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Abstract— Imaging mass spectrometry or mass spectral
imaging (MSI) is a technology that provides us with the oppor-
tunity to study the spatial distribution of biomolecules such as
proteins, peptides, and metabolites throughout organic tissue
sections. MSI adds a spatial dimension to mass spectrometry
and biomarker-oriented studies without the requirement for
labels, as is the case with more traditional techniques such
as fluorescense microscopy. It has particular merit for studies
where no prior hypothesis of target molecules is available, as
it can simultaneously track a wide range of molecules within
its mass range. This makes MSI a potent exploratory tool for
elucidating the spatiobiochemical topology in tissue.

This paper elaborates on the principal component analysis
(PCA)-based unsupervised decomposition of an MSI-measured
organic tissue section into its underlying biochemical trends. We
introduce a method to control the weight that particular peak
intensity ranges are allowed to exert on the final decomposition
model. The extension provides a way for peak intensity-based
scaling to be incorporated directly into the decomposition
process, for the purpose of denoising or contrast enhancement.
The method makes use of peak height transformations that
are conceptually equivalent to what is known in digital image
processing as gray level transformations, but rather than aiming
to enhance contrast for human interpretation they are used
to influence the unsupervised decomposition process. As an
example, we apply a combined denoising/contrast stretching
measure to the MSI-measurement of a section of rat spinal
cord.

I. INTRODUCTION

Mass spectrometry has become the primary analy-
tical method for most proteomics, peptidomics, and
metabolomics-oriented research [1]. In most studies, how-
ever, the spatial origin of a sample within the tissue is
not taken into account. A growing body of research [3],
[9], [10] is demonstrating that adding spatial informationto
the analysis can provide deeper insight into the biological
processes under study.

In order to study the spatial distribution of biomolecules in
organic tissue, an explicit link has to be preserved between
the mass spectral measurements holding the biochemical
information, and their exact spatial origin within the tissue.
For this purpose we employ a technology termed imaging
mass spectrometry or mass spectral imaging (MSI). MSI
entails imaging based on secondary ion mass spectrometry
(SIMS) as well as matrix-assisted laser desorption/ionization
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(MALDI 1) mass spectrometry [8]. As we are primarily in-
terested in the localization of biomacromolecules, this paper
will focus specifically on MALDI-based MSI.

A. MALDI-based Imaging Mass Spectrometry

MALDI-based imaging mass spectrometry [10] uses the
molecular specificity and sensitivity of normal mass spec-
trometry to collect a direct spatial mapping of biomolecules
(or rather their ions) from a tissue section. No complex
chemistry or ana priori target molecule is required as with
complementary technologies such as immunochemistry and
fluorescence microscopy. A good example of its use for
biomarker discovery is found in Meistermannet al. [9].

Fig. 1 gives a quick overview of the wet-lab steps involved
in performing an MSI experiment and a more thorough
treatment is also available in Van de Plaset al. [12]. The
result of an MSI experiment consists of an array of spots or
’pixels’ covering the tissue section, where every pixel hasan
individual mass spectrum connected to it. The measurements
are typically encoded as a 3-mode array with two spatial
modes (x andy) and one mass-over-charge mode2 (m/z).

B. Ion Images and Multivariate Images

A common use of MSI data is to study the spatial spread
of one particular mass (orm/z bin) in the form of an ion
image. An example ion image can be found in Fig. 3 which
shows the distribution of ionm/z 5490.52 across the rat
spinal cord tissue section discussed in section II. However,
due to the massive amount of simultaneous measurements
available in an MSI data set, more elaborate exploratory
data analysis techniques show considerable promise as well.
These multivariate techniques [7], [5], [12] use clustering and
matrix decomposition to learn the major biochemical trends
underlying the data, grouping masses and spatial areas on the
basis of similar behavior. These trends allow for a higher-
level model of the tissue composition to be constructed,
which in turn allows for more elaborate biological questions
to be asked (e.g. biomarkers for certain areas, testing co-
location-related hypotheses,...).

1MALDI refers to a particular mass spectrometry ionization method
which is well suited for the study of larger biomolecules suchas proteins. It
involves firing a controlled laser shot at the sample embedded in a crystalline
chemical matrix solution on the target plate.

