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Chapter 1
Kernel Spectral Clustering and applications

Abstract In this chapter we review the main literature related to kernel spectral
clustering (KSC), an approach to clustering cast within a kernel-based optimization
setting. KSC represents a least-squares support vector machine based formulation
of spectral clustering described by a weighted kernel PCA objective. Just as in the
classifier case, the binary clustering model is expressed by a hyperplane in a high
dimensional space induced by a kernel. In addition, the multi-way clustering can
be obtained by combining a set of binary decision functions via an Error Correct-
ing Output Codes (ECOC) encoding scheme. Because of its model-based nature,
the KSC method encompasses three main steps: training, validation, testing. In the
validation stage model selection is performed to obtain tuning parameters, like the
number of clusters present in the data. This is a major advantage compared to clas-
sical spectral clustering where the determination of the clustering parameters is un-
clear and relies on heuristics. Once a KSC model is trained on a small subset of
the entire data, it is able to generalize well to unseen test points. Beyond the basic
formulation, sparse KSC algorithms based on the Incomplete Cholesky Decompo-
sition (ICD) and L0, L1,L0 +L1, Group Lasso regularization are reviewed. In that
respect, we show how it is possible to handle large scale data. Also, two possible
ways to perform hierarchical clustering and a soft clustering method are presented.
Finally, real-world applications such as image segmentation, power load time-series
clustering, document clustering and big data learning are considered.

1.1 Introduction

Spectral clustering (SC) represents the most popular class of algorithms based on
graph theory (Chung 1997). It makes use of the Laplacian’s spectrum to partition
a graph into weakly connected sub-graphs. Moreover, if the graph is constructed

1



2 1 Kernel Spectral Clustering and applications

based on any kind of data (vector, images etc.), data clustering can be performed1.
SC began to be popularized when Shi and Malik introduced the Normalized Cut
criterion to handle image segmentation (Shi & Malik 2000). Afterwards, Ng and
Jordan (Ng et al. 2002) in a theoretical work based on matrix perturbation theory
have shown conditions under which a good performance of the algorithm is ex-
pected. Finally, in the tutorial by Von Luxburg the main literature related to SC
has been exhaustively summarized (von Luxburg 2007). Although very success-
ful in a number of applications, SC has some limitations. For instance, it can-
not handle big data without using approximation methods like the Nyström algo-
rithm (Fowlkes et al. 2004, Williams & Seeger 2001), the power iteration method
(Lin & Cohen 2010), or linear algebra based methods (Ning et al. 2010, Dhanjal
et al. 2013, Frederix & Van Barel 2013). Furthermore, the generalization to out-of-
sample data is only approximate.

These issues have been recently tackled by means of a spectral clustering algo-
rithm formulated as weighted kernel PCA (Alzate & Suykens 2010). The technique,
named kernel spectral clustering (KSC), is based on solving a constrained opti-
mization problem in a primal-dual setting. In other words, KSC is a Least Squares
Support Vector Machine (LS-SVM (Suykens et al. 2002)) model used for clustering
instead of classification2. By casting SC in a learning framework, KSC allows to
rigorously select tuning parameters such as the natural number of clusters which are
present in the data. Also, an accurate prediction of the cluster memberships for un-
seen points can be easily done by projecting test data in the embedding eigenspace
learned during training. Furthermore, the algorithm can be tailored to a given appli-
cation by using the most appropriate kernel function. Beyond that, by using sparse
formulations and a fixed-size (Suykens et al. 2002, De Brabanter et al. 2010) ap-
proach, it is possible to readily handle big data. Finally, by means of adequate adap-
tations of the core algorithm, hierarchical clustering and a soft clustering approach
have been proposed.

All these topics will be detailed in the next Sections. Precisely, after present-
ing the basic KSC method, the soft KSC algorithm will be summarized. Next,
two possible ways to accomplish hierarchical clustering will be explained. After-
wards, some sparse formulations based on the Incomplete Cholesky Decompo-
sition (ICD) and L0, L1,L0 + L1, Group Lasso regularization will be described.
Lastly, various interesting applications in different domains such as computer vi-
sion, power-load consumer profiling, information retrieval and big data clustering
will be illustrated. All these examples assume a static setting. Concerning other
applications in a dynamic scenario the interested reader can refer to (Langone,
Alzate, De Ketelaere & Suykens 2013, Langone et al. 2015) for fault detection,
to (Langone, Agudelo, De Moor & Suykens 2014) for incremental time-series clus-
tering, to (Langone, Alzate & Suykens 2013, Langone & Suykens 2013, Langone,

1 In this case the given data points represent the node of the graph and their similarity the corre-
sponding edges.
2 This is a considerable novelty, since SVMs are typically known as classifiers or function approx-
imation models rather than clustering techniques.
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Mall & Suykens 2014) in case of community detection in evolving networks and
(Peluffo et al. 2013) in relation to human motion tracking.

1.2 Notation

xT Transpose of the vector x
AT Transpose of the matrix A
IN N×N Identity matrix
1N N×1 Vector of ones
Dtr = {xi}Ntr

i=1 Training sample of Ntr data points
ϕ(·) Feature map
F Feature space of dimension dh
{Ap}k

p=1 Partitioning composed of k clusters
G = (V ,E ) Set of N vertices V = {vi}N

i=1 and m edges E of a graph
| · | Cardinality of a set

1.3 Kernel Spectral Clustering (KSC)

1.3.1 Mathematical formulation

1.3.1.1 Training problem

The KSC formulation for k clusters is stated as a combination of k− 1 binary
problems (Alzate & Suykens 2010). In particular, given a set of training data
Dtr = {xi}Ntr

i=1, the primal problem is:

min
w(l),e(l),bl

1
2

k−1

∑
l=1

w(l)T
w(l)− 1

2

k−1

∑
l=1

γle(l)
T
Ve(l)

subject to e(l) = Φw(l)+bl1Ntr , l = 1, . . . ,k−1.

