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Abstract—Imaging mass spectrometry or mass spectral (MALDI') mass spectrometry [8]. As we are primarily in-

imaging (MSI) is a technology that provides us with the oppor-  terested in the localization of biomacromolecules, thisgpa
tunity to study the spatial distribution of biomolecules such as will focus specifically on MALDI-based MSI
proteins, peptides, and metabolites throughout organic tissue ’

sections. MSI adds a spatial dimension to mass spectrometry
and biomarker-oriented studies without the requirement for

labels, as is the case with more traditional techniques such ~ MALDI-based imaging mass spectrometry [10] uses the
as fluorescense microscopy. It has particular merit for studies molecular specificity and sensitivity of normal mass spec-

where no prior hypothesis of target molecules is available, as ., a4y 16 collect a direct spatial mapping of biomolesule
it can simultaneously track a wide range of molecules within

its mass range. This makes MSI a potent exploratory tool for (OF rather their ions) from a tissue section. No complex

elucidating the spatiobiochemical topology in tissue. chemistry or ara priori target molecule is required as with
This paper elaborates on the principal component analysis complementary technologies such as immunochemistry and

(PCA)-based unsupervised decomposition of an MSI-measured fluorescence microscopy. A good example of its use for

organic tissue section into its underlying biochemical trends. We biomarker discovery is found in Meistermaen al. [9]
introduce a method to control the weight that particular peak U

intensity ranges are allowed to exert on the final decomposition Fig. 1 gl\{es a quick overVIevy of the wet-lab steps involved
model. The extension provides a way for peak intensity-based in performing an MSI experiment and a more thorough
scaling to be incorporated directly into the decomposition treatment is also available in Van de Pletsal. [12]. The

process, for the purpose of denoising or contrast enhancement result of an MSI experiment consists of an array of spots or

The method makes use of peak height transformations that iy 0|5 covering the tissue section, where every pixel has
are conceptually equivalent to what is known in digital image

processing as gray level transformations, but rather than aiming 'nd'v'du_al mass spectrum connected to it. The_ measureme_nts
to enhance contrast for human interpretation they are used are typically encoded as a 3-mode array with two spatial
to influence the unsupervised decomposition process. As an modes ¢ andy) and one mass-over-charge mode:/ z).
example, we apply a combined denoising/contrast stretching

measure to the MSI-measurement of a section of rat spinal B. lon Images and Multivariate Images

cord.

A. MALDI-based Imaging Mass Spectrometry

A common use of MSI data is to study the spatial spread
I. INTRODUCTION pf one particular mass _((m/z bin) in the forr_n of an ion_
image. An example ion image can be found in Fig. 3 which
Mass spectrometry has become the primary analghows the distribution of ionn/> 5490.52 across the rat
tical method for most proteomics, peptidomics, andgpinal cord tissue section discussed in section Il. However
metabolomics-oriented research [1]. In most studies, howdue to the massive amount of simultaneous measurements
ever, the spatial origin of a sample within the tissue igavailable in an MSI data set, more elaborate exploratory
not taken into account. A growing body of research [3]data analysis techniques show considerable promise as well
[9], [10] is demonstrating that adding spatial information These multivariate techniques [7], [5], [12] use clustgramd
the analysis can provide deeper insight into the biologicahatrix decomposition to learn the major biochemical trends
processes under study. underlying the data, grouping masses and spatial areagon th
In order to study the spatial distribution of biomolecules i basis of similar behavior. These trends allow for a higher-
organic tissue, an explicit link has to be preserved betwedavel model of the tissue composition to be constructed,
the mass spectral measurements holding the biochemigghich in turn allows for more elaborate biological quession
information, and their exact spatial origin within the tiss to be asked (e.g. biomarkers for certain areas, testing co-
For this purpose we employ a technology termed imaginipcation-related hypotheses,...).
mass spectrometry or mass spectral imaging (MSI). MSI
entails imaging based on secondary ion mass spectrometr MALDI refers to a particular mass spectrometry ionization roeth

. . . L which is well suited for the study of larger biomolecules sastproteins. It
(SIMS) as well as matrix-assisted laser desorption/idiuaa involves firing a controlled laser shot at the sample embeduadiystalline

chemical matrix solution on the target plate.
* Corresponding author af . vandepl as@sat . kul euven. be 2When MALDI ionization is used the chargeof an ion is usually-+1.
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by McCombieet al. [7] for the purpose of dimensionality
reduction, and Van de Plag al. [12] and Klerk et al. [5]
describe its use for trend detection in tissue. Tgeal. [11]
discuss similar approaches for SIMS-based MSI.