2When MALDI ionization is used the chargez of an ion is usually+1.
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Fig. 1. Schematic overview of the imaging mass spectrometry experiment.
Obtaining of a tissue section using a microtome, mounting the section on a
target plate, and applying an appropriate chemical matrix solution to enable
ionization take place in the wet lab. The mass spectral measurements, the
data collection, and any low-level processing of the mass spectra take place
inside the mass spectrometer. The resulting array of mass spectra can then
be processedin silico by a data analysis method such as the peak intensity
weighted PCA discussed in this paper.

II. CASE STUDY - MATERIALS & METHODS

The examples shown in the coming sections are based on
an MSI measurement of rat spinal cord nerve tissue (Fig. 2).
The tissue section (15 micrometers thick) was taken from a
transversal section of the spinal cord of a standard control
rat. The recorded mass range extended fromm/z 5000 to
12000 and alpha-cyano-4-hydroxy cinnamic acid (7 mg/ml,
in acetonitrile 50%, 0.05% TFA) was used as a chemical
matrix solution. A MALDI mass spectral measurement was
performed on each grid point of a virtual raster of size 31×42
that was superimposed on the tissue section with an interspot
distance of 100 micrometers in both thex andy-directions.
The mass spectrometer that was used is the ABI 4800
MALDI TOF/TOF Analyzer from Applied Biosystems Inc
in linear mode. The data collection in the mass spectrometer
was guided by the4000 Series Imagingmodule, available at
http://www.maldi-msi.org. Processing was done using
in-house developed software.

As Fig. 3 shows, the IMS raster was slightly off center
with regards to the tissue section, resulting in a tissue-
free area in the bottom right corner (shown in purple). To
avoid these empty measurements consuming variance and
influencing the PCA-results, we disregarded them when their
total ion current fell below a 10% threshold.

III. STANDARD PCA-BASED DECOMPOSITION

Principal component analysis (PCA) is a data analysis
technique that decomposes a data set into a reduced set
of uncorrelated signals for the purpose of dimensionality
reduction or trend detection [4]. In an imaging mass spec-
trometry context its use translates to an unraveling of the
MSI data into a set of principal components, which can be
interpreted as a set of uncorrelated biochemical trends in the
tissue. The goal in applying a decomposition method such
as PCA to MSI data is to identify zones of similar chemical
composition in the tissue (along thex and y modes) and
to get insight into the molecular masses (along them/z
mode) most responsible for these zones (correlated as well as
anticorrelated). PCA is mentioned in a MALDI-MSI context

by McCombieet al. [7] for the purpose of dimensionality
reduction, and Van de Plaset al. [12] and Klerk et al. [5]
describe its use for trend detection in tissue. Tyleret al. [11]
discuss similar approaches for SIMS-based MSI.

A. PCA Applied to Imaging Mass Spectrometry

An MSI experiment typically delivers a 3-mode array or
tensorD with two spatial modes (x and y) and one mass
spectral mode (m/z). Each scalar valuedijk in the tensor
represents the absolute intensity of a particular mass peakat
a certainx-position i, a certainy-position j, and measured
at a certainm/z-bin k (with i = 1, . . . , I, j = 1, . . . , J , and

k = 1, . . . , K). As PCA requires a matrix rather than a tensor,
D is refolded into a 2-mode arrayD of size (I.J) × K to
perform the decomposition. A thorough discussion of this
procedure can be found in Van de Plaset al. [12]. Applying
PCA results in a relatively small set of principal components,
each one characterized by a spatial signature indicating
which zones differ markedly from other zones in the tissue.
Additionally, each component is characterized by a mass
spectral signature, which indicates the correlated molecular
masses primarily responsible for these zones. Finally, each
component has an eigenvalue assigned to it, indicating the
amount of variance explained by that principal component.