(1.1)

The e(l) = [e(l)1 , . . . ,e(l)i , . . . ,e(l)Ntr
]T are the projections of the training data mapped

in the feature space along the direction w(l). For a given point xi, the model in the
primal form is:

e(l)i = w(l)T
ϕ(xi)+bl . (1.2)

The primal problem (1.1) expresses the maximization of the weighted variances
of the data given by e(l)

T
Ve(l) and the contextual minimization of the squared

norm of the vector w(l), ∀l. The regularization constants γl ∈ R+ mediate the
model complexity expressed by w(l) with the correct representation of the train-
ing data. V ∈ RNtr×Ntr is the weighting matrix and Φ is the Ntr× dh feature matrix
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Φ = [ϕ(x1)
T ; . . . ;ϕ(xNtr)

T ], where ϕ : Rd → Rdh denotes the mapping to a high-
dimensional feature space, bl are bias terms.

The dual problem corresponding to the primal formulation (1.1), by setting V =
D−1 becomes3:

D−1MDΩα
(l) = λ lα

(l) (1.3)

where Ω is the kernel matrix with i j-th entry Ωi j = K(xi,x j) = ϕ(xi)
T ϕ(x j).

K : Rd ×Rd → R means the kernel function. The type of kernel function to utilize
is application-dependent, as it is outlined in Table 1.1. The matrix D is the graph
degree matrix which is diagonal with positive elements Dii = ∑ j Ωi j, MD is a cen-
tering matrix defined as MD = INtr − 1

1T
Ntr

D−11Ntr
1Ntr 1

T
Ntr

D−1, the α(l) are vectors of

dual variables, λ l =
Ntr
γl

, K : Rd×Rd→R is the kernel function. The dual clustering
model for the i-th point can be expressed as follows:

e(l)i =
Ntr

∑
j=1

α
(l)
j K(x j,xi)+bl , j = 1, . . . ,Ntr, l = 1, . . . ,k−1. (1.4)

The cluster prototypes can be obtained by binarizing the projections e(l)i as sign(e(l)i ).
This step is straightforward because, thanks to presence of the bias term bl , both the
e(l) and the α(l) variables get automatically centred around zero. The set of the most
frequent binary indicators form a code-book C B = {cp}k

p=1, where each code-word
of length k−1 represents a cluster.

Application Kernel Name Mathematical Expression
Vector data RBF K(xi,x j) = exp(−||xi− x j||22/σ2)

Images RBFχ2 K(h(i),h( j)) = exp(−
χ2

i j

σ2
χ

)

Text Cosine K(xi,x j) =
xT

i x j
||xi||||x j ||

Time-series RBFcd K(xi,x j) = exp(−||xi− x j||2cd/σ2
cd)

Table 1.1: Types of kernel functions for different applications. In this Table RBF means Radial
Basis Function, σ denotes the bandwidth of the kernel. The symbol h(i) indicates a color histogram
representing the i−th pixel of an image, and to compare two histograms h(i) and h( j) the χ2 statis-
tical test is used (Puzicha et al. 1997). Regarding time-series data, the symbol cd means correlation

distance (Liao 2005), and ||xi−x j||cd =
√

1
2 (1−Ri j), where Ri j can indicate the Pearson or Spear-

man’s rank correlation coefficient between time-series xi and x j .

Interestingly, problem (1.3) has a close connection with SC based on a random
walk Laplacian. In this respect, the kernel matrix can be considered as a weighted
graph G = (V ,E ) with the nodes vi ∈ V represented by the data points xi. This
graph has a corresponding random walk in which the probability of leaving a ver-

3 By choosing V = I, problem (1.3) is identical to kernel PCA (Suykens et al. 2003, Schölkopf
et al. 1998, Mika et al. 1999).
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tex is distributed among the outgoing edges according to their weight: pt+1 = Ppt ,
where P = D−1Ω indicates the transition matrix with the i j-th entry denoting the
probability of moving from node i to node j in one time-step. Moreover, the sta-
tionary distribution of the Markov Chain describes the scenario where the random
walker stays mostly in the same cluster and seldom moves to the other clusters
(Meila & Shi 2001b, Meila & Shi 2001b, Meila & Shi 2001a, Delvenne et al. 2010).

1.3.1.2 Generalization

Given the dual model parameters α(l) and bl , it is possible to assign a membership
to unseen points by calculating their projections onto the eigenvectors computed in
the training phase:

e(l)test = Ωtestα
(l)+bl1Ntest (1.5)

where Ωtest is the Ntest×N kernel matrix evaluated using the test points with en-
tries Ωtest,ri = K(xtest

r ,xi), r = 1, . . . ,Ntest, i = 1, . . . ,Ntr. The cluster indicator for a
given test point can be obtained by using an Error Correcting Output Codes (ECOC)
decoding procedure:

• the score variable is binarized
• the indicator is compared with the training code-book C B (see previous Sec-

tion), and the point is assigned to the nearest prototype in terms of Hamming
distance.

The KSC method, comprising training and test stage, is summarized in algorithm
1, and the related Matlab package is freely available on the Web4.

Algorithm 1: KSC algorithm (Alzate & Suykens 2010)
Data: Training set Dtr = {xi}Ntr

i=1, test set Dtest = {xtest
m }

Ntest
m=1 kernel function

K : Rd ×Rd → R positive definite and localized (K(xi,x j)→ 0 if xi and x j belong to
different clusters), kernel parameters (if any), number of clusters k.

Result: Clusters {A1, . . . ,Ak}, codebook C B = {cp}k
p=1 with {cp} ∈ {−1,1}k−1.

