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Chapter 1
Discovering cluster dynamics using kernel
spectral methods

Abstract Networks represent patterns of interactions between components of com-
plex systems present in nature, science, technology and society. Furthermore, graph
theory allows to perform insightful analysis for different kinds of data by represent-
ing the instances as nodes of a weighted network, where the weights characterize
similarity between the data points. In this Chapter we describe a number of algo-
rithms to perform cluster analysis, that is finding groups of similar items (called
clusters or communities) and understand their evolution over time. These algorithms
are designed in a kernel-based framework: the original data are mapped into an high
dimensional feature space; linear models are designed in this space; complex nonlin-
ear relationships between the data in the original input space can then be detected.
Applications like fault detection in industrial machines, community detection of
static and evolving networks, image segmentation, incremental time-series cluster-
ing and text clustering are considered.

1.1 Introduction

Graph theory constitutes a powerful tool for data analysis. In fact, by represent-
ing the similarity between each pair of data points as a network, complex patterns
can be revealed. The most popular class of algorithms based on graph theory is
spectral clustering abbreviated as SC (Chung 1997), which exploits the spectral
properties of the so called Laplacian to partition a graph into weakly connected
sub-graphs. SC started to become a popular and state-of-the-art algorithm for data
clustering after the works of Shi and Malik (Shi & Malik 2000). They proposed
to optimize the Normalized Cut criterion to solve the image segmentation prob-
lem. Ng and Jordan (Ng et al. 2002) described an analysis of the SC algorithm by
means of matrix perturbation theory that gives conditions under which a good per-
formance is expected, and the tutorial by Von Luxburg reviewed the main literature
related to SC (von Luxburg 2007). Although very successful in a variety of appli-
cations, SC cannot handle big data without using approximation methods like the
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2 1 Discovering cluster dynamics using kernel spectral methods

Nyström algorithm (Fowlkes et al. 2004, Williams & Seeger 2001), the power iter-
ation method (Lin & Cohen 2010), or techniques based on linear algebra concepts
(Ning et al. 2010, Dhanjal et al. 2013, Frederix & Van Barel 2013). Moreover, the
out-of-sample extension is only approximate.

Lately, a spectral clustering algorithm formulated in a kernel framework has been
proposed (Alzate & Suykens 2010). The method, called kernel spectral clustering
(KSC), is based on solving a primal-dual optimization problem typical of Least
Squares Support Vector Machines or LS-SVMs (Suykens et al. 2002). KSC has two
main advantages w.r.t. SC: the possibility to perform model selection to detect, for
instance, the natural number of clusters which are present in the data, and the out-
of-sample extension to unseen test points, by means of a model learned during the
training process using a subset of the entire data.

One implicit assumption when using KSC is that the data do not change, i.e. they
are so to say static. However, in many real-world scenarios like in industrial process
monitoring, scientific experiments, social network activity etc., data are normally
time-stamped. In this case, clustering algorithms including a time variable in their
formulation are more suitable to discover meaningful patterns and track their evo-
lution over time. Examples of such algorithms are evolutionary (spectral) clustering
(Chakrabarti et al. 2006, Chi et al. 2007, Xu et al. 2013) characterized by the tempo-
ral smoothness between clusters in successive time-steps, a tensor-based approach
proposed in (Mucha et al. 2010), which generalizes the determination of community
structure to multi-slice networks defined by coupling multiple adjacency matrices at
different times, incremental k-means, which at each time-step uses the previous cen-
troids to find the new cluster centers (Chakraborty & Nagwani 2011).

In contrast to the aforementioned algorithms which work on the entire data, two
generalizations of KSC have been recently proposed to deal with dynamic cluster-
ing in a model-based framework. The new techniques are referred as kernel spectral
clustering with memory or MKSC (Langone, Alzate & Suykens 2013, Langone &
Suykens 2013, Langone, Mall & Suykens 2014) and incremental kernel spectral
clustering abbreviated as IKSC (Langone, Agudelo, De Moor & Suykens 2014).
Concerning the first algorithm, the temporal smoothness between clusters in suc-
cessive time-steps is incorporated in the primal optimization problem, inspired by
the evolutionary clustering approaches. This allows to track the long-term trend of
the clusters and to reduce the sensitivity to noisy short-term variations. Moreover, a
precise model selection scheme based on smoothed cluster quality measures and the
out-of-sample extension to new points make MKSC unique in its kind. The second
method, namely IKSC, is particularly suitable to cluster data streams: the model is
expressed only by the cluster prototypes in the eigenspace of KSC, and is contin-
uously updated in response to new data. By doing so, complex patterns emerging
across time in a non-stationary environment can be revealed.

