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Abstract

This extended abstract reports on the development of an optimization-based query
engine for mining spatial/biochemical data coming from imaging mass spectrom-
etry experiments. It is shown how a high-dimensional linearquery model and a
non-negative least squares argument provide a practical approach for answering
spatial queries. This work elaborates on the technical report [7]1 where further
biological motivation and case studies for this approach were reported.

A growing body of research [2, 4, 5] shows that adding a spatial dimension to the analysis of bio-
molecular interactions can provide deeper insight into thebiological processes under study. One of
the primary tools for studying such interactions on the proteomic, peptidomic, and metabolomic
level is mass spectrometry [1], which gives an accurate measurement of the molecular masses
present in a given sample. However, most mass spectrometry studies disregard the exact spatial
origin of a sample within tissue. Making and mining the connection between biomolecules such as
proteins, peptides, and metabolites and their localized expression or distribution within organic tis-
sue is central to the work described here. This spatial mapping can be retrieved through a developing
technology that is known as MALDI2-based imaging mass spectrometry or mass spectral imaging
(MSI) [3].

The work presented here aims to develop a method for spatial querying of massive MSI data. The
objective is to retrieve the molecules (or ions) that are specific to a certain spatial area of interest in
the tissue or whose expression is tied to a particular anatomical region. Such questions arise for ex-
ample in pathomechanisms that show location-specific behavior (e.g. Parkinson’s and Huntington’s
disease), in the search for anatomical region-specific biomarkers, in the study of local biochemical
phenomena, and with the incorporation of spatial information into biological models.

Imaging mass spectrometry preserves the link between a spatial tissue location and the biochemical
characterization of what is found there. It delivers a view on the spatial behavior of molecular
mass markers which explains its use in diagnostic studies, and it can steer further investigation by

1available atftp://ftp.esat.kuleuven.be/pub/SISTA/rvdplas/reports/
TechReport Raf VandePlas msi spatial query.pdf

2MALDI or ‘matrix-assisted laser desorption ionization’ is a mass spectrometry ionization method that is
well suited for the study of larger biomolecules such as proteins. It ionizes molecules by firing a laser at the
sample embedded in a crystalline chemical matrix solution on the target plate.
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Figure 1: Overview of an MSI experiment on spinal cord. (wet-lab) A tissue section is cut using a
microtome, mounted on a target plate, and covered with an appropriate chemical matrix to enable
ionization. (mass spec) Individual mass spectra are collected from the tissue area of interest, while
their spatial relationships are retained. (in silico) The data is collected into a three-mode array for
analysis.

exploiting MSI’s high-throughput nature. Additionally, the mass markers can be further identified
to known molecules using tandem mass spectrometry, enabling the incorporation of spatial aspects
into network-type studies for systems biology. Figure 1 shows an example of a MSI experiment
on rat spinal cord, and a more thorough explanation is available from Stoeckliet al. [5] and from
Van de Plaset al. [6]. Typically, the measurements of a MSI experiment are captured into a grid
of measurement locations or ’pixels’ covering the tissue section, with an individual mass spectrum
connected to each pixel. The data structure can be considered as a three-mode array or tensor with
two spatial modes (x andy) and one mass-over-charge mode (m/z).

Current methods for interrogating a MSI tensor are primarily mass-centric in the sense that they
retrieve the spatial distribution of a particular ion (known as an ion image) or of a set of masses.
The method developed here starts from a spatial question andretrieves answers in the mass domain
instead. A schematic of this approach is shown in Fig. 2. It allows the researcher to specify a tissue
area or a pattern of interest and the method will return the molecular masses or ions whose spatial
presence best fits the spatial query. The biological desiderata mentioned above are tackled with
a computational framework based on a nonnegative least squares argument. The following linear
positive query model is adopted.