1 compute the training eigenvectors α(l), l = 1, . . . ,k−1, corresponding to the k−1 largest
eigenvalues of problem (1.3)

2 let A ∈ RNtr×(k−1) be the matrix containing the vectors α(1), . . . ,α(k−1) as columns
3 binarize A and let the code-book C B = {cp}k

p=1 be composed by the k encodings of
Q = sign(A) with the most occurrences

4 ∀i, i = 1, . . . ,Ntr, assign xi to Ap∗ where p∗ = argminpdH(sign(αi),cp) and dH(., .) is the
Hamming distance

5 binarize the test data projections sign(e(l)m ), m = 1, . . . ,Ntest, and let sign(em) ∈ {−1,1}k−1

be the encoding vector of xtest
m

6 ∀m, assign xtest
m to Ap∗ , where p∗ = argminpdH(sign(em),cp).

4 http://www.esat.kuleuven.be/stadius/ADB/alzate/softwareKSClab.php
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1.3.1.3 Model selection

In order to select tuning parameters like the number of clusters k and eventually
the kernel parameters, a model selection procedure based on grid search is adopted.
First, a validation set Dval = {xi}Nval

i=1 is sampled from the whole dataset. Then, a grid
of possible values of the tuning parameters is constructed. Afterwards, a KSC model
is trained for each combination of parameters and the chosen criterion is evaluated
on the partitioning predicted for the validation data. Finally, the parameters yielding
the maximum value of the criterion are selected. Depending on the kind of data, a
variety of model selection criteria have been proposed:

• Balanced Line Fit (BLF). It indicates the amount of collinearity between vali-
dation points belonging to the same cluster, in the space of the projections. It
reaches its maximum value 1 in case of well separated clusters, represented as
lines in the space of the e(l)val (see for instance the bottom left side of Figure 1.1)

• Balanced Angular Fit or BAF (Mall et al. 2013b). For every cluster, the sum
of the cosine similarity between the validation points and the cluster prototype,
divided by the cardinality of that cluster, is computed. These similarity values are
then summed up and divided by the total number of clusters.

• Average Membership Strength abbr. AMS (Langone, Mall & Suykens 2013). The
mean membership per cluster denoting the mean degree of belonging of the val-
idation points to the cluster is computed. These mean cluster memberships are
then averaged over the number of clusters.

• Modularity (Newman 2006). This quality function is well suited for network
data. In the model selection scheme, the Modularity of the validation sub-graph
corresponding to a given partitioning is computed, and the parameters related to
the highest Modularity are selected (Langone et al. 2011, Langone et al. 2012).

• Fisher Criterion. The classical Fisher criterion (Bishop 2006) used in classifica-
tion has been adapted to select the number of clusters k and the kernel parameters
in the KSC framework (Alzate & Suykens 2012). The criterion maximizes the
distance between the means of the two clusters while minimizing the variance
within each cluster, in the space of the projections e(l)val.

In Figure 1.1 an example of clustering obtained by KSC on a synthetic dataset
is shown. The BLF model selection criterion has been used to tune the bandwidth
of the RBF kernel and the number of clusters. It can be noticed how the results are
quite accurate, despite the fact that the clustering boundaries are highly nonlinear.

1.3.2 Soft Kernel Spectral Clustering (SKSC)

Soft kernel spectral clustering (SKSC) makes use of algorithm 1 in order to com-
pute a first hard partitioning of the training data. Next, soft cluster assignments are
performed by computing the cosine distance between each point and some clus-
ter prototypes in the space of the projections e(l). In particular, given the projec-
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Fig. 1.1: KSC partitioning on a toy dataset. (Top) Original dataset consisting of 3 clusters (left)
and obtained clustering results (right). (Bottom) Points represented in the space of the projections
[e(1),e(2)] (left), for an optimal choice of k (and σ2 = 4.36 ·10−3) suggested by the BLF criterion
(right). We can notice how the points belonging to one cluster tend to lie on the same line. A perfect
line structure is not attained due to a certain amount of overlap between the clusters.

tions for the training points ei = [e(1)i , . . . ,e(k−1)
i ], i = 1, . . . ,Ntr and the correspond-

ing hard assignments qp
i we can calculate for each cluster the cluster prototypes

s1, . . . ,sp, . . . ,sk, sp ∈ Rk−1 as:

sp =
1
np

np

∑
i=1

ei (1.6)

where np is the number of points assigned to cluster p during the initialization step
by KSC. Then the cosine distance between the i-th point in the projections space
and a prototype sp is calculated by means of the following formula:

dcos
ip = 1− eT

i sp/(||ei||2||sp||2). (1.7)

The soft membership of point i to cluster q can be finally expressed as:

sm(q)
i =

∏ j 6=q dcos
i j

∑
k
p=1 ∏ j 6=p dcos

i j
(1.8)
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with ∑
k
p=1 sm(p)

i = 1. As pointed-out in (Ben-Israel & Iyigun 2008), this member-
ship represents a subjective probability expressing the belief in the clustering as-
signment.

The out-of-sample extension on unseen data consists simply of calculating eq.
(1.5) and assigning the test projections to the closest centroid.

An example of soft clustering performed by SKSC on a synthetic dataset is de-
picted in Figure 1.2. The AMS model selection criterion has been used to select the
bandwidth of the RBF kernel and the optimal number of clusters. The reader can
appreciate how SKSC provides more interpretable outcomes compared to KSC.

Fig. 1.2: SKSC partitioning on a synthetic dataset. (Top) Original dataset consisting of 2 clusters
(left) and obtained soft clustering results (right). (Bottom) Points represented in the space of the
projection e(1) (left), for an optimal choice of k (and σ2 = 1.53 · 10−3) as detected by the AMS
criterion (right).

The SKSC method is summarized in algorithm 2 and a Matlab implementation
is freely downloadable5.

5 http://www.esat.kuleuven.be/stadius/ADB/langone/softwareSKSClab.php
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Algorithm 2: SKSC algorithm (Langone, Mall & Suykens 2013)
Data: Training set Dtr = {xi}Ntr

i=1 and test set Dtest = {xtest
m }

Ntest
m=1, kernel function

K : Rd ×Rd → R positive definite and localized (K(xi,x j)→ 0 if xi and x j belong to
different clusters), kernel parameters (if any), number of clusters k.

