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Abstract—Overdetermined systems of polynomial equations
are the natural extension of overdetermined systems of linear
equations. While the latter are solved systematically through well-
established numerical linear algebra techniques, we contribute
to the development of tensor-based tools to handle the more
general polynomial case, specifically for applications in signal
processing and related areas. The method involves computing
the nullspace of the so-called Macaulay matrix and determining
the Canonical Polyadic Decomposition (CPD) of a third-order
tensor. The practical utility of this method is demonstrated for
a blind multi-source localization problem.

Index Terms—Macaulay matrix, polynomial system, root solv-
ing, tensor

I. INTRODUCTION

Solving systems of linear equations is an essential practice
in many scientific disciplines. A natural extension of linear
equations is polynomial equations, which unsurprisingly are
also ubiquitous. Multivariate polynomials form an essential
modelling tool in computational biology, chemistry, robotics,
optimization, economics, and statistics (see, e.g., [1]–[6]).

Methods for solving sets of (multivariate) polynomials have
been studied extensively in the field of computational algebraic
geometry [7], [8]. These methods are roughly divided into two
categories: (i) homotopy continuation methods, which retrieve
the solution of a desired system by continuous deformation of
a starting system with known roots (see, e.g., [9], [10]), and,
(ii) algebraic methods, which reduce the root-solving problem
to an eigenvalue problem by either symbolic (e.g., Gröbner
basis) and/or numerical means (see, e.g., [11]–[14])

So far, the literature has primarily focused on the noise-
less square case, where the coefficients of the polynomials
are known with full precision and the number of equations
equals the number of unknowns. On the other hand, a critical
component of engineering applications is the estimation of
system parameters from overcomplete sets of noisy equations.
For the linear case, numerical linear algebra provides effective
methods and well-established theory [15]. Analogous methods
to treat the more general polynomial case are, however, far

This work was funded by (1) the Flemish Government: this research
received funding under the AI Research Program. Lieven De Lathauwer,
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fewer [16], and relatively underdeveloped. Nonetheless, the
transition from systems of linear to polynomial equations fits
well in the larger evolution from informed (matrix-based) to
blind (tensor-based) signal separation [17].

This paper contributes to the development of tensor-based
tools to solve overdetermined systems of noisy polynomial
equations. We show that, while overdetermined linear systems
are effectively handled using matrix techniques, their poly-
nomial counterparts can be solved using tensor techniques.
The method involves computing the nullspace of the so-called
Macaulay matrix from resultant theory [18] and exploits the
shift-invariant structure in the nullspace to formulate the root
recovery as a multidimensional harmonic retrieval (MHR)
problem. Critical to mitigating noise is expressing the MHR
problem as a canonical polyadic decomposition (CPD) of a
third-order tensor. This makes the estimation more robust by
taking into account all slices of the tensor at once.

The paper builds on the foundations laid in our earlier
work [19], [20] but capitalizes on sets of equations that
are overdetermined and solved in a total-least-squares sense.
Numerical experiments are conducted to highlight the relevant
properties. Furthermore, the method is applied to an interesting
case study in which the positions of two transmitters are
estimated from the power received at an arbitrary configuration
of antennas in their vicinity. Apart from its technical value, this
paper is meant to have some tutorial value for researchers in
signal processing who are new to sets of polynomial equations.

The remainder of this paper is outlined as follows. Section II
introduces systems of polynomial equations with a focus on
the differences with linear systems. The Macaulay tensor-
based method is explained in Section III. The numerical exper-
iments (including the case study) are covered in Section IV.
Conclusions are provided in Section V.