A. PCA Applied to Imaging Mass Spectrometry

An MSI experiment typically delivers a 3-mode array or
tensor D with two spatial modesa( and y) and one mass
spectral moderf/z). Each scalar valud,;; in the tensor
represents the absolute intensity of a particular mass geak
a certainz-position, a certainy-position j, and measured
at a certainm/z-bin k with i = 1,...,1, 5 = 1,...,J, and
k=1,...,K). As PCA requires a matrix rather than a tensor,
Fig. 1. Schematic overview of the imaging mass spectrometryrempet. ) js refolded into a 2-mode arralp of size (I.J) x K to
glr’;'t”;‘gtg :ngszggliig'gﬂ ;Sg‘r%;i;”tgrggszéaT;;T:;‘t%ihf::;bfe perform the decomposition. A thorough discussion of this
ionization take place in the wet lab. The mass spectral memsmts, the Procedure can be found in Van de Pkisal. [12]. Applying
.dat_i;lj c?ﬂgcrt;%nsvsagdei% rlr?(\;vtg?v$lhgr?g§j§ir?g g:rgleoT?:;?fke Filﬁgr? PCA results in a relatively small set of principal compomsent
It;]eSIpreocesseih siligo by a data. analysis metgr]md sﬁch as the ﬂ intensit?aqh one ChqraCterlzed by a spat|al Slgnatl_Jl’e |nd_|cat|ng
weighted PCA discussed in this paper. which zones differ markedly from other zones in the tissue.

Additionally, each component is characterized by a mass

spectral signature, which indicates the correlated mddecu
Il. CASE STUDY - MATERIALS & METHODS masses primarily responsible for these zones. Finallyh eac
gpmponent has an eigenvalue assigned to it, indicating the

The examples shown in the coming sections are based ¢ of vari lained by that principal ¢
an MSI measurement of rat spinal cord nerve tissue (Fig. ﬁ_moun ot vanance explained by that principal component.

The tissue section (15 micrometers thick) was taken from B
transversal section of the spinal cord of a standard control ) _ )
rat. The recorded mass range extended frag: 5000 to PCA is usually implemented as a singular value decom-
12000 and alpha-cyano-4-hydroxy cinnamic acid (7 mg/miPosition (SVD) of a square matrix, which represents the
in acetonitrile 50%, 0.05% TFA) was used as a chemicaflationships between the variables in the data maiix
matrix solution. A MALDI mass spectral measurement wa§/ observationsx N variables). Commonly this is the
performed on each grid point of a virtual raster of size«d2 ~ covariance matrix, but in some cases the correlation matrix
that was superimposed on the tissue section with an interspe Used as well. The difference lies in the relative influence
distance of 100 micrometers in both theand y-directions. that every variable is allowed to exert on the final principal
The mass spectrometer that was used is the ABI 48@®mponent model. In the covariance maifixeach element
MALDI TOF/TOF Analyzer from Applied Biosystems Inc Cpq T€Presents the covariance between variaplaadg (see

in linear mode. The data collection in the mass spectrometé}- Calculating the covariance involves substraction & th

was guided by thd000 Series Imagingiodule, available at Mmean per variable (mean-centering), but absolute dewmtio
http: // ww. mal di - nsi . or g. Processing was done usingfrom the mean are left intact. As a result variables withdarg

Array of Array of
Raw Unprocessed MS Peakisted MS

Implicit Variable Weights

in-house developed software. observations give large entries in the covariance matrig, a
As Fig. 3 shows, the IMS raster was slightly off centethus, exert more influence on the components.

with regards to the tissue section, resulting in a tissue- 1 M B

free area in the bottom right corner (shown in purple). To g = 371 Z(dmp —dp)(dmg — dg) (1)

avoid these empty measurements consuming variance and m=1

influencing the PCA-results, we disregarded them when theii the correlation matrixR, every elementr,, is further

total ion current fell below a 10% threshold. standardized by scaling all entries to a range betweeand