B. Implicit Variable Weights

PCA is usually implemented as a singular value decom-
position (SVD) of a square matrix, which represents the
relationships between the variables in the data matrixD
(M observations× N variables). Commonly this is the
covariance matrix, but in some cases the correlation matrix
is used as well. The difference lies in the relative influence
that every variable is allowed to exert on the final principal
component model. In the covariance matrixC each element
cpq represents the covariance between variablesp andq (see
1). Calculating the covariance involves substraction of the
mean per variable (mean-centering), but absolute deviations
from the mean are left intact. As a result variables with large
observations give large entries in the covariance matrix, and
thus, exert more influence on the components.

cpq =
1

M − 1

M∑

m=1

(dmp − dp)(dmq − dq) (1)

In the correlation matrixR, every elementrpq is further
standardized by scaling all entries to a range between−1 and
1, dividing the covariance by the standard deviations of the
variablesp andq. The scaling has the effect of equalizing the
weight that each variable contributes to the decomposition.
Variations over small absolute values will become equally
influential as large absolute variations. This makes sense
when the data consists of heterogenous variables whose val-
ues do not have a direct physical relationship to each other.
However, in the case of mass spectrometry the variables do
have a physical relationship and are directly comparable in
that they are all ion counts measured by the ion detector
of the same mass spectrometer, only with a differentm/z
parameter for the mass analyzer. Therefore, it makes physical
sense to assign large peaks more importance than smaller
peaks, making the covariance matrix the preferred basis for
decomposition (and the extension of section IV).



Fig. 2. Microscopic image of a transversal
section of rat spinal cord (similar to the MSI
section), histologically stained to show the
butterfly-shaped central area known as the
Substantia grisea(grey matter), surrounded
by white matter.

Fig. 3. Ion image atm/z 5490.52 from the
rat spinal cord data set.
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Fig. 4. Examples of ion count (or gray level)
transformations. (a) Identity transformation.
(b) nth Power transformation. (c)nth Root
transformation. (d) Threshold transformation.

C. Case Study Results

Applying PCA based on the covariance matrix to the
data set of section II results in a compact set of principal
components (PCs). A full treatment of the results is given in
[12], but for comparison with the peak intensity weighted
PCA discussed in section IV, we show two of the most
interesting trends in Fig. 6 and 7. Fig. 6 (top) shows the
first PC responsible for 90% of the variance in the data,
which delineates the butterfly-shaped region of gray matter
in the center from the chemically different surrounding white
matter (see also Fig. 2). Mass spectrally, the differences can
be primarily contributed to the relative presence ofm/z 5484
and 8564 that function as a marker for these regions. The
second PC in Fig. 7 (top) differentiates the blue region at
the top from the central area. The mass signature tell us that
the difference between these areas is primarily the result of
a consistently higher baseline showing up in the blue area,
indicating that ionization took place more easily there.

IV. PEAK INTENSITY WEIGHTED PCA-BASED
DECOMPOSITION

The method discussed in this section, aims to influence
the relative importance connected to particular peak height
ranges in the data. This can be useful towards, for example,
dimishing the influence of noisy intensities or grouping
together peak heights that fall within a certain range, as
equally important.

The weighing is performed by scaling the data before the
inherent weighing of the covariance matrix comes into play.
The effect of the scaling will reflect in the covariance entries
which will be decomposed by SVD as usual. Unlike the scal-
ing performed to go from a covariance matrix to a correlation
matrix, this scaling will take the form of a transformation of
the histogram of peak heights found throughout the data set.
Notice that this paper discusses weight assignment according
to peak intensity, not according to spatial information or
molecular mass considerations. However, an adaptation to
take these considerations into account is straightforward.

A. Ion Count Transformations

An ion count histogram describes the distribution of peak
heights throughout a collection of mass spectra. The type of
scaling we are looking for, also uses it as the input for a
transformation function that translates the original ion count
dijk in tensorD to a modified ion countd′ijk. Examples of
such histograms can be found in Fig. 5. Output ion count

d′ijk is related to input ion countdijk by a transformationT
such thatd′ijk = T (dijk). T can take many different forms,
depending on the goal in mind.

An interesting observation is that this type of histogram
manipulation is conceptually equivalent to an image en-
hancement technique called gray level transformations [2],
often employed in digital image processing. In a similar
way as with the ion counts, pixel intensities (or gray levels)
are mapped to different intensity values with the intent of
increasing contrast. In digital image processing this contrast
enhancement is focused on improving human interpretability
towards a certain purpose. In an MSI setting the contrast
modification serves to make certain types of responses more
’visible’ to the PCA decomposition. A link between digital
image processing and MSI is also mentioned in [6].