Notation

We write scalars, vectors, matrices and tensors as lower-
case, bold lower-case, bold capital and calligraphic letters
respectively, i.e., a, a, A, A respectively. Our N unknown
variables are denoted as w, x, y and z or x1, x2, . . ., xN . The
homogenization variable is denoted t (see Section II-B). The
polynomial coefficients are always denoted c. We write the
third-order canonical polyadic decomposition (CPD) of tensor



A = JU1,U2,U3K =
∑R

r=1 U1(:, r)⊗U2(:, r)⊗U3(:, r) with
⊗ symbolizing the outer product. The binomial coefficient is
denoted

(
n
k

)
= n!

k!(n−k)! .

II. SYSTEMS OF POLYNOMIAL EQUATIONS

In this section, we introduce some relevant notions on sys-
tems of polynomial equations. Section II-A and Section II-B
introduce general definitions and homogenized systems, re-
spectively. The latter is required to characterize the number of
roots of a square system, explained in Section II-C.

A. Polynomial equations
A monomial in N variables is written as xα1

1 xα2
2 . . . xαN

N

or in vectorized notation xα with x =
[
x1 . . . xN

]⊤
the

unknown variables and α =
[
α1 . . . αN

]⊤
the nonnegative

integer powers. Its degree d refers to the total degree, i.e.
d =

∑N
n=1 αn. Throughout this paper, monomials are ordered

from smallest to largest degree, and, in case of a tie, sorted
lexicographically on α. A Vandermonde vector vd stores all
monomials up to degree d in the aforementioned ordering.

A polynomial pd(x) is a linear combination of monomials
with coefficients cα. Its degree is defined as the largest degree
of any of its monomials with nonzero coefficients.
Σd denotes a system of S polynomials of degree (at

most) d. This will usually be written as Cdvd = 0,
where the (s, j)th entry of matrix Cd contains the co-
efficient associated with the jth monomial in vd of the
sth polynomial in the system. A linear system, classically
Ax = b, is thus denoted as Σ1 : C1v1 = 0 instead, where
C1 =

[
−b A

]
and v1 =

[
1 x⊤]⊤. A quadratic

system is denoted as Σ2 : C2v2 = 0 with v2 =[
v⊤
1 x2

1 . . . x1xN x2
2 . . . x2xN . . . x2

N

]⊤
.

B. Homogenization and roots at infinity
The method to be discussed in Section III computes the

roots of homogeneous systems, i.e., where all monomials
have the exact same degree. Therefore, to solve a system, its
equations first need to be homogenized.

The homogenization is done by adding a new variable t
and multiplying all monomials by a power of t such that
all monomials have the same degree. This yields the polyno-
mial ph,d(t, x1, . . . , xN ) = tdpd(

x1

t , . . . ,
xN

t ). Similarly, the
homogenized Vandermonde vector is denoted vh,d.

Any root (t, x1, . . . , xN ) of the homogenized system Σh
d

is scale invariant, i.e., (βt, βx1, . . . , βxN ) for any β is also a
root. To counteract this, we normalize the roots through scaling
such that t = 1, which yields the affine roots. Some roots of
the homogenized system cannot be normalized this way as
t = 0; these are so-called roots at infinity.

The affine roots correspond with the original roots of
systems, but the roots at infinity are “artificial roots” that
are introduced by the homogenization. The system Σ1 :
{x+ y = 1; x+ y = 2} for example searches for the cross-
ing of two parallel lines. It has no affine roots, but its
homogenized system has a root at infinity instead, namely
(t, x, y) = (0, 1,−1). This can be interpreted geometrically
as lines crossing at infinity in direction (1,-1).

C. Number of solutions: linear vs. polynomial systems

Let us assume systems have a finite number of roots
throughout this section.

Square systems of linear equations will always have exactly
L = 1 root, including roots at infinity. If the system is
overdetermined (more equations than variables) it will have at
most one root. For bivariate linear systems, the two equations
correspond to straight lines and will intersect at exactly one
point, unless the lines are parallel, implying a root at infinity.

