (ACC), Portland, USA, pages 810–815, 2005.

14. B. Pluymers, J. A. Rossiter, J. A. K. Suykens, and B. De Moor. A simple
algorithm for robust mpc. In Proceedings of the IFAC World Congress 2005,
Prague, Czech Republic, 2005.

15. B. Pluymers, J. A. K. Suykens, and B. De Moor. Construc-
tion of reduced complexity polyhedral invariant sets for LPV sys-
tems using linear programming. Submitted for publication, 2005,
(http://www.esat.kuleuven.be/˜sistawww/cgi-bin/pub.pl).

16. J. A. Rossiter. Model Based Predictive Control : A Practical Approach. CRC
Press, 2003.

17. J. A. Rossiter, Y. Ding, B. Pluymers, J. A. K. Suykens, and B. De Moor.
Interpolation based MPC with exact constraint handling : the uncertain case.
In Proceedings of the joint European Control Conference & IEEE Conference on
Decision and Control, Seville, Spain, 2005.



14 John Anthony Rossiter†, Bert Pluymers‡, Bart De Moor‡

18. J. A. Rossiter and P. Grieder. Using interpolation to improve efficiency of
multiparametric predictive control. Automatica, 41(4), 2005.

19. J. A. Rossiter, B. Kouvaritakis, and M. Bacic. Interpolation based computation-
ally efficient predictive control. International Journal of Control, 77(3):290–301,
2004.

20. J. A. Rossiter, B. Kouvaritakis, and M. Cannon. Linear time varying terminal
laws in MPQP. In Proceedings of the UK Automatic Control Conference, 2004.

21. J. A. Rossiter, M. J. Rice, and B. Kouvaritakis. A numerically robust state-
space approach to stable predictive control strategies. Automatica, 34:65–73,
1998.

22. P. O. M. Scokaert and J. B. Rawlings. Constrained linear quadratic regulation.
IEEE Transactions on Automatic Control, 43(8):1163–1168, 1998.

23. K. T. Tan and E. G. Gilber. Optimization Techniques and Applications, chapter
Multimode controllers for linear discrete time systems with general state and
control constraints, pages 433–442. World Scientific, Singapore, 1992.

24. Z. Wan and M. V. Kothare. An efficient off-line formulation of robust model
predictive control using linear matrix inequalities. Automatica, 39(5):837–846,
2003.