Result: Clusters {A1, . . . ,Ap, . . . ,Ak}, soft cluster memberships sm(p), p = 1, . . . ,k, cluster
prototypes S P = {sp}k

p=1, sp ∈ Rk−1.
1 Initialization by solving eq. (1.4).
2 Compute the new prototypes s1, . . . ,sk (eq. (1.6)).

3 Calculate the test data projections e(l)m , m = 1, . . . ,Ntest, l = 1, . . . ,k−1.
4 Find the cosine distance between each projection and all the prototypes (eq. (1.7)) ∀m,

assign xtest
m to cluster Ap with membership sm(p) according to eq. (1.8).

1.3.3 Hierarchical Clustering

In many cases, clusters are formed by sub-clusters which in turn might have sub-
structures. As a consequence, an algorithm able to discover a hierarchical organiza-
tion of the clusters provides a more informative result, incorporating several scales
in the analysis. The flat KSC algorithm has been extended in two ways in order to
deal with hierarchical clustering.

1.3.3.1 Approach 1

This approach, named hierarchical kernel spectral clustering (HKSC), was proposed
in (Alzate & Suykens 2012) and exploits the information of a multi-scale structure
present in the data given by the Fisher criterion (see end of Section 1.3.1.3). A grid
search over different values of k and σ2 is performed to find tuning parameter pairs
such that the criterion is greater than a specified threshold value. The KSC model
is then trained for each pair and evaluated at the test set using the out-of-sample
extension. A specialized linkage criterion determines which clusters are merging
based on the evolution of the cluster memberships as the hierarchy goes up. The
whole procedure is summarized in algorithm 3.

1.3.3.2 Approach 2

In (Mall, Langone & Suykens 2014b) and (Mall, Langone & Suykens 2014a) an
alternative hierarchical extension of the basic KSC algorithm was introduced, for
network and vector data respectively. In this method, called agglomerative hierar-
chical kernel spectral clustering (AH-KSC), the structure of the projections in the
eigenspace is used to automatically determine a set of increasing distance thresh-
olds. At the beginning, the validation point with maximum number of similar points
within the first threshold value is selected. The indices of all these points represent
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Algorithm 3: HKSC algorithm (Alzate & Suykens 2012)

Data: Training set Dtr = {xi}Ntr
i=1, Validation set Dval = {xi}Nval

i=1 and test set
Dtest = {xtest

m }
Ntest
m=1, RBF kernel function with parameter σ2, maximum number of

clusters kmax, set of R σ2 values {σ2
1 , . . . ,σ

2
R}, Fisher threshold θ .

Result: Linkage matrix Z
1 For every combination of parameter pairs (k,σ2) train a KSC model using algorithm 1,

predict the cluster memberships for validation points and calculate the related Fisher
criterion

2 ∀k, find the maximum value of the Fisher criterion across the given range of σ2 values. If the
maximum value is greater than the Fisher threshold θ , create a set of these optimal (k∗,σ2

∗ )
pairs.

3 Using the previously found (k∗,σ2
∗ ) pairs train a clustering model and compute the cluster

memberships for the test set using the out-of-sample extension.
4 Create the linkage matrix Z by identifying which clusters merge starting from the bottom of

the tree which contains max k∗ clusters.

the first cluster at level 0 of hierarchy. These points are then removed from the val-
idation data matrix, and the process is repeated iteratively until the matrix becomes
empty. Thus, the first level of hierarchy corresponding to the first distance threshold
is obtained. To obtain the clusters at the next level of hierarchy the clusters at the
previous levels are treated as data points, and the whole procedure is repeated again
with other threshold values. This step takes inspiration from (Blondel et al. 2008).
The algorithm stops when only one cluster remains. The same procedure is applied
in the test stage, where the distance thresholds computed in the validation phase are
used. An overview of all the steps involved in the algorithm is depicted in Figure
1.3. In Figure 1.4 an example of hierarchical clustering performed by this algorithm
on a toy dataset is shown.

Fig. 1.3: AH-KSC algorithm. Steps of AH-KSC method as described in (Mall, Langone &
Suykens 2014b) with addition of the step where the optimal σ and k are estimated.

1.3.4 Sparse Clustering Models

The computational complexity of the KSC algorithm depends on solving the eigen-
value problem (1.3) related to the training stage and computing eq. (1.5) which
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Fig. 1.4: AH-KSC partitioning on a toy dataset. Cluster memberships for a toy dataset at differ-
ent hierarchical levels obtained by the AH-KSC method.

gives the cluster memberships of the remaining points. Assuming that we have Ntot
data and we use Ntr points for training and Ntest = Ntot−Ntr as test set, the runtime
of algorithm 1 is O(N2

tr)+O(NtrNtest). In order to reduce the computational com-
plexity, it is then necessary to find a reduced set of training points, without loosing
accuracy. In the next Sections two different methods to obtain a sparse KSC model,
based on the Incomplete Cholesky Decomposition (ICD) and L1 and L0 penalties
respectively, are discussed. In particular, thanks to the ICD, the KSC computational
complexity for the training problem is decreased to O(R2Ntr) (Novak et al. 2015),
where R indicates the reduced set size.