In the next sections, after recalling the KSC method and some interesting appli-
cations where it has been utilized, we will describe the MKSC and IKSC techniques
and how they can be employed in different domains to perform dynamic data clus-
tering.
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1.2 Notation

xT Transpose of a vector x
Ω T Transpose of a matrix Ω

Ωi j i j-th entry of the matrix Ω

IN N×N Identity matrix
1N N×1 Vector of ones
DTr = {xi}NTr

i=1 Training sample of NTr data points
ϕ(·) Feature map
F Feature space of dimension dh
K(xi,x j) Kernel function evaluated on data points xi, x j
{Ap}k

p=1 Partitioning composed of k clusters
αi ∈ R i-th entry of the dual solution vector α ∈ RNTr

D N×N graph degree matrix
G = (V ,E ) Set of N vertices V = {vi}N

i=1 and m edges E of a graph
S = {(Vt ,Et)}T

t=1 Sequence of graphs over time T
| · | Cardinality of a set

1.3 Static Clustering

1.3.1 The KSC model

Given a training data set DTr = {xi}NTr
i=1, the multi-cluster KSC model (Alzate &

Suykens 2010) is expressed by k−1 binary problems, where k indicates the number
of clusters:

min
w(l),e(l),bl

1
2

k−1

∑
l=1

w(l)T
w(l)− 1

2NTr

k−1

∑
l=1

γle(l)
T
Ve(l)

subject to e(l) = Φw(l)+bl1NTr , l = 1, . . . ,k−1.

(1.1)

The e(l) = [e(l)1 , . . . ,e(l)i , . . . ,e(l)NTr
]T are the projections of all the training data points

mapped in the feature space along the direction w(l). For a given point xi, the primal
clustering model is expressed by:

e(l)i = w(l)T
ϕ(xi)+bl . (1.2)

The optimization problem (1.1) means the maximization of the weighted vari-
ances Cl = e(l)

T
Ve(l) regularized by the minimization of the squared norm of the

vector w(l), ∀l. The regularization constants γl ∈ R+ trade-off the model com-
plexity expressed by w(l) with the correct representation of the training data.
V ∈ RNTr×NTr is the weighting matrix and Φ is the NTr × dh feature matrix Φ =
[ϕ(x1)

T ; . . . ;ϕ(xNTr)
T ], where ϕ : Rd → Rdh indicates the mapping to a high-

dimensional feature space, bl are bias terms.
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After constructing the Lagrangian and solving the KKT conditions for optimality,
by setting1 V = D−1, the following dual problem can be derived:

D−1MDΩα
(l) = λ lα

(l) (1.3)

where Ω is the kernel matrix with i j-th entry Ωi j = K(xi,x j) = ϕ(xi)
T ϕ(x j).

K : Rd ×Rd → R indicates the kernel function. The type of kernel function to
utilize depends on the specific application at hand. For instance, in the simu-
lation results described later, three different kinds of kernels are employed, as
shown in Table 1.1. The matrix D is the graph degree matrix which is diag-
onal with positive elements Dii = ∑ j Ωi j, MD is a centering matrix defined as
MD = INTr−

1
1T

NTr
D−11NTr

1NTr 1
T
NTr

D−1, the α(l) are vectors of dual variables, λ l =
NTr
γl

,

K : Rd ×Rd → R is the kernel function. The projections can now be expressed as
follows:

e(l)i =
NTr

∑
j=1

α
(l)
j K(x j,xi)+bl , j = 1, . . . ,NTr, l = 1, . . . ,k−1. (1.4)

Problem (1.3) is related to SC with random walk Laplacian, where the kernel matrix
plays the role of the similarity matrix associated to the graph G = (V ,E ) with vi ∈
V equals to xi. Basically, this graph has a corresponding random walk in which the
probability of leaving a vertex is distributed among the outgoing edges according
to their weight: pt+1 = Ppt , where P = D−1Ω indicates the transition matrix with
the i j-th entry representing the probability of moving from node i to node j in one
step. Under these assumptions we have an ergodic and reversible Markov chain.
Furthermore, it can be shown that the stationary distribution describes the situation
in which the random walker remains most of the time in the same cluster with rare
jumps to the other clusters (Meila & Shi 2001b, Meila & Shi 2001b, Meila & Shi
2001a, Delvenne et al. 2010).

