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Abstract

This extended abstract reports on the development of amizatiion-based query
engine for mining spatial/biochemical data coming fromgjng mass spectrom-
etry experiments. It is shown how a high-dimensional lingaery model and a
non-negative least squares argument provide a practigabaph for answering
spatial queries. This work elaborates on the technicalrtd@p where further

biological motivation and case studies for this approacteweported.

A growing body of research [2, 4, 5] shows that adding a spdimension to the analysis of bio-
molecular interactions can provide deeper insight intdbibéogical processes under study. One of
the primary tools for studying such interactions on the guoatic, peptidomic, and metabolomic
level is mass spectrometry [1], which gives an accurate oreasent of the molecular masses
present in a given sample. However, most mass spectrontetfies disregard the exact spatial
origin of a sample within tissue. Making and mining the castioe between biomolecules such as
proteins, peptides, and metabolites and their localizgdession or distribution within organic tis-
sue is central to the work described here. This spatial nmgpgan be retrieved through a developing
technology that is known as MALBlbased imaging mass spectrometry or mass spectral imaging
(MS)) [3].

The work presented here aims to develop a method for spatéal/ing of massive MSI data. The
objective is to retrieve the molecules (or ions) that arejpeo a certain spatial area of interest in
the tissue or whose expression is tied to a particular aneébmegion. Such questions arise for ex-
ample in pathomechanisms that show location-specific hehga.g. Parkinson’s and Huntington’s
disease), in the search for anatomical region-specific dikers, in the study of local biochemical
phenomena, and with the incorporation of spatial infororainto biological models.

Imaging mass spectrometry preserves the link between mkiistue location and the biochemical
characterization of what is found there. It delivers a viewtbe spatial behavior of molecular
mass markers which explains its use in diagnostic studiebsjtaan steer further investigation by
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2MALDI or ‘matrix-assisted laser desorption ionization’ is a mass speatpmionization method that is
well suited for the study of larger biomolecules such as proteins. It isnim@ecules by firing a laser at the
sample embedded in a crystalline chemical matrix solution on the target plate.
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Figure 1: Overview of an MSI experiment on spinal cord. (ledx} A tissue section is cut using a

microtome, mounted on a target plate, and covered with aropgpte chemical matrix to enable

ionization. (mass spec) Individual mass spectra are delleftom the tissue area of interest, while
their spatial relationships are retained. (in silico) Tiaads collected into a three-mode array for
analysis.

exploiting MSI’'s high-throughput nature. Additionallyy¢ mass markers can be further identified
to known molecules using tandem mass spectrometry, egatblinincorporation of spatial aspects
into network-type studies for systems biology. Figure lvehan example of a MSI experiment
on rat spinal cord, and a more thorough explanation is aaiffrom Stoeckliet al. [5] and from
Van de Plast al. [6]. Typically, the measurements of a MSI experiment aregwal into a grid

of measurement locations or 'pixels’ covering the tissusisr, with an individual mass spectrum
connected to each pixel. The data structure can be condidsra three-mode array or tensor with
two spatial modesiy(andy) and one mass-over-charge mode/¢).

Current methods for interrogating a MSI tensor are prirgambss-centric in the sense that they
retrieve the spatial distribution of a particular ion (knoas an ion image) or of a set of masses.
The method developed here starts from a spatial questioretiieles answers in the mass domain
instead. A schematic of this approach is shown in Fig. 2.Idin the researcher to specify a tissue
area or a pattern of interest and the method will return thiecubar masses or ions whose spatial
presence best fits the spatial query. The biological destidenentioned above are tackled with
a computational framework based on a nonnegative leastessjasgument. The following linear
positive query model is adopted.