1.3.4.1 Incomplete Cholesky Decomposition

One of the KKT optimality conditions characterizing the Lagrangian of problem
(1.1) is:

w(l) = Φ
T

α
(l) =

Ntr

∑
i=1

α
(l)
i ϕ(xi). (1.9)

From eq. (1.9) it is evident that each training data point contributes to the primal
variable w(l), resulting in a non-sparse model. In order to obtain a parsimonious
model a reduced set method based on the Incomplete Cholesky Decomposition
(ICD) was proposed in (Alzate & Suykens 2011, Novak et al. 2015). The tech-
nique is based on finding a small number R�Ntr of points R = {x̂r}R

r=1 and related
coefficients ζ (l) with the aim of approximating w(l) as:

w(l) ≈ ŵ(l) =
R

∑
r=1

ζ
(l)
r ϕ(x̂r). (1.10)
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As a consequence, the projection of an arbitrary data point x into the training em-
bedding is given by:

e(l) ≈ ê(l) =
R

∑
r=1

ζ
(l)
r K(x, x̂r)+ b̂l . (1.11)

The set R of points can be obtained by considering the pivots of the ICD performed
on the kernel matrix Ω . In particular, by assuming that Ω has a small numerical
rank, the kernel matrix can be approximated by Ω ≈ Ω̂ = GGT , with G ∈ RNtr×R.
If we plug in this approximated kernel matrix in problem (1.3), the KSC eigenvalue
problem can be written as:

D̂−1MD̂UΨ
2UT

α̂
(l) = λ̂lα̂

(l), l = 1, . . . ,k (1.12)

where U ∈RNtr×R and V ∈RNtr×R denotes the left and right singular vectors deriving
from the singular value decomposition (SVD) of G, and Ψ ∈ RNtr×Ntr is the matrix
of the singular values. If now we pre-multiply both sides of eq. (1.12) by UT and
replace δ̂ (l) =UT α̂(l), only the following eigenvalue problem of size R×R must be
solved:

UT D̂−1MD̂UΨ
2
δ̂
(l) = λ̂l δ̂

(l), l = 1, . . . ,k. (1.13)

The approximated eigenvectors of the original problem (1.3) can be computed as
α̂(l) =U δ̂ (l), and the sparse parameter vector can be found by solving the following
optimization problem:

min
ζ (l) ‖ w(l)− ŵ(l) ‖2

2= min
ζ (l) ‖Φ

T
α
(l)−χ

T
ζ
(l) ‖2

2 . (1.14)

The corresponding dual problem can be written as follows:

Ω
χχ

δ
(l) = Ω

χφ
α
(l), (1.15)

where Ω
χχ
rs = K(x̃r, x̃s), Ω

χφ

ri = K(x̃r,xi), r,s = 1, . . . ,R, i = 1, . . . ,Ntr and l =
1, . . . ,k−1. Since the size R of problem (1.13) can be much smaller than the size Ntr
of the starting problem, the sparse KSC method6 is suitable for big data analytics.

1.3.4.2 Using Additional Penalty terms

In this part we explore sparsity in the KSC technique by using an additional penalty
term in the objective function (1.14). In (Alzate & Suykens 2011), the authors used
an L1 penalization term in combination with the reconstruction error term to in-
troduce sparsity. It is well known that the L1 regularization introduces sparsity as
shown in (Zhu et al. 2003). However, the resulting reduced set is neither the spars-
est nor the most optimal w.r.t. the quality of clustering for the entire dataset. In

6 A C implementation of the algorithm can be downloaded at:
http://www.esat.kuleuven.be/stadius/ADB/novak/softwareKSCICD.php
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(Mall, Mehrkanoon, Langone & Suykens 2014), we introduced alternative penal-
ization techniques like Group Lasso (Yuan & Lin 2006) and (Friedman et al. 2010),
L0 and L1 + L0 penalizations. The Group Lasso penalty is ideal for clusters as it
results in groups of relevant data points. The L0 regularization calculates the num-
ber of non-zero terms in the vector. The L0-norm results in a non-convex and NP-
hard optimization problem. We modify the convex relaxation of L0-norm based on
an iterative re-weighted L1 formulation introduced in (Candes et al. 2008, Huang
et al. 2010). We apply it to obtain the optimal reduced sets for sparse kernel spectral
clustering. Below we provide the formulation for Group Lasso penalized objective
(1.16) and re-weighted L1-norm penalized objectives (1.17).

The Group Lasso (Yuan & Lin 2006) based formulation for our optimization
problem is:

min
β∈RNtr×(k−1)

‖Φᵀ
α−Φ

ᵀ
β‖2

2 +λ

Ntr

∑
l=1

√
ρl‖βl‖2, (1.16)

where Φ = [φ(x1), . . . ,φ(xNtr)], α = [α(1), . . . ,α(k−1)], α ∈ RNtr×(k−1) and β =
[β1, . . . ,βNtr ], β ∈ RNtr×(k−1) . Here α(i) ∈ RNtr while β j ∈ Rk−1 and we set

√
ρl

as the fraction of training points belonging to the cluster to which the lth training
point belongs. By varying the value of λ we control the amount of sparsity intro-
duced in the model as it acts as a regularization parameter. In (Friedman et al. 2010),
the authors show that if the initial solutions are β̂1, β̂2, . . . , β̂Ntr then if ‖Xᵀ

l (y−
∑i6=l Xiβ̂i)‖< λ , then β̂l is zero otherwise it satisfies: β̂l = (Xᵀ

l Xl +λ/‖β̂l‖)−1Xᵀ
l rl

where rl = y−∑i 6=l Xiβ̂i.
Analogous to this, the solution to the group lasso penalization for our problem

can be defined as: ‖φ(xl)(Φ
ᵀα−∑i 6=l φ(xi)β̂i)‖< λ then β̂l is zero otherwise it sat-

isfies: β̂l = (ΦᵀΦ +λ/‖β̂l‖)−1φ(xl)rl where rl = Φᵀα−∑i 6=l φ(xi)β̂i. The Group
Lasso penalization technique can be solved by a blockwise co-ordinate descent pro-
cedure as shown in (Yuan & Lin 2006). The time complexity of the approach is
O(maxiter ∗ k2N2

tr) where maxiter is the maximum number of iterations specified
for the co-ordinate descent procedure and k is the number of clusters obtained via
KSC. From our experiments we observed that on an average 10 iterations suffice for
convergence.