The cluster prototypes can be expressed in two ways:

• the projections e(l)i can be binarized as sign(e(l)i ). In fact, thanks to presence of the
bias term bl , both the e(l) and the α(l) variables get automatically centred around
zero. The set of the most frequent binary indicators form a code-book C B =
{cp}k

p=1, where each code-word is a binary word of length k− 1 representing a
cluster.

• by means of the average value of the e(l)i in each cluster, as discussed in (Langone,
Mall & Suykens 2013) where the soft KSC algorithm has been introduced2.

The KSC method3 1 is summarized in algorithm.

1 If V = I, problem (1.3) is equivalent to a kernel PCA formulation (Suykens et al. 2003, Schölkopf
et al. 1998, Mika et al. 1999).
2 The related Matlab code is available at: http://www.esat.kuleuven.be/stadius/ADB/langone/softwareSKSClab.php.
3 A matlab implementation of the KSC algorithm is available at:
http://www.esat.kuleuven.be/stadius/ADB/alzate/softwareKSClab.php.
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Application Kernel Name Mathematical Expression
Vector data RBF K(xi,x j) = exp(−||xi− x j||22/σ2)

Images RBFχ2 K(h(i),h( j)) = exp(−
χ2

i j

σ2
χ

)

Network data Normalized Linear K(xi,x j) =
xT

i x j
||xi||||x j ||

Text Normalized Linear K(xi,x j) =
xT

i x j
||xi||||x j ||

Time-series RBFcd K(xi,x j) = exp(−||xi− x j||2cd/σ2
cd)

Table 1.1: Choice of the kernel function. In this Table RBF stands for Radial Basis Function, σ

denotes the bandwidth of the kernel. The symbol h(i) denotes a color histogram representing the
i−th pixel of an image, and to compare the similarity between two histograms h(i) and h( j) the
χ2 statistical test is used (Puzicha et al. 1997). Regarding time-series data, the symbol cd means

correlation distance (Liao 2005), and ||xi− x j||cd =
√

1
2 (1−Ri j), with Ri j indicating the Pearson

correlation coefficient between time-series xi and x j .

1.3.1.1 Out-of-sample extension

Given the model in its dual representation {α(l),bl}, it is possible to predict the
membership of new points by computing their projections onto the eigenvectors
found in the training stage:

e(l)test = Ωtestα
(l)+bl1Ntest (1.5)

where Ωtest is the Ntest×N kernel matrix evaluated using the test points with entries
Ωtest,ri = K(xtest

r ,xi), r = 1, . . . ,Ntest, i = 1, . . . ,NTr. As for training points, the cluster
indicators can be obtained in two ways:

• ECOC (Error Correcting Output Codes) decoding procedure. The score variables
for test data are binarized and the memberships are assigned by comparing these
indicators with the training code-book and selecting the nearest prototype based
on Hamming distance.

• the test projections are assigned to the closest centroid.

1.3.1.2 Model selection

The performance of the KSC method is highly dependent on a good choice of the
so called tuning parameters, like the number of clusters k and the kernel parameters
(if any). For this reason, different model selection criteria have been proposed:

• Balanced Line Fit (BLF). It expresses how validation points belonging to the
same cluster are collinear in the space of the projections. It reaches its maximum
value 1 in case of well separated clusters, represented as lines in the space of the
e(l) (see third row of Figures 1.1 and 1.2)
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Algorithm 1: KSC algorithm (Alzate & Suykens 2010)

Data: Training set DTr = {xi}NTr
i=1, test set Dtest = {xtest

m }
Ntest
m=1 kernel function

K : Rd ×Rd → R positive definite and localized (K(xi,x j)→ 0 if xi and x j belong to
different clusters), kernel parameters (if any), number of clusters k.

Result: Clusters {A1, . . . ,Ak}, codebook C B = {cp}k
p=1 with {cp} ∈ {−1,1}k−1.

1 compute the training eigenvectors α(l), l = 1, . . . ,k−1, corresponding to the k−1 largest
eigenvalues of problem (1.3)

2 let A ∈ RNTr×(k−1) be the matrix containing the vectors α(1), . . . ,α(k−1) as columns
3 binarize A and let the code-book C B = {cp}k

p=1 be composed by the k encodings of
Q = sign(A) with the most occurrences

4 ∀i, i = 1, . . . ,NTr, assign xi to Ap∗ where p∗ = argminpdH(sign(αi),cp) and dH(., .) is the
Hamming distance

5 binarize the test data projections sign(e(l)m ), m = 1, . . . ,Ntest, and let sign(em) ∈ {−1,1}k−1

be the encoding vector of xtest
m

6 ∀m, assign xtest
m to Ap∗ , where p∗ = argminpdH(sign(em),cp).

