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ABSTRACT
Motivation: Gibbs sampling has become a method of
choice for the discovery of noisy patterns, known as motifs,
in DNA and protein sequences. Because handling noise
in microarray data presents similar challenges, we have
adapted this strategy to the biclustering of discretized
microarray data.
Results: In contrast with standard clustering that reveals
genes that behave similarly over all the conditions, biclus-
tering groups genes over only a subset of conditions for
which those genes have a sharp probability distribution.
We have opted for a simple probabilistic model of the
biclusters because it has the key advantage of providing
a transparent probabilistic interpretation of the biclusters
in the form of an easily interpretable fingerprint. Further-
more, Gibbs sampling does not suffer from the problem
of local minima that often characterizes Expectation–
Maximization. We demonstrate the effectiveness of our
approach on two synthetic data sets as well as a data set
from leukemia patients.
Contact: qizheng.sheng@esat.kuleuven.ac.be

INTRODUCTION
The ability of microarrays to monitor transcriptional
behavior over a whole genome under different conditions
is a major attraction for biologists. Clustering techniques,
which discover groups of genes that share similar tran-
scriptional behavior over the conditions in a microarray
experiment, play a big role in microarray data analysis.
Standard clustering methods, such as hierarchical clus-
tering, K-means, or self-organizing maps, all assume
that genes in a cluster behave similarly over all the
conditions presented in a microarray experiment. Under
this assumption, standard clustering methods produce
reliable results for microarray experiments performed on
homogeneous conditions. However, when the conditions
of a microarray experiment form a heterogeneous com-
pendium, this assumption is no longer appropriate. In this
case, biclustering algorithms are preferable, because they
can detect those relevant conditions for which the relation
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between the genes of a potential group exists. Some of the
existing biclustering algorithms are based on the idea to
perform standard clustering algorithms iteratively on both
genes and conditions (Getz et al., 2000; Busygin et al.,
2002). Other recent biclustering approaches (Lazzeroni
and Owen, 2000; Cheng and Church, 2000; Segal et al.,
2001; Ben-Dor et al., 2001; Tanay et al., 2002) rely on a
variety of optimization procedures.

To tackle the problem in the Bayesian framework,
we present a biclustering strategy based on a simple
frequency model for the expression pattern of a bicluster
and on Gibbs sampling for parameter estimation. Gibbs
sampling has become a method of choice in the discovery
of statistically overrepresented subsequences, known as
motifs, in DNA and protein sequences data thanks to
its high sensitivity (Lawrence et al., 1993; Liu et al.,
2000; Thijs et al., 2002). Because finding similar gene
behavior across a subset of conditions once the microarray
data is discretized resembles the problem of finding
subsequences sharing similar alphabetic expressions in
sequence data, we have adapted the Gibbs sampling
strategy to the biclustering of discretized microarray data.
Our approach not only unveils genes and conditions of a
bicluster, but also represents the pattern of a bicluster as a
probabilistic model described by the posterior frequency
of every discretized expression level discovered under
each condition of the bicluster. This description provides
a transparent interpretation of the bicluster. In addition,
the probabilistic model can be exploited as an easily
interpretable fingerprint of the genes of the bicluster
and be applied in predicting potentially related genes
by scanning the candidate genes with the fingerprint.
Moreover, the choice of Gibbs sampling avoids the
problems of local minima that often characterizes the
closely related strategy of Expectation-Maximization.

Although so far we have only introduced our approach
as a way to classify genes that share similar behaviors
over a subset of conditions, it is easy to understand that
the method can also be used to discover biclusters in the
other orientation of the microarray data. We will actually
demonstrate our method on grouping patients (i.e. con-
ditions) who exhibit similar expression behavior over a
subset of genes. As a matter of fact, our Gibbs sampling

ii196 Bioinformatics 19(Suppl. 2) c© Oxford University Press 2003; all rights reserved.



Biclustering microarray data by Gibbs sampling

strategy applies to the biclustering of discrete data in gen-
eral and not only from microarray experiments. However,
for the clarity of the presentation, when developing our
method, we will continue to assume the gene-condition
orientation of a microarray data set introduced at the be-
ginning of the article.

PROBABILISTIC MODEL OF A BICLUSTER
Consider a microarray data set that contains n genes and
m conditions and assume for the moment that a single
bicluster is present in the data. We introduce two vectors

g = [
g1 g2 . . . gn

]T

and c = [
c1 c2 . . . cm

]T
,

whose elements gi (for i = 1, 2, . . . , n) and c j (for j =
1, 2, . . . , m) are Bernoulli random variables indicating
respectively whether the i th gene and the j th condition
belong to the bicluster. Hereafter we refer to these vectors
as the label vectors and to the Bernoulli random variables
that they contain as the labels. (For example, these labels
are visually depicted by the outer bars in Fig. 2a).