Bézout’s theorem indicates that a square system of polyno-
mial equations (with a finite number of roots) will have exactly
L =

∏N
n=1 dn (potentially complex) roots with N the number

of variables and dn the degree of polynomial n, counting
multiplicity and roots at infinity (see, e.g., [21, Theorem 7.7]).
In engineering applications, there are often only a few relevant
solutions (for example equilibria), but many more equations
than in a square system. The overdeterminedness may, besides
mitigating noise, rule out some candidate solutions that are
physically meaningless, allowing L <

∏N
n=1 dn. (In the use-

case of Section IV-B for instance, adding a fifth equation
reduces the number of affine roots from 24 to 2, the expected
number of roots.) Figure 1 shows an example of such an
overdetermined system (S = 3, N = 2, d = 2) with only
one root, while any 2 equations always yield dN = 4 roots.

−2 −1 0 1 2
−2

−1

0

1

2

−2 −1 0 1 2

Fig. 1. Zero lines of the polynomials of Σ
(a)
2 in Eq. (1), see Section III-B.

Left without noise, right with a signal-to-noise ratio (SNR) on the coefficients
of 20dB. The noise makes the root only approximate.

III. MACAULAY TENSOR-BASED ROOT SOLVING

We introduce a methodology analogous to total least squares
(TLS) for linear systems that can be utilized to solve polyno-
mial systems with a finite number of roots. In the Macaulay
tensor-based method, the coefficient matrix CdΣ

is extended
to a Macaulay matrix MdM

(see Section III-B) of sufficient
size (see Section III-C). From its nullspace, the roots are then
extracted by solving an MHR problem (see Section III-D)
through a CPD (see Section III-E). If needed, the roots at
infinity can be removed before the MHR (see Section III-F).
The steps are summarized in Algorithm 1.

A. Generalizing the total least squares method

TLS solves a linear system Σ1 : C1v1 = 0 with a vector
in the nullspace of C1 [22]. Similarly, we would like to solve
a polynomial system ΣdΣ : CdΣvdΣ = 0 via the nullspace
of CdΣ

. The nullspace estimation linearizes the problem; it



forgoes the monomial structure in vdΣ
. To ensure that this

nullspace is spanned by the Vandermonde vectors generated
by the roots, i.e., to avoid extra vectors in the nullspace, we
need to add more equations, which is why the matrix CdΣ

is
extended to a Macaulay matrix MdM

of sufficient size.

B. The Macaulay matrix
The Macaulay matrix MdM

of degree dM of a system ΣdΣ

of degree dΣ of S polynomials ps(x), for s = 1, . . . , S, has
in its rows the coefficients of all polynomials xαps of at most
degree dM [18]. The coefficients in column i correspond to
the coefficients of the ith monomial of vdM

. The roots of the
system ΣdΣ

satisfy MdM
vdM

= 0. Notice that CdΣ equals
MdΣ and that Md is a subblock of Md+1.

As an example let us look at the system shown on Fig. 1,

Σ
(a)
2 :

−3− x−2y+4x2+6xy+7y2 = 0
−2− x+ y+3x2−7xy+5y2 = 0
1+7x+ y−8x2+3xy+ y2 = 0

. (1)

For dM = 3 (and not for dM = 2), we find that v3

evaluated at the only solution (x(1) =
[
1 0

]⊤
) is the

only vector z (up to scaling) satisfying M
(a)
3 z = 0 with

v3 =
[
1 x y x2 xy y2 x3 x2y xy2 y3

]⊤ and

M
(a)
3 =



−3 −1 −2 4 6 7 0 0 0 0
−2 −1 1 3 −7 5 0 0 0 0
1 7 1 −8 3 1 0 0 0 0
0 −3 0 −1 −2 0 4 6 7 0
0 −2 0 −1 1 0 3 −7 5 0
0 1 0 7 1 0 −8 3 1 0
0 0 −3 0 −1 −2 0 4 6 7
0 0 −2 0 −1 1 0 3 −7 5
0 0 1 0 7 1 0 −8 3 1


.