Concerning the re-weighted L1 procedure, we modify the algorithm related to
classification as shown in (Huang et al. 2010) and use it for obtaining the reduced
set in our clustering setting:

min
β∈RNtr×(k−1)

‖Φᵀ
α−Φ

ᵀ
β‖2

2 +ρ

Ntr

∑
i=1

εi +‖Λβ‖2
2

such that ‖βi‖2
2 ≤ εi, i = 1, . . . ,Ntr

εi ≥ 0,

(1.17)
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where Λ is matrix of the same size as the β matrix i.e. Λ ∈ RNtr×(k−1). The term
‖Λβ‖2

2 along with the constraint ‖βi‖2
2≤ εi corresponds to the L0-norm penalty on β

matrix. Λ matrix is initially defined as a matrix of ones so that it gives equal chance
to each element of β matrix to reduce to zero. The constraints on the optimization
problem forces each element of βi ∈R(k−1) to reduce to zero. This helps to overcome
the problem of sparsity per component which is explained in (Alzate & Suykens
2011). The ρ variable is a regularizer which controls the amount of sparsity that is
introduced by solving this optimization problem.

In Figure 1.5 an example of clustering obtained using the group lasso formulation
(1.16) on a toy dataset is depicted. We can notice how the sparse KSC model is able
to obtain high quality generalization using only 4 points in the training set.

Fig. 1.5: Sparse KSC on toy dataset. (Top) Gaussian mixture with three highly overlapping com-
ponents (Center) Clustering results, where the reduced set points are indicated with red circles
(Bottom) Generalization boundaries.
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1.4 Applications

The KSC algorithm has been successfully used in a variety of applications in dif-
ferent domains. In the next Sections we will illustrate various results obtained in
different fields such as computer vision, information retrieval and power load con-
sumer segmentation.

1.4.1 Image Segmentation

Image segmentation relates to partitioning a digital image into multiple regions,
such that pixels in the same group share a certain visual content. In the experiments
performed using KSC only the color information is exploited in order to segment the
given images7. More precisely, a local color histogram with a 5×5 pixels window
around each pixel is computed using minimum variance color quantization of 8
levels. Then, in order to compare the similarity between two histograms h(i) and h( j),

the positive definite χ2 kernel K(h(i),h( j)) = exp(−
χ2

i j

σ2
χ

) has been adopted (Fowlkes

et al. 2004). The symbol χ2
i j denotes the χ2

i j statistical test used to compare two
probability distributions (Puzicha et al. 1997), σχ as usual indicates the bandwidth
of the kernel. In Figure 1.6 an example of segmentation obtained using the basic
KSC algorithm is given.

Fig. 1.6: Image segmentation. (Left) Original image (Right) Segmentation given by KSC.

7 The images have been extracted from the Berkeley image database (Martin et al. 2001).
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1.4.2 Scientific Journal Clustering

We present here an integrated approach for clustering scientific journals using KSC.
Textual information is combined with cross-citation information in order to obtain
a coherent grouping of the scientific journals and to improve over existing journal
categorizations. The number of clusters k in this scenario is fixed to 22 since we
want to compare the results with respect to the 22 essential science indicators (ESI)
shown in Table 1.2.

Field Name

1 Agricultural sciences
2 Biology and biochemistry
3 Chemistry
4 Clinical medicine
5 Computer science
6 Economics and business
7 Engineering
8 Environment/Ecology
9 Geosciences
10 Immunology
11 Materials sciences

Field Name

12 Mathematics
13 Microbiology
14 Molecular biology & genetics
15 Multidisciplinary
16 Neuroscience & behavior
17 Pharmacology & toxicology
18 Physics
19 Plant & animal science
20 Psychology / Psychiatry
21 Social sciences
22 Space science

Table 1.2: The 22 science fields according to the essential science indicators (ESI)

The data correspond to more than six million scientific papers indexed by the
Web of Science (WoS) in the period 2002−2006. The type of manuscripts consid-
ered is article, letter, note and review. Textual information has been extracted from
titles, abstracts and keywords of each paper together with citation information. From
these data, the resulting number of journals under consideration is 8,305.

The two resulting datasets contain textual and cross-citation information and are
described as follows:

• Term/Concept by Journal dataset: The textual information was processed us-
ing the term frequency - inverse document frequency (TF-IDF) weighting pro-
cedure (Baeza-Yates & Ribeiro-Neto 1999). Terms which occur only in one
document and stop words were not considered into the analysis. The Porter
stemmer was applied to the remaining terms in the abstract, title and key-
word fields. This processing leads to a term-by-document matrix of around
six million papers and 669,860 term dimensionality. The final journal-by-term
dataset is a 8,305×669,860 matrix. Additionally, latent semantic indexing (LSI)
(Deerwester et al. 1990) was performed on this dataset to reduce the term dimen-
sionality to 200 factors.

• Journal cross-citation dataset: A different form of analyzing cluster informa-
tion at the journal level is through a cross-citation graph. This graph contains
aggregated citations between papers forming a journal-by-journal cross-citation
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matrix. The direction of the citations is not taken into account which leads to an
undirected graph and a symmetric cross-citation matrix.

The cross-citation and the text/concept datasets are integrated at the kernel level by
considering the following linear combination of kernel matrices8:

Ω
integr = ρΩ

cross-cit +(1−ρ)Ω text

where 0 ≤ ρ ≤ 1 is a user-defined integration weight which value can be obtained
from internal validation measures for cluster distortion9, Ω cross-cit is the cross-
citation kernel matrix with i j-th entry Ω cross-cit

i j = K(xcross-cit
i ,xcross-cit

j ), xcross-cit
i is

the i-th journal represented in terms of cross-citation variables, Ω text is the textual
kernel matrix with i j-th entry Ω text

i j = K(xtext
i ,xtext

j ), xtext
i is the i-th journal repre-

sented in terms of textual variables and i, j = 1, . . . ,N.
The KSC outcomes are depicted in Tables 1.3 and 1.4. In particular, Table

1.3 shows the results in terms of internal validation of cluster quality, namely
mean silhouette value (MSV) (Rousseeuw 1987) and Modularity (Newman &
Girvan 2004, Newman 2006), and in terms of agreement with existing categoriza-
tions (adjusted rand index or ARI (Hubert & Arabie 1985) and normalized mutual
information (NMI (Strehl & Ghosh 2002)). Finally, Table 1.4 shows the top 20 terms
per cluster, which indicate a coherent structure and illustrate that KSC is able to de-
tect the text categories present in the corpus.