1, dividing the covariance by the standard deviations of the
Ill. STANDARD PCA-BASED DECOMPOSITION variablesp andg. The scaling has the effect of equalizing the
Principal component analysis (PCA) is a data analysiseight that each variable contributes to the decomposition

technique that decomposes a data set into a reduced ¥atiations over small absolute values will become equally

of uncorrelated signals for the purpose of dimensionalitinfluential as large absolute variations. This makes sense
reduction or trend detection [4]. In an imaging mass speavhen the data consists of heterogenous variables whose val-
trometry context its use translates to an unraveling of thees do not have a direct physical relationship to each other.

MSI data into a set of principal components, which can belowever, in the case of mass spectrometry the variables do

interpreted as a set of uncorrelated biochemical trendsen thave a physical relationship and are directly comparable in

tissue. The goal in applying a decomposition method sudhat they are all ion counts measured by the ion detector
as PCA to MSI data is to identify zones of similar chemicabf the same mass spectrometer, only with a different
composition in the tissue (along the and y modes) and parameter for the mass analyzer. Therefore, it makes piysic
to get insight into the molecular masses (along thgz sense to assign large peaks more importance than smaller
mode) most responsible for these zones (correlated as svelleaks, making the covariance matrix the preferred basis for
anticorrelated). PCA is mentioned in a MALDI-MSI contextdecomposition (and the extension of section 1V).
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Fig. 2. Microscopic image of a transversal Fig. 3. lon image ain/z 5490.52 from the Fig. 4. Examples of ion count (or gray level)
section of rat spinal cord (similar to the MSI rat spinal cord data set. transformations. (a) Identity transformation.
section), histologically stained to show the (b) nth Power transformation. (cpth Root

butterfly-shaped central area known as the transformation. (d) Threshold transformation.

Substantia griseggrey matter), surrounded
by white matter.

C. Case Study Results d;; is related to input ion count;;; by a transformatiory”

Applying PCA based on the covariance matrix to theéuch thatdi;, = T(di;x). T can take many different forms,
data set of section Il results in a compact set of princip&l€Pending on the goal in mind.
components (PCs). A full treatment of the results is given in An interesting observation is that this type of histogram
[12], but for comparison with the peak intensity weightedn@nipulation is conceptually equivalent to an image en-
PCA discussed in section IV, we show two of the moshancement technique called gray level transformations [2]
interesting trends in Fig. 6 and 7. Fig. 6 (top) shows th&ften employed in digital image processing. In a similar
first PC responsible for 90% of the variance in the dataV@y as with the ion counts, pixel intensities (or gray leyels
which delineates the butterfly-shaped region of gray matté&® mapped to different intensity values with the intent of
in the center from the chemically different surrounding tehi increasing contrast. In digital image processing this resit
matter (see also Fig. 2). Mass spectrally, the differenaas ceénhancement is'focused on improving human interpretabilit
be primarily contributed to the relative presencergfz 5484 fowards a certain purpose. In an MSI setting the contrast
and 8564 that function as a marker for these regions. THRodification serves to make certain types of responses more
second PC in Fig. 7 (top) differentiates the blue region éyisible’ to the PCA decomposition. A link between digital
the top from the central area. The mass signature tell us tHEage processing and MSI is also mentioned in [6].
the difference between these areas is primarily the regult o Fig- 4 shows a number of example transformation curves.
a consistently higher baseline showing up in the blue areAh® most basic example of the family of linear transforma-
indicating that ionization took place more easily there. ~ tions is the identity transformation shown as curve (a)s H.i

trivial transformation in that it leaves all ion counts tlzere.