C. Degree of regularity
Starting at some degree d∗M, the nullity of the Macaulay

matrix stabilizes if the associated system has a finite number of
roots. This d∗M is the degree of regularity, the lowest degree for
which the nullspace is spanned by only vectors corresponding
with roots. An upper bound on the degree of regularity d∗M
for a square system with S = N polynomials of degree
d1, . . . , dN respectively is given by d∗M ≤

∑N
n=1 dn −N [7,

Section 3.4]. For overdetermined systems (S > N ), the degree
of regularity will typically be lower than that of a square
system with N of its S equations, but may exceptionally be
slightly higher, even above the bound (see, e.g., system Σ

(a)
2

from Eq. (1)).

D. Recovery of roots from the nullspace
For simplicity of exposition, assume that all roots of Σd are

distinct. For the more general case, see [20].
Once the Macaulay matrix is formed of degree dM ≥ d∗M,

the roots can be extracted from its nullspace NdM
. This

amounts to an MHR problem [23], which we will write as

NdM
= Vh,dM

G (2)

with Vh,dM
[:, l] = v

(l)
h,dM

(the homogenized Vandermonde
vector vh,dM

evaluated in the lth root) and G an a priori
unknown square invertible mixing matrix.

One way of solving this, exploiting the structure in VdM
,

is to require

StVh,dM
= Vh,dM−1Dt, (3)

SxnVh,dM
= Vh,dM−1Dxn , (4)

for n = 1, . . . , N ,where Sxn
(St) selects all rows of Vh,dM

corresponding with monomials where xn (t) is raised to the
power one or higher and Dxn (Dt) is a diagonal matrix with[
xn

(1) . . . xn
(L)

]
(the nth coordinate of each of the L

solutions) on its diagonal. For a quadratic bivariate system
with L = 4 roots and dM = 2, Eq. (4) for x becomes

0 0 0
1 0 0
0 0 0
0 1 0
0 0 1
0 0 0



⊤


(
t(1)

)2 (
t(2)

)2 (
t(3)

)2 (
t(4)

)2
t(1)x(1) t(2)x(2) t(3)x(3) t(4)x(4)

t(1)y(1) t(2)y(2) t(3)y(3) t(4)y(4)(
x(1)

)2 (
x(2)

)2 (
x(3)

)2 (
x(4)

)2
x(1)y(1) x(2)y(2) x(3)y(3) x(4)y(4)(
y(1)

)2 (
y(2)

)2 (
y(3)

)2 (
y(4)

)2


=

t(1) t(2) t(3) t(4)

x(1) x(2) x(3) x(4)

y(1) y(2) y(3) y(4)



x(1) 0 0 0
0 x(2) 0 0
0 0 x(3) 0
0 0 0 x(4)

 . (5)

If we now combine Eq. (2) with Eqs. (3) and (4), and name
Cxn

= Sxn
NdM

, we obtain

Ct = Vh,dM−1DtG, (6)
Cxn

= Vh,dM−1Dxn
G, (7)

with only matrices Ct,Cx1 , . . . ,CxN
known. This is a joint

diagonalization problem. In tensor terms, we search for a CPD
of tensor C with slices Ct,Cx1

, . . . ,CxN
[19], namely

C = JVh,dM−1,G,XK with X =


t(1) . . . t(L)

x
(1)
1 . . . x

(L)
1

...
. . .

...
x
(1)
N . . . x

(L)
N

 . (8)

The rank of the CPD is thus equal to the number of roots.
Except for a few rare cases, this CPD is expected to be
essentially unique (see, e.g., [19] for technical details).