• Balanced Angular Fit or BAF (Mall et al. 2013). For each cluster, the sum of the
cosine similarity between the validation points and the cluster prototype, divided
by the cardinality of that cluster, is calculated. These similarity values are then
summed up and divided by the total number of clusters.

• Average Membership Strength abbr. AMS (Langone, Mall & Suykens 2013). The
mean membership per cluster indicating the average degree of belonging of the
validation points to that cluster is computed. These mean cluster memberships
are then averaged over the number of clusters.

• Modularity, as proposed in (Langone et al. 2011, Langone et al. 2012). When
dealing with network data, the Modularity of the validation sub-graph corre-
sponding to a given partitioning is computed. The higher the Modularity, the
strongest the community structure (Newman 2006).

In Figures 1.1 and 1.2 an example of some of these model selection criteria on a
vector and a network dataset is given.

1.3.2 Applications

KSC has been successfully used in a wide range of real-life applications. In (Alzate
& Suykens 2010) the algorithm is employed to perform image segmentation on
pictures from the Berkeley image database (Martin et al. 2001). The image segmen-
tation task relates to the process of partitioning a digital image into multiple sets of
pixels, such that pixels in the same group share certain visual characteristics. In the
cited work only the color information is considered in order to cluster the pixels, as
shown in Figure 1.3.

The work (Alzate & Suykens 2012) introduces a hierarchical version of KSC,
which is then used for text clustering and micro-array data analysis. In (Alzate &
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Fig. 1.1: Model selection examples. (Top) Datasets consisting of 3 clusters (left) and 2 clusters
(right), in 2D. (Center) Model selection results using AMS (left) and BLF (right): the maximum is
reached at k = 3 and k = 2 respectively. (Bottom) Points represented in the [e(1),e(2)] space (left),
and the space of the first projection e(1) and a dummy variable dv = ∑

NTr
j=1 Ω test

i j (right). In the ideal
case of well separated clusters (left) we can notice how the points belonging to one cluster lie on
the same line. This line structure is less evident when a certain amount of overlap between the
clusters is present, as in case of the second dataset (right).
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Fig. 1.2: Modularity-based model selection. (Top) Adjacency matrix of a computer-generated
network consisting of 7 communities. (Center) Model selection results using Modularity: 7 clus-
ters are detected, corresponding to the Modularity maximum (Bottom) Nodes represented in the
space of the projections [e(1),e(2),e(3)]: every cluster form a different line, which is not perfect due
to some overlap between the communities of the network.
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Sinn 2013) KSC is employed as a pre-processing step to enhance the performance
of an aggregate autoregressive model for electricity power load forecasting.

The articles (Langone, Alzate, De Ketelaere & Suykens 2013, Langone et al.
2015) present an application of KSC to predictive maintenance. In industry, the
machine status can be monitored by means of different kinds of sensors like ther-
mometers, accelerometers and so on. Maintenance operations can then be planned
in a cost efficient way if models based on sensor data are able to catch machine
degradation. In the aforementioned papers, KSC is able to detect two regimes in
the vibration signals collected from a packing machine. In particular, one cluster is
associated to good working conditions and the other one indicates a faulty regime
leading to maintenance (see Figure 1.4). In this case a KSC model is trained offline,
and it is successively employed online in a dynamic setting (at the run-time of the
machine). This is done by means of eq. (1.5), which allows to predict at each time
the working regime of the machine.

KSC can also be considered among the state-of-the-art algorithms for commu-
nity detection. Community detection refers to the problem of partitioning a complex
network into clusters of nodes with high density of edges, in order to understand its
structure and function. Although a profusion of algorithms are present in the litera-
ture, they are rather specific, in the sense that are based on a particular intuition. On
the other hand, KSC is more flexible because in the model selection phase the user
can provide the desired criterion, in order to obtain a final partitioning with certain
characteristics. Moreover, the out-of-sample extension allows to readily assign the
membership to new nodes joining the network without using heuristics. This fea-
ture, added to the high sparsity of the majority of the real graphs, allows the method
to scale to large network data even on a desktop computer (Mall et al. 2013, Mall
et al. 2014). In Figure 1.5 a hierarchical partitioning of a real-world network per-
formed by KSC is depicted. This network consists of friends lists collected from
survey participants using Facebook (McAuley & Leskovec 2014).