IV. PEAKINTENSITY WEIGHTED PCA-BASED  Another interesting family of curves is known as power-law

DECOMPOSITION transformations, which typically take the form df;, =

The method discussed in this section, aims to influence(d;;;)° wherea and 3 are constants. These incluagh
the relative importance connected to particular peak heighower transformations such as curve (b), which map a wide
ranges in the data. This can be useful towards, for exampk&nge of lower ion counts to a narrower range, while higher
dimishing the influence of noisy intensities or groupingon count levels are allowed to expand into a wider range of
together peak heights that fall within a certain range, aglues. The inverse happens wheih root transformations
equally important. (see curve (c)), which are also part of the power-law family,
The weighing is performed by scaling the data before ther a logarithmic transformation are appli€l. can also be
inherent weighing of the covariance matrix comes into playa piecewise linear function, such as the thresholding curve
The effect of the scaling will reflect in the covariance esdri (d). Another good example of this type is shown in Fig. 5
which will be decomposed by SVD as usual. Unlike the scakmiddle), where it is applied to the case study of section
ing performed to go from a covariance matrix to a correlatiofl. This type of mapping is known as a 'contrast stretching’
matrix, this scaling will take the form of a transformatioh o transformation. The lower ion counts are compressed into
the histogram of peak heights found throughout the data set.narrow ion count range close to zero, while higher ion
Notice that this paper discusses weight assignment acmprdicounts that cross a certain level are compressed together at
to peak intensity, not according to spatial information othe high end of the range, equalizing their influence. The
molecular mass considerations. However, an adaptation itsn counts in between are spread out over a wider range,
take these considerations into account is straightforward thinning that area of the histogram. In conclusion one can
. state that the transformation functidn can take any form
A. lon Count Transformations as long as it is monotonically increasing (in order to avoid
An ion count histogram describes the distribution of pealrtificially created intensity artefacts).
heights throughout a collection of mass spectra. The type of
scaling we are looking for, also uses it as the input for 8- €ase Study Results
transformation function that translates the original iouoirat As an example, we apply a contrast stretching transfor-
diji in tensorD to a modified ion cound;jk. Examples of mation to the data set of section Il (Fig. 5). It acts as a
such histograms can be found in Fig. 5. Output ion courdoft thresholding filter, diminishing the influence of lower
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Fig. 5. Overview of the contrast stretching transformatienfgrmed on
the spinal cord data set. (left) The original histogram dfiah counts
in the data set. Given the predominating presence of low iamtso this
graph does not show the distribution of measurements at higherounts. 2000

However, the entire histogram is populated up to the maximwsparse in u
this experiment at 595 ion counts. (middle) The gray levelsfamation 0 5000 3000 10000 12000
that was applied. It pushes lower ion counts 100) together in narrow x massicharge

range close to zero, reducing their impact on the decomposit@her ion
counts ¢ 400) are compressed into a narrow range close to the maximu
response, equalizing their importance in the decompositjoght) The
modified histogram showing the effect (only visible in the l@m count
range) of the contrast stretching procedure.
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E]lg. 6. (top) Unweighted first PC. (bottom) Peak intensity giéd first
PC. By weighing down the smaller peaks we get a cleaner délomeaf

the Substantia griseand a considerable simplification of the mass spectral
signature. Particularly the top area, specifically setbbiePC2 in Fig. 7, is
prevented from causing leleed-throughvia its many low ion count values.

100) ion counts, while ion counts above a certain threshold
(> 400) get grouped together and are given a more equal
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assessment of the input ion count histogram. The automatic »
assignment of such parameters is an avenue of further 0
research. An evaluation of the influence of the imposed a1
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weights for each component is given in the captions of Fig. 6 . massicharge
and 7. Overall, the results demonstrate a particular use of Weighted second loading (4.1204%)  Weighted second score (4.1204%)

the weighing scheme as a means of denoising mass spectral 1000

data, without losing too much of the original information.
The parameterized simplification demonstrated by the mass
spectral sighatures is an interesting example of this.

V. CONCLUSIONS

Interpretation of MSI data requires the consideration ofig. 7. (top) Unweighted second PC. (bottom) Peak intensitjghted
noise and artifacts along the spatial, the mass-over-ehargecond PC. Most apparent is the strong simplification of thesrspsctral

; ; ; ature, which in its reduced form, according to the spatiages, still
and the peak intensity ranges. This paper focuses on the p%@?neates the same zone quite accurately with just two afriggnal peaks.

intensity range and describes a method that is complenyentathe smaller peaks that were attenuated in the weighted vetsia out to
with measures taken along the other modes. It introduces @afiuence the central area of the spinal cord.