Fig. 4 shows a number of example transformation curves.
The most basic example of the family of linear transforma-
tions is the identity transformation shown as curve (a). It is a
trivial transformation in that it leaves all ion counts the same.
Another interesting family of curves is known as power-law
transformations, which typically take the form ofd′ijk =

α(dijk)β whereα and β are constants. These includenth
power transformations such as curve (b), which map a wide
range of lower ion counts to a narrower range, while higher
ion count levels are allowed to expand into a wider range of
values. The inverse happens whennth root transformations
(see curve (c)), which are also part of the power-law family,
or a logarithmic transformation are applied.T can also be
a piecewise linear function, such as the thresholding curve
(d). Another good example of this type is shown in Fig. 5
(middle), where it is applied to the case study of section
II. This type of mapping is known as a ’contrast stretching’
transformation. The lower ion counts are compressed into
a narrow ion count range close to zero, while higher ion
counts that cross a certain level are compressed together at
the high end of the range, equalizing their influence. The
ion counts in between are spread out over a wider range,
thinning that area of the histogram. In conclusion one can
state that the transformation functionT can take any form
as long as it is monotonically increasing (in order to avoid
artificially created intensity artefacts).

B. Case Study Results

As an example, we apply a contrast stretching transfor-
mation to the data set of section II (Fig. 5). It acts as a
soft thresholding filter, diminishing the influence of lower(<
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Fig. 5. Overview of the contrast stretching transformation performed on
the spinal cord data set. (left) The original histogram of all ion counts
in the data set. Given the predominating presence of low ion counts, this
graph does not show the distribution of measurements at higherion counts.
However, the entire histogram is populated up to the maximum response in
this experiment at 595 ion counts. (middle) The gray level transformation
that was applied. It pushes lower ion counts (< 100) together in narrow
range close to zero, reducing their impact on the decomposition. Higher ion
counts (> 400) are compressed into a narrow range close to the maximum
response, equalizing their importance in the decomposition.(right) The
modified histogram showing the effect (only visible in the lowion count
range) of the contrast stretching procedure.

100) ion counts, while ion counts above a certain threshold
(> 400) get grouped together and are given a more equal
weight. The chosen parameters are the result of an empirical
assessment of the input ion count histogram. The automatic
assignment of such parameters is an avenue of further
research. An evaluation of the influence of the imposed
weights for each component is given in the captions of Fig. 6
and 7. Overall, the results demonstrate a particular use of
the weighing scheme as a means of denoising mass spectral
data, without losing too much of the original information.
The parameterized simplification demonstrated by the mass
spectral signatures is an interesting example of this.

V. CONCLUSIONS

Interpretation of MSI data requires the consideration of
noise and artifacts along the spatial, the mass-over-charge,
and the peak intensity ranges. This paper focuses on the peak
intensity range and describes a method that is complementary
with measures taken along the other modes. It introduces an
extension to standard PCA-based decomposition of MSI data,
providing the researcher with a means of assigning weights
according to signal intensity. The extension is implemented
as a general ion count transformation, that can be customized
towards a particular goal, such as grouping together peaks
in a certain intensity range, attenuating low noise peaks,
thresholding, or contrast enhancement for bringing out a
particular aspect of the ion count distribution. Due to its
monotonicity requirement, the transformation preserves the
order of the peak heights and with it most of the information.
As the transformation function can be specified by the
researcher, the peak intensity weighted PCA allows for a
more complex type of questions to be posed to MSI data.

ACKNOWLEDGMENTS
RVDP is a research assistant of the IWT at the Katholieke Universiteit Leuven, Belgium. BDM is a full professor

at the Katholieke Universiteit Leuven, Belgium. EW is a fullprofessor at the Katholieke Universiteit Leuven, Belgium.
Research supported by Research Council KUL: GOA AMBioRICS, CoE EF/05/007 SymBioSys, several PhD/postdoc

& fellow grants; Flemish Government: - FWO: PhD/postdoc grants, projects G.0241.04, G.0499.04, G.0232.05,
G.0318.05, G.0553.06, G.0302.07, research communities (ICCoS, ANMMM, MLDM); - IWT: PhD Grants, GBOU-
McKnow-E, GBOU-ANA, TAD-BioScope-IT, Silicos; SBO-BioFrame; Belgian Federal Science Policy Office: IUAP
P6/25; EU-RTD: ERNSI; FP6-NoE; FP6-IP, FP6-MC-EST, FP6-STREP, ProMeta, BioMacS.