E. Computing the CPD

From an algebraic perspective, two slices of tensor C suffice,
allowing one to solve the CPD problem with a general-
ized eigenvalue decomposition (GEVD). However, taking into
account the whole tensor generally yields better numerical
results, especially in the presence of noise. To this end, the
GEVD can be replaced by a generalized eigenspace decom-
position (GESD) [24], which takes into account more slices
when eigenvalues are not well separated. Using optimization in
a second step, more specifically for instance non-linear least
squares (NLS) [25], can significantly further improve these
results. Both of these improvements come at a computational
cost, which is often negligible compared to the cost of com-
puting the nullspace of the Macaulay matrix.



F. Removing roots at infinity
Roots at infinity are an artefact of the homogenisation pro-

cess and are irrelevant in many signal processing applications.
There can even be an infinite amount of roots at infinity,
prohibiting any root extraction, for instance in the use case
of Section IV-B. Notice that the homogenized Vandermonde
vector vh,dM

corresponding to a root at infinity of multiplicity
ξ will have nonzero elements only in its entries corresponding
with monomials of degree at least dM−ξ+1. By computing
the nullspace NdM

of degree dM, and keeping the rows
corresponding with degree d��∞ = dM − ξ at most, we will
be left with a matrix spanned only by vd��∞ corresponding
with the affine roots [13].

Algorithm 1 Macaulay-based solution of polynomial systems.
Input a system Σd which has a finite number of roots.
Output matrix X which contains the roots of ΣdΣ .

1: Create the Macaulay matrix MdM
associated with ΣdΣ

of
sufficiently large degree dM.

2: Compute NdM
= null(MdM

).
3: Optional: remove roots at infinity.
4: Form C by determining and stacking Ct,Cx1 , . . . ,CxN

.
5: Compute the CPD of C = JVdM−1,G,XK.

G. Computational complexity
The size of the Macaulay matrix is R × C with R =

S
(
N+dM−dΣ−1

N−1

)
and C =

(
N+dM−1

N−1

)
. Computing the null

space in step 2 of Algorithm 1 takes O(RC2) flops with a
standard SVD solver. Computing the CPD (with any method)
in step 5 is preceded by a standard orthogonal compression to
a L×L× (N +1) tensor, requiring O(N2L2C) flops, which
is the largest cost of this step (if the system has few roots, i.e.,
L is small). The other steps of Algorithm 1 are negligible in
comparison, making step 2 typically the most expensive. The
complexity of step 2 could be further improved with better
adapted SVD solvers and taking advantage of the structure
(see, e.g., [26] for promising initial results).

IV. EXPERIMENTS

In this section, the effectiveness of the Macaulay tensor-
based method is shown, especially its leveraging of overde-
terminedness to mitigate noise. First, Section IV-A shows
a synthetic problem to get a grasp on these problems and
compare solution methods and then Section IV-B expands to
a practical use case: multi-source localization in the near field.

A. Synthetic problem
To test the method, square bivariate cubic systems are

generated with random standard normal complex coefficients.
The systems are expanded to S equations by adding random
standard normal complex linear combinations of the first two
polynomials. Scaled random normal noise is added to obtain
a fixed signal-to-noise ratio (SNR). The error is measured as
the Frobenius norm between the exact and obtained roots.
The exact roots are obtained by solving the noiseless problem.
Results are shown in Fig. 2.
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Fig. 2. On the left, we see that more equations yield lower errors, similar
to linear systems. On the right, we see that each methodological improve-
ment suggested in Section III-E results in a lower error. On the left side,
GESD+NLS was used as a method, and on the right side S = 8. Data
points are the median normalized Frobenius error on roots over 200 randomly
generated problems for different numbers of equations S (left) and different
methods (right) at different noise levels (given as SNR in dB).