1.4 Dynamic Clustering

In many real-life applications, like text mining, genomic analysis, weather predic-
tions etc., data are usually collected during a certain time-span. In this framework, in
order to gain better insights in the phenomena of interest, dynamic clustering plays
a key role. By detecting significant patterns and following their evolution, a better
understanding of the system under study, in terms of the regimes it undergoes over
time, can be achieved. In the next two sections we describe two kernel-based meth-
ods for dynamic clustering, namely kernel spectral clustering with memory abbr.
MKSC and the incremental kernel spectral clustering (IKSC) algorithm.
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Fig. 1.3: Image segmentation. (Left) Original image (Right) Segmentation performed by KSC
using only color information.

1.4.1 MKSC

The MKSC model assumes that the data are given as a sequence of graphs S =
{Gt =(Vt ,Et)}T

t=1 over time horizon T , where t indicates the time index. The symbol
Vt denotes the set of nodes in the graph Gt and Et the related set of edges. The graphs
can represent networks or data matrices. In this last case every data point acts as a
node of the graph.

MKSC is based on a constrained optimization problem where the objective func-
tion is designed to incorporate temporal smoothness, in order to cluster the current
data well and to be consistent with the recent past. For each data snapshot the primal
problem of the MKSC model, where NTr points are used for training, can be stated
as follows (Langone, Alzate & Suykens 2013, Langone & Suykens 2013, Langone,
Mall & Suykens 2014):

min
w(l)

t ,e(l)t ,bl
t

1
2

k−1

∑
l=1

w(l)T

t w(l)
t −

γt

2NTr

k−1

∑
l=1

e(l)
T

t D−1
Meme(l)t −νt

k−1

∑
l=1

w(l)T

t

M

∑
i=1

w(l)
t−i

subject to e(l)t = Φtw
(l)
t +bl

t1NTr l = 1, . . . ,k−1.

(1.6)
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Fig. 1.4: Fault detection. (Top) Illustration of a packing machine equiped with accelerometers to
measure the vibrations in the sealing jaws. (Bottom) KSC manages to infer machine’s degradation
based on the accelerometer signals and predicts in advance the need of maintenance (red cluster).
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Fig. 1.5: Community detection. (Top) Hierarchical structure detected by KSC related to a Face-
book network. (Bottom) Illustration of two hierarchical levels, by using the network visualization
tool Gephy available at http://gephi.github.io/.



1.4 Dynamic Clustering 13

The first two terms in the objective are the same as in eq. (1.1), i.e. they cast the
clustering problem in a regularized kernel PCA formulation. The third term enforces
the maximization of the correlation between the actual and the previous models, in
order to smoothen the clustering results. The subscript Mem refer to time steps t−
1, . . . , t−M, with M referring to the memory, that is the amount of past information.
The meaning of the symbols is as follows:

• as for KSC, e(l)t represent the l-th binary clustering model for the N points and
are referred interchangeably as projections, latent variables or score variables.

• w(l)
t ∈ Rdh and bl

t are the parameters of the model at time t
• D−1

Mem ∈ RNTr×NTr is the inverse of the degree matrix DMem = D + ∑
M
i=1 Dt−i,

which is the sum of the actual degree matrix D and the M previous degree matri-
ces

• as before Φ indicates the NTr × dh feature matrix Φ = [ϕ(x1)
T ; . . . ;ϕ(xNTr)

T ]
which expresses the relationship between each pair of points in the feature space
ϕ : Rd → Rdh .

• γ ∈R+ and ν ∈R+ are regularization constants. In particular, ν is referred as the
smoothness parameter, since it constrains the actual model to resemble the old
models.

The dual problem related to eq. (1.6) becomes the following linear system:

(D−1
MemMDMem Ωt −

I
γt
)α

(l)
t =−νtD−1

MemMDMem

M

∑
i=1

Ωt−iα
(l)
t−i (1.7)

where:

• Ωt indicates the current kernel matrix with entries Ωi j =K(xi,x j)=ϕ(xi)
T ϕ(x j).

Ωt−i captures the similarity between the objects of the current snapshot and the
ones of the previous M snapshots

• MDMem is the centering matrix equal to MDMem = INTr−
1

1T
NTr

D−1
Mem1NTr

1NTr 1
T
NTr

D−1
Mem.