extension to standard PCA-based decomposition of MSI data,

providing the researcher with a means of assigning weights

according to signal intensity. The extension is implemente [4] '\~(T- kJngeé Principal Component AnalysisSpringer-Verlag, New
. . . ork, .
as a general ion count transformation, that can be custdmze[S] LA Klerk. A. Broersen. IW. Eletcher. R. van Liere andNRA.

towards a particular goal, such as grouping together peaks Heeren, Extended data analysis strategies for high résolithaging

in a certain intensity range, attenuating low noise peaks, MS: New methods to deal with extremely large image hypersgectra
h holdi ¢ t h tf brinai t datasets|nt J Mass Spectrom260:2-3, 2007, pp 222236.
thresholding, or contrast enhancement for bringing ou Etﬁ] Y.C. Ling, M.T. Bernius and G.H. Morrison, SIMIPS: seaary ion

particular aspect of the ion count distribution. Due to itS ~ mass image processing systemChem Inf Comput ScR7:2, 1987,
monotonicity requirement, the transformation preserves t pp 86-94.

. L . . [7] G. McCombie, D. Staab, M. Stoeckli and R. Knochenmuss, i8pat
order of the peak heights and with it most of the information.”* 4 spectral correlations in MALDI mass spectrometry images by

As the transformation function can be specified by the clustering and multivariate analysi&nal Chem. 77:19, 2005, pp

researcher, the peak intensity weighted PCA allows for 3[8] ElAl8KA61D?4- I and RMA. H e romet
. A cbonnell an .M.A. Reeren, Imaging mass spectrometr
more complex type of questions to be posed to MSI data. Mass Spectrom Re26:4, 2007, pp 606-643.

ACKNOWLEDGMENTS [9] H. Meistermannet al'., I_3i0ma_rker discovery by ima_ging mass spec-
RVDP is a research assistant of the IWT at the Katholieke éfsiteit Leuven, Belgium. BDM is a full professor tromgtry: tranSthyretm Isa blom_arker for gentamlcm-lndilmphro-
at the Katholieke Universiteit Leuven, Belgium. EW is a fptbfessor at the Katholieke Universiteit Leuven, Belgium. toxicity in rat, Mol Cell Proteomics5:10, 2006, pp 1876-1886.
Research supported by Research Council KUL: GOA AMBIioRIC&E EF/05/007 SymBioSys, several PhD/postdoc : P :
& fellow grants; Flemish Government: - FWO: PhD/postdoc ngsa projects G.0241.04, G.0499.04, G.0232.05, [10] M. StoeCk“' P. Chaurand' D.E. Ha”ahan and R.M. Cdpr!magmg A
G.0318.05, G.0553.06, G.0302.07, research communit@€qs, ANMMM, MLDM); - IWT: PhD Grants, GBOU- mass spectrometry: a new technology for the analysis of protei

McKnow-E, GBOU-ANA, TAD-BioScope-IT, Silicos; SBO-BioFnae; Belgian Federal Science Policy Office: IUAP H H H - .
P6/25; EU-RTD: ERNSI; FP6-NOE; FP6-IP, FP6-MC-EST, FP6-EPRProMeta, BioMacs. expression in mammalian tissuééat Med 7:4, 2001, pp 493-496.

500

Y ——

6000 8000 10000 12000

x mass/charge

REFERENCES [11] B.J. Tyler, G. Rayal and D.G. Castner, Multivariate lggs strategies
for processing ToF-SIMS images of biomateri@&gmaterials 28:15,
[1] R. Aebersold and M. Mann, Mass spectrometry-based pnaiten 2007, pp 2412-2423.
Nature 422:6928, 2003, pp 198-207. [12] R. Van de Plas, F. Ojeda, M. Dewil, L. Van Den Bosch, B. Dedvl
[2] R.C. Gonzalez and R.E. WoodBjgital Image ProcessingPrentice and E. Waelkens, “Prospective Exploration of Biochemicadsiie
Hall Inc. (2nd edition), Upper Saddle River, NJ; 2002. Composition via Imaging Mass Spectrometry Guided by Principal
[3] R.M.A. Heeren, Proteome imaging: a closer look at life’'gamization, Component Analysis,in Proceedings of the Pacific Symposium on

Proteomics 5:17, 2005, pp 4316-4326. Biocomputing 12Maui, HI, 2007, pp. 458-469.