REFERENCES

[1] R. Aebersold and M. Mann, Mass spectrometry-based proteomics,
Nature, 422:6928, 2003, pp 198–207.

[2] R.C. Gonzalez and R.E. Woods,Digital Image Processing, Prentice
Hall Inc. (2nd edition), Upper Saddle River, NJ; 2002.

[3] R.M.A. Heeren, Proteome imaging: a closer look at life’s organization,
Proteomics, 5:17, 2005, pp 4316–4326.

First loading (90.5346%)

x

y

10 20 30 42

10

20

31

 
Weighted first loading (86.205%)

x

y

10 20 30 42

10

20

31

6000 8000 10000 12000
0

2000

4000

6000

First score (90.5346%)

mass/charge

6000 8000 10000 12000
0

2000

4000

6000

Weighted first score (86.205%)

mass/charge

Fig. 6. (top) Unweighted first PC. (bottom) Peak intensity weighted first
PC. By weighing down the smaller peaks we get a cleaner delineation of
the Substantia griseaand a considerable simplification of the mass spectral
signature. Particularly the top area, specifically selected by PC2 in Fig. 7, is
prevented from causing ableed-throughvia its many low ion count values.

Second loading (4.7167%)

x

y

10 20 30 42

10

20

31

 
Weighted second loading (4.1204%)

x

y

10 20 30 42

10

20

31

6000 8000 10000 12000

0

500

1000

Second score (4.7167%)

mass/charge

6000 8000 10000 12000

0

500

1000

Weighted second score (4.1204%)

mass/charge

Fig. 7. (top) Unweighted second PC. (bottom) Peak intensity weighted
second PC. Most apparent is the strong simplification of the mass spectral
signature, which in its reduced form, according to the spatial images, still
delineates the same zone quite accurately with just two of itsoriginal peaks.
The smaller peaks that were attenuated in the weighted version turn out to
influence the central area of the spinal cord.

[4] I.T. Joliffe, Principal Component Analysis, Springer-Verlag, New
York, 1986.

[5] L.A. Klerk, A. Broersen, I.W. Fletcher, R. van Liere and R.M.A.
Heeren, Extended data analysis strategies for high resolution imaging
MS: New methods to deal with extremely large image hyperspectral
datasets,Int J Mass Spectrom., 260:2–3, 2007, pp 222236.

[6] Y.C. Ling, M.T. Bernius and G.H. Morrison, SIMIPS: secondary ion
mass image processing system,J Chem Inf Comput Sci, 27:2, 1987,
pp 86–94.

[7] G. McCombie, D. Staab, M. Stoeckli and R. Knochenmuss, Spatial
and spectral correlations in MALDI mass spectrometry images by
clustering and multivariate analysis,Anal Chem., 77:19, 2005, pp
6118–6124.

[8] L.A. McDonnell and R.M.A. Heeren, Imaging mass spectrometry,
Mass Spectrom Rev, 26:4, 2007, pp 606–643.

[9] H. Meistermannet al., Biomarker discovery by imaging mass spec-
trometry: transthyretin is a biomarker for gentamicin-induced nephro-
toxicity in rat, Mol Cell Proteomics, 5:10, 2006, pp 1876–1886.

[10] M. Stoeckli, P. Chaurand, D.E. Hallahan and R.M. Caprioli, Imaging
mass spectrometry: a new technology for the analysis of protein
expression in mammalian tissues,Nat Med, 7:4, 2001, pp 493–496.

[11] B.J. Tyler, G. Rayal and D.G. Castner, Multivariate analysis strategies
for processing ToF-SIMS images of biomaterials,Biomaterials, 28:15,
2007, pp 2412–2423.

[12] R. Van de Plas, F. Ojeda, M. Dewil, L. Van Den Bosch, B. De Moor
and E. Waelkens, “Prospective Exploration of Biochemical Tissue
Composition via Imaging Mass Spectrometry Guided by Principal
Component Analysis,”in Proceedings of the Pacific Symposium on
Biocomputing 12, Maui, HI, 2007, pp. 458-469.