As in the KSC case, the MKSC algorithm allows to generate the cluster member-
ships for test points by projecting them into the embedding given by the dual so-
lution vectors α

(l)
t . This out-of-sample extension is described by the following for-

mula:

e(l),test
t = Ω

test
t α

(l)
t +νt

M

∑
i=1

Ω
test
t−i α

(l)
t−i +bl

t1Ntest . (1.8)

Finally, the number of clusters, the kernel tuning parameters and the regularization
constants γt and νt can be tuned by means of the smoothed counterparts of the model
selection criteria introduced for KSC in section 1.3.1.2, that is BLFMem, ModMem
and AMSMem. These smoothed cluster quality measures are the sum of the snapshot
quality and the temporal quality. The first only measures the quality of the current
clustering with respect to the current data, while the second measures the ability of
the actual model to cluster the historic data. For a given cluster quality criterion CQ,
its smoothed version can be defined as follows:
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Algorithm 2: MKSC algorithm (Langone, Alzate & Suykens 2013)

Data: Training sets D = {xi}NTr
i=1 and Dold = {xold

i }
NTr
i=1, test sets D test = {xtest

m }
Ntest
m=1 and

D test
old = {xtest,old

m }Ntest
m=1, α

(l)
old, where the term old refers to time-steps i−1, . . . , i−M,

positive definite kernel function K : Rd ×Rd → R such that K(xi,x j)→ 0 if xi and x j
belong to different clusters, kernel parameters (if any), number of clusters k,
regularization constants γ and ν .

Result: Clusters {C t
1 , . . . ,C

t
p}, cluster codeset C B = {cp}k

p=1, cp ∈ {−1,1}k−1.
1 if t==1 then
2 Initialization by using KSC.
3 else
4 Compute the solution vectors α(l), l = 1, . . . ,k−1, related to the linear system

described by eq. (1.7): (D−1
MemMDMem Ωt − I

γt
)α

(l)
t =−νt D−1

MemMDMem ∑
M
i=1 Ωt−iα

(l)
t−i

5 Binarize the solution vectors: sign(α(l)
i ), i = 1, . . . ,NTr, l = 1, . . . ,k−1, and let

sign(αi) ∈ {−1,1}k−1 be the encoding vector for the training data point xi.
6 Count the occurrences of the different encodings and find the k encodings with most

occurrences. Let the codeset be formed by these k encodings: C B = {cp}k
p=1, with

cp ∈ {−1,1}k−1.
7 ∀i, assign xi to Cp∗ where p∗ = argminpdH(sign(αi),cp) and dH(·, ·) is the Hamming

distance.
8 Binarize the test data projections sign(e(l)m ), m = 1, . . . ,Ntest, l = 1, . . . ,k−1 and let

sign(em) ∈ {−1,1}k−1 be the encoding vector of xtest
m , m = 1, . . . ,Ntest.

9 ∀m, assign xtest
m to Ct

p∗ using an ECOC decoding scheme, i.e.
p∗ = argminpdH(sign(em),cp).

10 end

CQMem(Xαt ,Gt) = ηCQ(Xαt ,Gt)+(1−η)CQ(Xαt ,Gt−1), (1.9)

where Xαt means the cluster indicator matrix calculated by using the current solution
vectors α

(l)
t . The parameter η reflects the emphasis given to the snapshot quality and

the temporal smoothness, respectively. Finally, a summary of the MKSC technique4

is provided in algorithm 2.

1.4.1.1 Applications

In this section two applications of the MKSC method are described.
The first application concerns community detection of an evolving network

named RealityNet. This dataset records the proximity of some students and staff
members from two different departments in MIT (Eagle et al. 2009). It is constructed
on users whose cellphones periodically scan for nearby phones via Blue-tooth at five
minutes intervals. The similarity between two users is related to the number of in-
tervals where they were in physical proximity. Each graph snapshot is a weighted

4 A software package implemented in Matlab is available at:
http://www.esat.kuleuven.be/stadius/ADB/langone/softwareMKSClab.php.
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network corresponding to 1 week activity, and a total of 46 snapshots covering the
entire 2005 academic year are present. The people part of this experiment are in
total 94, but not all of them are present in every week. The smallest network com-
prises 21 people and the largest has 88 nodes. In Figure 1.6 the results obtained
by MKSC are visualized. At the bottom side some adjacency matrices representing
the detected structure in a number of time-steps are depicted. The results show two
clusters shrinking and expanding over time. These findings are in agreement with
the ground-truth, namely the affiliations of each participant as students at the Sloan
business school or co-workers who work in the same building. At the top side of
Figure 1.6 the tuning of the smoothness parameter νt is depicted. The regularization
constant has some small peaks around important dates like beginning of fall and
winter term and end of winter term. This outcome can be explained by considering
that, when there is a significant change in the data, the memory effect must activate
to smoothen the clustering results.