Internal validation External validation
MSV MSV MSV Modularity Modularity ARI NMI

textual cross-cit. integrated cross-cit. ISI 254 22 ESI 22 ESI
22 ESI fields 0.057 0.016 0.063 0.475 0.526? 1.000 1.000

Cross-citations 0.093 0.057 0.189 0.547 0.442 0.278 0.516
Textual (LSI) 0.118 0.035 0.130 0.505 0.451 0.273 0.516

Hierarch. Ward’s method ρ = 0.5 0.121 0.055 0.190 0.547 0.488 0.285 0.540

Integr. Terms+Cross-citations ρ = 0.5 0.138 0.064 0.201 0.533 0.465 0.294 0.557
Integr. LSI+Cross-citations ρ = 0.5 0.145 0.062 0.197 0.527 0.465 0.308 0.560

Table 1.3: Text clustering quality. Spectral clustering results of several integration methods in
terms of mean Silhouette value (MSV), modularity, adjusted Rand index (ARI) and normalized
mutual information (NMI). The first four rows correspond to existing clustering results used for
comparison. The last two rows correspond to the proposed spectral clustering algorithms. For ex-
ternal validation, the clustering results are compared with respect to the 22 ESI fields and the ISI
254 subject categories. The highest value per column is indicated in bold while the second highest
value appears in italic. For MSV, a standard t-test for the difference in means revealed that differ-
ences between highest and second highest values are statistically significant at the 1% significance
level (p-value < 108). The selected method for further comparisons is the integrated LSI+Cross-
citations approach since it wins in external validation with one highest value (NMI) and one second
highest value (Modularity).

8 Here we use the cosine kernel described in Table 1.1.
9 In our experiments we used the mean silhouette value (MSV) as an internal cluster validation
criterion to select the value of ρ which gives more coherent clusters.



18 1 Kernel Spectral Clustering and applications

Best 20 terms

Cluster 1

diabet therapi hospit arteri coronari physi-
cian renal hypertens mortal syndrom car-
diac nurs chronic infect pain cardiovascular
symptom serum cancer pulmonari

Cluster 2

polit war court reform parti legal gender ur-
ban democraci democrat civil capit feder dis-
cours economi justic privat liber union welfar

Cluster 3
diet milk fat intak cow dietari fed meat nu-
trit fatti chees vitamin ferment fish dry fruit
antioxid breed pig egg

Cluster 4

alloi steel crack coat corros fiber concret mi-
crostructur thermal weld film deform ceram
fatigu shear powder specimen grain fractur
glass

Cluster 5

infect hiv vaccin viru immun dog antibodi
antigen pathogen il pcr parasit viral bacteri
dna therapi mice bacteria cat assai

Cluster 6

psycholog cognit mental adolesc emot symp-
tom child anxieti student sexual interview
school abus psychiatr gender attitud mother
alcohol item disabl

Cluster 7

text music polit literari philosophi narr
english moral book essai write discours
philosoph fiction ethic poetri linguist german
christian religi

Cluster 8

firm price busi trade economi invest capit tax
wage financi compani incom custom sector
bank organiz corpor stock employ strateg

Cluster 9

nonlinear finit asymptot veloc motion
stochast elast nois turbul ltd vibrat iter crack
vehicl infin singular shear polynomi mesh
fuzzi

Cluster 10
soil seed forest crop leaf cultivar seedl ha
shoot fruit wheat fertil veget germin rice
flower season irrig dry weed

Cluster 11

soil sediment river sea climat land lake pol-
lut wast fuel wind ocean atmospher ic emiss
reactor season forest urban basin

Best 20 terms

Cluster 12

algebra theorem manifold let finit infin poly-
nomi invari omega singular inequ compact
lambda graph conjectur convex proof asymptot
bar phi

Cluster 13
pain surgeri injuri lesion muscl bone brain ey
surgic nerv mri ct syndrom fractur motor im-
plant arteri knee spinal stroke

Cluster 14

rock basin fault sediment miner ma tecton
isotop mantl volcan metamorph seismic sea
magma faci earthquak ocean cretac crust sed-
imentari

Cluster 15

web graph fuzzi logic queri schedul semant
robot machin video wireless neural node inter-
net traffic processor retriev execut fault packet

Cluster 16

student school teacher teach classroom instruct
skill academ curriculum literaci learner colleg
write profession disabl faculti english cognit
peer gender

Cluster 17
habitat genu fish sp forest predat egg nest larva
reproduct taxa bird season prei nov ecolog is-
land breed mate genera

Cluster 18

star galaxi solar quantum neutrino orbit quark
gravit cosmolog decai nucleon emiss radio nu-
clei relativist neutron cosmic gaug telescop
hole

Cluster 19

film laser crystal quantum atom ion beam si nm
dope thermal spin silicon glass scatter dielectr
voltag excit diffract spectra

Cluster 20

polym catalyst ion bond crystal solvent lig-
and hydrogen nmr molecul atom polymer poli
aqueou adsorpt methyl film spectroscopi elec-
trod bi

Cluster 21

receptor rat dna neuron mice enzym genom
transcript brain mutat peptid kinas inhibitor
metabol cancer mrna muscl ca2 vitro chromo-
som

Cluster 22

cancer tumor carcinoma breast therapi pro-
stat malign chemotherapi tumour surgeri lesion
lymphoma pancreat recurr resect surgic liver
lung gastric node

Table 1.4: Text clustering results. Best 20 terms per cluster according to the integrated results
(LSI+cross-citation) with ρ = 0.5. The terms found display a coherent structure in the clusters.