Definition 1 (Query Model) Consider a set of ion images measured from a single tissue section
and covering a certain mass range, collected into a MSI data tensor. We refer to this set as to the
different featuresof a MSI data set. Let thoseM ∈ N features be denoted as vectors of length
K ∈ N0, whereK denotes the number of pixels in the image, or

{

φm ∈ R
K
+

}M

m=1
. (1)

Important here is that the features are positive by construction since they represent ion counts.
Similarly, let the spatial query image be described by a positive vectorq = (q1, . . . , qK)T ∈ R

K
+ of

lengthK. Typically, a query image is binaryq ∈ {0, 1}K or gray level, sayq ∈ [0, 1]K . This study
describes a multivariate approach to spatial querying based on a least squares argument. It looks
for the most optimal (and smallest) combination of ion images that when multiplied by their mass
contribution coefficients adds up to the target image specified in the query. The following linear
model is adopted

qk =

M
∑

m=1

φm
k pm + ǫk, ∀k = 1, . . . ,K, (2)

where the coefficientsp = (p1, . . . , pM )T are restricted to positivity, encoding the assumption that
the image queryq is a weighted average of the features, up to the residualsǫ = (ǫ1, . . . , ǫK)T ∈ R

K .
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Figure 2: Overview of the spatial querying procedure. The query is formulated in the spatial domain
as a region of interest in the tissue (drawn on the MSI measurement grid). The method returns
a solution vector in the mass domain (marked as the mass-over-charge contribution profile). The
masses that have a nonzero contribution describe a distribution in the tissue that (to some extent)
mimics the shape and gray level topology specified in the spatial query.

This means that the query image is assumed to be a sum of positive contributions from a finite set
of molecular masses and their spatial distribution throughout the tissue. A classical approach to
approximate linear coefficients based on a set of measurements is to minimize the squared norm of
the residuals, or

p∗ = arg min
p

1

K

K
∑

k=1

(

M
∑

m=1

φm
k pm − qk

)2

s.t. pm ≥ 0 ∀m = 1, . . . ,M. (3)

A few consequences make this approach most convenient for the task at hand, including

SparsenessThe solution vectorp∗ contains often many values set to zero, indicating that those
features are not relevant for the query at hand. Practical experiments indicate even an
elevated sparseness exceeding90%. The curious fact is that this sparseness is independent
per se of any hyper-parameter.

Tractability Such nonnegative least squares problems could be solved as aconvex optimization
problem (i.e. using a quadratical programming solver), andcould be sped up considerably
using dedicated nonnegative least squares solvers (as present in most software tools). As
a consequence, one could handle queries of more than 6000 features (m/z-bins) and 2000
pixels in less than half an hour using a standard laptop PC.

Stability Duality theory learns us that the solution has the same efficiency as if the indices with
zero coefficients would be omitteda priori. Stability could easily be further improved
using classical regularization techniques.

The model allows for straightforward extension. One example is a weighted formulation that allows
for don’t carepixel areas in the spatial query where the expression level of the molecules is largely
ignored. Another extension is the capability to define the spatial query on another imaging modality
(usually with a higher spatial resolution) such as a microscopic image of the tissue section. This
allows for domain experts to leverage their experience on the modalities they are more familiar with
and provides for more conclusive deliniation of anatomicalzones.

In biology and medicine questions regarding the biochemical signature specific to certain tissue areas
frequently arise. The current lack of analysis methods ableto answer such questions from MSI data
prompted the development of the spatial query model. The basic linear model has considerable
power and a number of interesting properties allow for fast and efficient searching in vast amounts
of data. Additionally, a number of extensions to the model allow for more complex types of spatial
queries to be formulated as well. The method is demonstratedon real MSI data in a technical report
[7] using a sagittal section of mouse brain. A short summary of one particular case from this study,
employing a number of the extensions mentioned earlier, is depicted in Fig. 3.
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Figure 3: Example of the spatial querying procedure appliedto a section of sagittal mouse brain and
described in [7]. Additionally, it shows the extensions to the basic linear model, allowing fordon’t
care pixels and the capability to create a spatial query from another registered imaging modality
such as a microscopic image. Notice that the returned ions donot show up solely in the elongated
corpus callosumregion specified in the spatial query. Their presence follows the general shape of
the query area, but in addition they are shown to be present inother anatomical areas of the tissue as
well. This is a result of thedon’t carepixel mask added to the query, which allows for other areas
of similar chemical composition to be drawn into the result set as well. The focus lies on matching
the gray level topology of the query for the area filtered by the mask.

Acknowledgements
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