The second application is related to a text mining problem. We analyse the RCV1-
5topic dataset, which is constructed from a subset of the Reuters RCV1 corpus
(Greene & Cunningham 2010). There are in total 10116 news articles covering a
period of 7 months from September 1996 to March 1997. The data are divided into
28 snapshots, and each of them contains news articles related to a one week pe-
riod. In Figures 1.7-1.9 we show the clustering results for three particular weeks by
means of word clouds5. Although there is a large amount of overlap between the
clusters, we can notice how in the first week of September 1996 (Figure 1.7) the
cluster number 1 (top) comprises mainly words related to weather, the second clus-
ter (center) is more related to medicine end economics and the third one concerns
mostly sport articles. In the second week (end of November 1996) only two clus-
ter were detected: the first one (top center of Figure 1.8) contains words regarding
weather, medicine and sport, while the second one concerns mainly scientific news
(physics, energy etc.). Finally, in the third week (end of March 1997) we can see
how the first cluster shown on the top of Figure 1.9 is related mainly to medicine,
the second one (center) comprises words concerning weather and politics, the third
one concerns mostly economy and epidemiology.

1.4.2 IKSC

The IKSC method is intended to cluster data streams. A data stream is an ordered
sequence of instances which changes continuously and rapidly. Examples of data
streams include computer network traffic, phone conversations, ATM transactions,
web searches, sensor data. In many data stream mining applications, the goal is to
predict the class/cluster of new instances in the data stream given some knowledge
about the class/cluster membership of the previous instances. In this context, incre-
mental learning techniques are often applied to cope with structural changes and

5 The software to generate the word clouds visualization is available at: http://www.wordle.net/.
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Fig. 1.6: The RealityNet experiment. (Top) Tuning of the regularization constant ν by means of
the AMSMem criterion. Some peaks are present around important dates which are labelled in the
plot, where presumably a big rearrangement of the network occurs. (Bottom) Community structure
in the RealityNet network detected by MKSC at time steps 4, 20 and 39.

non-stationarities. In incremental k-means (Chakraborty & Nagwani 2011) the al-
gorithm at time t is initialized with the centroids found at time t−1, the algorithms
described in (Guha et al. 2003, Aggarwal et al. 2003) aim at analysing massive
datasets by using limited memory and a single scanning of the data, the techniques
introduced in (Can 1993, Gupta & Grossman 2004, Ning et al. 2007) have the ob-
jective to apply dynamic updates to the cluster prototypes when new data points
arrive. In (Ning et al. 2010) and (Dhanjal et al. 2013), the authors propose some in-
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Fig. 1.7: Text mining results, week 1 Results of the MKSC algorithm applied to Reuters RCV1
corpus related to week number 1, that is the first week of September 1996. Although a large amount
of overlap between the three detected clusters is present, some clusters concern mainly a certain
kind of topics compared to the others. In particular, cluster number 1 (top) comprises many words
related to weather like hurricane, thunderstorms etc., the second cluster (center) is more related to
health and economics, and the third one (bottom) concerns mostly sports articles.



18 1 Discovering cluster dynamics using kernel spectral methods

Fig. 1.8: Text mining results, week 12 Results of the MKSC algorithm applied to Reuters RCV1
corpus related to week number 12, that is the last week of November 1996. Two clusters were
detected concerning weather, medicine and sport (top), and scientific news (bottom).

cremental eigenvalue solutions to continuously update the initial eigenvectors found
by spectral clustering.

The IKSC algorithm works in a similar fashion. In the initialization phase an
initial KSC model is constructed. Then, in the online stage the model is expressed
only in terms of the centroids in the eigenspace, and the training set is formed by
the centroids in the original input space. The cluster memberships for new points
belonging to the data stream are computed by means of the euclidean distance be-
tween their projection in the eigenspace and the centers. In this way it is possible to
continuously update the model in response to the new data. In order to calculate the
projection in the eigenspace for every new point, the second KKT condition for op-
timality related to the KSC optimization problem (1.1), which links the eigenvectors
and the score variables for training data, can be exploited:

α
(l)
test =

1
λl

D−1
teste

(l)
test (1.10)

with D−1
test = diag(1/deg(xtest

1 ), . . . ,1/deg(xtest
Ntest)) ∈RNtest×RNtest indicating the in-

verse degree matrix for test data. The out-of-sample eigenvectors α
(l)
test represent the

model-based eigen-approximation with the same properties as the original eigenvec-
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Fig. 1.9: Text mining results, week 28 Results of the MKSC algorithm applied to Reuters RCV1
corpus related to week number 28, that is the last week of March 1997. The three clusters com-
prise articles related to medicine (top), weather and politics (center), economy and epidemiology
(bottom).