1.4.3 Power Load Clustering

Accurate power load forecasts are essential in electrical grids and markets partic-
ularly for planning and control operations (Alzate et al. 2009). In this scenario,
we apply KSC for finding power load smart meter data that are similar in order
to aggregate them and improve the forecasting accuracy of the global consump-
tion signal. The idea is to fit a forecasting model on the aggregated load of each
cluster (aggregator). The k predictions are summed to form the final disaggregated
prediction. The number of clusters and the time series used for each aggregator are
determined via KSC (Alzate & Sinn 2013). The forecasting model used is a peri-
odic autoregresive model with exogenous variables (PARX) (Espinoza et al. 2005).
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Table 1.7 (taken from (Alzate & Sinn 2013) shows the model selection and disag-
gregation results. Several kernels appropriate for time series were tried including a
Vector Autoregressive (VAR) kernel [Add: Cuturi, Autoregressive kernels for time
series, arXiv], Triangular Global Alignment (TGA) kernel [Add: Cuturi, Fast Global
Alignment Kernels, ICML 2011] and an RBF kernel with Spearman’s distance. The
results show an improvement of 20.55% with the similarity based on Spearman’s
corrleation in the forecasting accuracy compared to not using clustering at all (i.e.,
aggregating all smart meters). The BLF was also able to detect the number of clus-
ters that maximize the improvement (6 clusters in this case).

Fig. 1.7: Kernel comparisons for power load clustering data. Model selection and forecasting
results in terms of the mean absolute percentage error (MAPE). RBF-DB6-11 refers to using the
RBF kernel on the detail coefficients using wavelets (DB6, 11 levels). The winner is the Spearman-
based kernel with a improvement of 20.55%. For this kernel, the number of clusters k found by the
BLF also coincides with the number of aggregators needed to maximize the improvement.

1.4.4 Big data

KSC has been shown to be effective in handling big data at a desktop PC scale. In
particular, in (Mall et al. 2013b), we focused on community detection in big net-
works containing millions of nodes and several million edges, and we explained
how to scale our method by means of three steps10. First, we select a smaller sub-
graph that preserves the overall community structure by using the FURS algorithm
(Mall et al. 2013a), where hubs in dense regions of the original graph are selected
via a greedy activation-deactivation procedure. In this way the kernel matrix related
to subgraph fits the main memory and the KSC model can be quickly trained by

10 A Matlab implementation of the algorithm can be downloaded at:
http://www.esat.kuleuven.be/stadius/ADB/mall/softwareKSCnet.php
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Fig. 11: Disaggregated forecast for the last 12 days of the time series using the kernel based on the Spearman distance, k = 6
and PARX(48) models. The global forecast has a MAPE of 3.26% while the disaggregated forecast has a MAPE of 2.59%
leading to an improvement of 20.55%.

Fig. 1.8: Power load clustering results. Visualization of the 6 clusters obtained by KSC. (Top)
Aggregated load in summer. (Bottom) Aggregated load in winter. The daily cycles are clearly
visible and the clusters capture different characteristics of the consumption pattern. This clustering
result improves the forecasting accuracy by 20.55%

solving a smaller eigenvalue problem. Then the BAF criterion described in Section
1.3.1.3, which is memory and computationally efficient, is used for model selec-
tion11. Finally, the out-of-sample extension is used to infer the cluster memberships
for the remaining nodes forming the test set (which is divided into chunks due to
memory constraints).

In (Mall, Langone & Suykens 2014b) the hierarchical clustering technique sum-
marized in Section 1.3.3.2 has been used to perform community detection in real-life
networks at different resolutions. The method has been shown to be able to detect
complex structures at various hierarchical levels, by not suffering of any resolution
limit. An example of results obtained on the Cond-mat network of collaborations be-
tween authors of papers submitted to Condense Matter category in Arxiv (Leskovec
et al. 2007) is shown in Figure 1.9.

Finally, in (Mall, Jumutc, Langone & Suykens 2014), we propose a deterministic
method to obtain subsets from big vector data which are a good representative of
the inherent clustering structure. We first convert the large scale dataset into a sparse
undirected k-NN graph using a Map-Reduce framework. Then, the FURS method is
used to select a few representative nodes from this graph, corresponding to certain

11 In (Mall et al. 2013c) this model selection step has been eliminated by proposing a self tuned
method where the structure of the projections in the eigenspace is exploited to automatically iden-
tify an optimal cluster structure.
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Fig. 1.9: Large scale community detection. Community structure detected at one particular hi-
erarchical level by the AH-KSC method summarized in Section 1.3.3.2, related to the Cond-Mat
collaboration network.

data points in the original dataset. These points are then used to quickly train the
KSC model, while the generalization property of the method is exploited to compute
the cluster memberships for the remainder of the dataset. In Figure 1.10 a summary
of all these steps is sketched.

1.5 Conclusions

In this chapter we have discussed the kernel spectral clustering (KSC) method,
which is cast in an LS-SVM learning framework. We have explained that, like in
the classifier case, the clustering model can be trained on a subset of the data with
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Fig. 1.10: Big data clustering. (Top) Illustration of the steps involved in clustering big vector data
using KSC. (Bottom) Map-Reduce procedure used to obtain a representative training subset by
constructing a k-NN graph.

optimal tuning parameters, found during the validation stage. The model is then
able to generalize to unseen test data thanks to its out-of-sample extension property.
Beyond the core algorithm, some extensions of KSC allowing to produce proba-
bilistic and hierarchical outputs have been illustrated. Furthermore, two different
approaches to sparsify the model based on the Incomplete Cholesky Decomposition
(ICD) and L1 and L0 penalties have been described. This allows to handle large scale
data at a desktop scale. Finally, a number of applications in various fields ranging
from computer vision to text mining have been examined.
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