B. Case study: multi-source localization in the near-field

Two users are transmitting signals to S surrounding anten-
nas as shown in Fig. 3. Using the Friis transmission equation,

Fig. 3. Graphical depiction of the problem in Section IV-B. We see two
source signals retrieved by S = 5 antennas in the near field.

the power measured at the antennas can be characterized as

Pr,i =
Ar,iAt,1

R2
r,i;t,1λ

2
Pt,1 +

Ar,iAt,2

R2
r,i;t,2λ

2
Pt,2, (9)

where Pr,i is the power received by antenna i, Pt,j is the
power transmitted by user j, Ar,i and At,j are the effective
aperture area of the antennas of receiver i and transmitter j,
respectively, λ is the propagation wavelength and Rr,i;t,j is
the distance between receiver i and transmitter j. Assume that
all transmission is isotropic, i.e., Ar,i = At,j = 1 for all i and
j and that Pt,1

λ2 =
Pt,2

λ2 = b, a known constant. If these are
not identical, the problem becomes easier as the asymmetry
ensures that there is only one solution. This yields the equation

Pr,i =
b

R2
r,i;t,1

+
b

R2
r,i;t,2

. (10)

Assuming this problem is in 2D, we write the distance based
on the x and y coordinate of the transmitters and receivers as
R2

r,i;t,j = (xr,i−xt,j)
2+(yr,i−yt,j)

2. If xr,i, yr,i and Pr,i are
known for all i, one can determine the position of the users.
Each antenna yields a polynomial equation of degree dΣ = 4
and in N = 4 unknowns (xt,1, yt,1, xt,2 and yt,2) of the type

R2
r,i;t,2R

2
r,i;t,1Pr,i = bR2

r,i;t,2 + bR2
r,i;t,1. (11)

One issue is that there is an infinite number of roots at
infinity, namely all points satisfying (x2

t,1+y2t,1)(x
2
t,2+y2t,2) =



0 and t = 0, irrespective of the number of antennas S. (This
equation is found by homogenizing the equations and setting
the homogenization variable t to zero.) We thus need optional
step 3 of truncating the nullspace, see Section III-F.

The position of both users and all S antennas is generated
uniformly random between [0,1]. Noise is then added to the
power received at each antenna as Pr,i,noisy = (1+ϵr,i)Pr,i,exact
with ϵr,i standard normal noise with standard deviation chosen
to obtain the desired SNR. Results are shown in Fig. 4.
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Fig. 4. The position of the users can effectively be estimated from the
antennas. More antennas yield better accuracy, as expected. Data points are
the normalized median Frobenius error on the coordinates of both users over
200 randomly generated problems for different numbers of antennas S and
different levels of noise (given as SNR in dB).

As we have N = 4 unknowns, we need at least S = 4
equations. From our observations, this leads to 24 affine roots,
meaning the positions cannot be determined uniquely. By
adding an equation for a fifth receiver antenna, the system
becomes overdetermined, having only the two physically-
relevant affine roots (due to symmetry as both users are inter-
changeable). Adding even more equations (or thus antennas)
increases the accuracy in the presence of noise.

The hyperparameters were determined from a few tests.
The Macaulay matrix M was formed of degree dM = 8.
Afterwards, its nullspace N was computed with a fixed number
of columns, namely 186 (194 for S = 5, 190 for S = 6,
186 otherwise). It was noticed that the roots at infinity had at
most multiplicity ξ = 4, meaning that the nullspace had to be
truncated to degree d��∞ = 4. After a rank-2 compression, two
vectors were used to form the tensor from which the L = 2
roots were obtained.

V. CONCLUSIONS

The Macaulay tensor-based method forms a powerful tool
for the solution of systems of polynomial equations in practi-
cal engineering problems. It leverages overdeterminedness to
mitigate the impact of noise. A relevant use case was studied
in which this method allowed the retrieval of two transmitter
locations based solely on the power received at five or more
antennas.

Future work will be geared towards the development of
more systematic approaches for determining correct hyperpa-
rameters, namely the nullity, the degree of regularity and the
associated degree with only affine roots. The method’s time
and memory complexity can still be improved by exploiting
the structure of the Macaulay matrix in the nullspace compu-
tation; see, e.g., [26] for promising initial results.
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