tors α(l) for training data. With the term eigen-approximation we mean that these
eigenvectors are not the solution of an eigenvalue problem, but they are estimated by
means of a model built during the training phase of KSC (Alzate & Suykens 2011).
To summarize, once one or several new points belonging to a data-stream are col-
lected, we update the IKSC model as follows:

• calculate the out-of-sample extension using eq.(1.5), where the training points xi
are the centroids in the input space C1, . . . ,Ck, and the α(l) are the centroids in
the eigenspace Cα

1 , . . . ,C
α
k

• calculate the out-of-sample eigenvectors by means of eq (1.10)
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• assign the new points to the closest centroids in the eigenspace
• update the centroids in the eigenspace
• update the centroids in the input space

In this way the initial α(l) provided by KSC are changed over time to model the
non-stationary behaviour of the system. The adaptation to non-stationarities relates
to identifying changes in the number of clusters occurring over time by:

• dynamically creating a new cluster if necessary. For every new point the related
degree dtest

i is calculated. If dtest
i < ε where ε is a user-defined threshold, it means

that the point is dissimilar to the actual centroids. Therefore it becomes the cen-
troid of a new cluster and it is added to the model. The threshold ε is data-
dependent, and can be chosen before processing the data stream based on the
degree distribution of the test kernel matrix, when considering as training set the
cluster prototypes in the input space.

• merging two centroids into one center if they become too similar. In particular,
the similarity between two centroids is computed as the cosine similarity in the
eigenspace, and two centroids are merged if this similarity is greater than 0.5.

A schematic visualization of the IKSC procedure6 is sketched in Figure 1.10.

Fig. 1.10: IKSC update scheme After the initialization phase, whenever a new instance of a data
stream is processed, both the training set and the model (i.e. the cluster centers in the eigenspace)
are updated.

6 A matlab implementation of the IKSC algorithm is available at:
http://www.esat.kuleuven.be/stadius/ADB/langone/softwareIKSClab.php.
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1.4.2.1 Applications

Here we describe an application of the IKSC technique to time-series clustering.
We analyse the PM10 concentrations registered by 259 background stations (located
in Belgium, The Netherlands, Germany and Luxembourg) during a heavy pollution
episode occurred between January 20th, 2010 and February 1st, 2010. The experts
attributed this episode to the import of particle matter originating in Eastern Europe,
due to strong winds.

An initial model is constructed by considering the data related to the first 96
hours: only 2 clusters are detected. The remaining data is then processed using a
moving window approach, i.e the data-set at time t corresponds to the PM10 con-
centrations measured from time t− 96 to time t. After some time the IKSC model
creates a new cluster, as depicted in figure 1.11. Later on these three clusters evolve
until a merge of two of them occurs at time step t = 251. The new cluster (rep-
resented in blue) comprise stations which are mainly concentrated in the Northern
region of Germany. Moreover, the creation occurs at time step t = 143, when the
window describes the start of the pollution episode in Germany. Afterwards, the
new cluster starts expanding in direction South-West and then disappears. Basically,
IKSC is detecting the arrival of the pollution episode originated in Eastern Europe
and driven by the wind toward the West.

1.5 Concluding remarks

In this chapter we have discussed two algorithms designed in a kernel-based frame-
work able to cluster dynamic data, namely MKSC and IKSC, in relation to kernel
spectral clustering. The former assumes that the data are provided as a sequence of
matrices over time, and makes use of a temporal smoothness assumption in order
to properly model the long-term trend of the cluster structure, while disregarding
short-term fluctuations due to noise. On the other hand, IKSC is mainly meant to
cluster data streams, where an initial model needs to be promptly updated in re-
sponse to new data in order to cope with non-stationary data distributions. Both
models are based on KSC, which is also described in the beginning of the chap-
ter. The KSC algorithm, although is a static method, can also be used in a dynamic
setting by means of the out-of-sample extension property, as explained in section
1.3.2 for the fault detection application. Finally, beyond discussing previous results
related to community detection, image segmentation and time-series clustering, we
have also presented a new application related to dynamic text mining.
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Fig. 1.11: PM10 clusters after creation. Top: clustered PM10 time-series after the creation of a
new cluster. Bottom left: Spatial distribution of the clusters over Belgium, Netherlands, Luxem-
bourg and Germany. The new cluster comprises stations located in the North-East part of Germany,
which is the area where the pollutants coming from Eastern Europe started to spread during the
heavy pollution episode of January 2010. Bottom right: data in the space spanned by the eigen-
vectors α(1) and α(2).
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