Definition 1 (Query Model) Consider a set of ion images measured from a single tissu@sec
and covering a certain mass range, collected into a MSI| detesdr. We refer to this set as to the
differentfeaturesof a MSI data set. Let thosk/ € N features be denoted as vectors of length
K € Ny, whereK denotes the number of pixels in the image, or

{om eREY,,. M
Important here is that the features are positive by consioncsince they represent ion counts.
Similarly, let the spatial query image be described by atpasivectorg = (g1, ..., qx)" € RE of
length K. Typically, a query image is binary € {0, 1} or gray level, say; € [0, 1]%. This study
describes a multivariate approach to spatial querying lithsa a least squares argument. It looks
for the most optimal (and smallest) combination of ion inwatf@t when multiplied by their mass
contribution coefficients adds up to the target image sptifn the query. The following linear
model is adopted
M
G= Y Pmten V=1, K, 2

m=1

where the coefficients = (p1,...,par)? are restricted to positivity, encoding the assumption that
the image query is a weighted average of the features, up to the residualge, ..., ex)” € RX.
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Figure 2: Overview of the spatial querying procedure. Thergis formulated in the spatial domain
as a region of interest in the tissue (drawn on the MSI measeme grid). The method returns
a solution vector in the mass domain (marked as the masschegge contribution profile). The
masses that have a nonzero contribution describe a digbribin the tissue that (to some extent)
mimics the shape and gray level topology specified in thaealatery.

This means that the query image is assumed to be a sum ofvpasgitintributions from a finite set
of molecular masses and their spatial distribution througlthe tissue. A classical approach to
approximate linear coefficients based on a set of measutsnsgio minimize the squared norm of
the residuals, or

K /M 2

1

* = arg min — D — st. ppp, >0 Vm=1,..., M. 3
i e (3 dtn-a) st ®

A few consequences make this approach most convenientdadask at hand, including

SparsenessThe solution vectop* contains often many values set to zero, indicating thatehos
features are not relevant for the query at hand. Practigaéraxents indicate even an
elevated sparseness exceedifigp. The curious fact is that this sparseness is independent
per se of any hyper-parameter.

Tractability Such nonnegative least squares problems could be solved¢@svex optimization
problem (i.e. using a quadratical programming solver), @ndd be sped up considerably
using dedicated nonnegative least squares solvers (aanpiasmost software tools). As
a consequence, one could handle queries of more than 6000efe 41/ 2-bins) and 2000
pixels in less than half an hour using a standard laptop PC.

Stability Duality theory learns us that the solution has the same effitgi as if the indices with
zero coefficients would be omitteal priori. Stability could easily be further improved
using classical regularization techniques.

The model allows for straightforward extension. One exanigph weighted formulation that allows
for don't carepixel areas in the spatial query where the expression léubleomolecules is largely
ignored. Another extension is the capability to define thatiapquery on another imaging modality
(usually with a higher spatial resolution) such as a miaspszimage of the tissue section. This
allows for domain experts to leverage their experience emtbhdalities they are more familiar with
and provides for more conclusive deliniation of anatomizales.

In biology and medicine questions regarding the biochelsigaature specific to certain tissue areas
frequently arise. The current lack of analysis methods ebésswer such questions from MSI data
prompted the development of the spatial query model. The iagar model has considerable
power and a number of interesting properties allow for fast efficient searching in vast amounts
of data. Additionally, a number of extensions to the modielaFor more complex types of spatial
gueries to be formulated as well. The method is demonstmatedal MSI data in a technical report
[7] using a sagittal section of mouse brain. A short summéigne particular case from this study,
employing a number of the extensions mentioned earliegfisotied in Fig. 3.
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Figure 3: Example of the spatial querying procedure appbeadsection of sagittal mouse brain and
described in [7]. Additionally, it shows the extensionshe basic linear model, allowing faton’t
care pixels and the capability to create a spatial query from lagrotegistered imaging modality
such as a microscopic image. Notice that the returned iomstishow up solely in the elongated
corpus callosunregion specified in the spatial query. Their presence faltve general shape of
the query area, but in addition they are shown to be presanher anatomical areas of the tissue as
well. This is a result of thelon't care pixel mask added to the query, which allows for other areas
of similar chemical composition to be drawn into the resattas well. The focus lies on matching
the gray level topology of the query for the area filtered leyniask.
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