As mentioned before, we only consider discretized mi-
croarray data. In this case, we use multinomial distribu-
tions to model the data. Let us assume that the data under
study is preprocessed in such a way that the background
data (the part of the data that does not belong to the bi-
cluster) is generated by one single multinomial distribu-
tion characterized by the following parameters:

φ = [
ϕ1 ϕ2 · · · ϕl

]T
,

0 ≤ ϕi ≤ 1,
∑

ϕi = 1, for i = 1, . . . , l
(1)

where l is the total number of bins used for discretization.
The bicluster that we seek is a subset of the data where
the genes behave similarly under each condition. It is
important to note this asymmetric nature of the underlying
probabilistic model. That is, we ask that the expression
level be consistent across the genes of the bicluster
for each of the selected conditions, but this expression
level maybe different for each condition, (an example
of such a data pattern can be seen in Fig. 2d). To put
this mathematically, we use a multinomial distribution to
model the data under every condition in a bicluster, and we
also assume that the multinomial distributions for different
conditions of a bicluster are mutually independent. We
refer to this model of the bicluster as the pattern �, a
matrix where each column �. j contains the parameters for

the j th independent multinomial distribution

� =




θ1,1 · · · θ1, j · · · θ1,w

θ2,1 · · · θ2, j · · · θ2,w

...
...

...

θl,1 · · · θl, j · · · θl,w




0 ≤ θi, j ≤ 1,
∑

i

θi, j = 1

for i = 1, . . . , l; j = 1, . . . , w

(2)

where w denotes the total number of conditions in the
bicluster.

Working with Gibbs sampling will set our model in the
Bayesian framework, which means that our probabilistic
model is accompanied by prior distributions for its
different parameters. According to the definition, we use
Bernoulli distributions with parameters λg and λc as the
prior distribution respectively for the row labels g and the
column labels c. Further, we use conjugate priors for φ,
�, and the λs. That is, φ, �, and the λs respectively follow
a Dirichlet distribution, a multi-Dirichlet distribution and
Beta distributions.

φ ∼ Dirichlet(α),

�. j ∼ Dirichlet(β j ), for j = 1, 2, . . . , w

λg ∼ Beta(ξg) and λc ∼ Beta(ξc)

(3)

where α and β j are parameter vectors of the Dirichlet
distributions, and ξg and ξc are the parameter vectors
for the corresponding Beta distributions. In a practical
sense, α, β j , and the ξs can also be viewed as vectors
of pseudocounts, which represent our prior knowledge of
the background and the possible pattern, and our prior
knowledge on the possibility that a label equals 1.

Multiple biclusters
Our probabilistic model considers only the presence of a
single bicluster in the data set, which is not biologically
realistic. Several methods can be used to enable the
detection of multiple biclusters. We choose (in the case of
the gene-condition orientation) to mask the genes selected
for the found biclusters and rerun the algorithm on the rest
of the data. By masking, we mean that the gene labels of
all the found biclusters are permanently set to zero. In this
way, genes retrieved for previous biclusters will not further
be selected as candidate genes for any future bicluster,
while the background model will still be calculated over
all the possible positions in the whole data set including
the positions of the masked genes or conditions. Note
that this choice does allow the unmasked dimension of
the biclusters to be selected multiple times. So, in the
case of the gene-condition orientation, a condition can
be relevant to multiple biclusters to be selected multiple
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times. In this way, the algorithm is iterated on a data set
until no bicluster can be found for the unmasked part of
the data, (see Section ‘data without a bicluster’ for the
decision). If the biclustering takes place in the condition-
gene orientation, the same procedure can be applied but
then a condition can only belong to a single bicluster,
while a gene can be relevant for several biclusters.

Another approach to find multiple biclusters would be
to allow the gene and condition labels to take discrete
values indicating to which of the several biclusters a
gene or condition belongs. We decided against this
option because, take the gene-condition orientation for
example, a condition can never be relevant to multiple
biclusters (which would be an unacceptable biological
limitation). This problem could be alleviated by using
several binary vectors of labels (as many as the number
of biclusters we are looking for), which would then allow
biclusters overlapping in both the gene and the condition
dimensions. However, the increase in the number of
parameters to estimate, together with the need for a
procedure for the estimation of the number of biclusters,
led us to settle for the simpler masking procedure in a
first instance (although we will explore the alternative
approach later).

DISCOVERING BICLUSTERS BY GIBBS
SAMPLING
Gibbs sampling is one of the best known Markov chain
Monte Carlo methods. Suppose we want to draw samples
for the random variables x, y, and z, but that the marginal
distributions or the joint distribution are too complex to
sample directly from them. Suppose also that the condi-
tional distributions p(x |y, z), p(y|x, z), and p(z|x, y),
which can easily be sampled from, are available. Starting
from initial values y(0) and z(0), the Gibbs sampler draws
samples for the three variables in the following manner:

x (t+1) ∼ p(x |y(t), z(t))

y(t+1) ∼ p(y|x (t+1), z(t))

z(t+1) ∼ p(z|x (t+1), y(t+1))

for t = 0, 1, 2, . . . . It can be shown that the sequence

y(0), z(0), x (1), y(1), z(1), . . . , x (k), y(k), z(k)

constructs a Markov chain and that, as k → ∞, the
distribution of the triplet (x (k), y(k), z(k)) converges to
the true joint distribution p(x, y, z). Furthermore, the
sequence x (1), x (2), . . . , x (k) itself is a Markov chain,
and the distribution of x (k) converges to its true marginal
distribution p(x) as k → ∞. The same can be said for the
variables y and z. For an introduction to Gibbs sampling,
we refer to (Casella and George, 1992).

Our goal is to draw samples from the joint distribution
p(g, c|D) of g and c conditioned on a discretized microar-
ray data set D. In other words, we want to generate sam-
ples for every component in g and c from its respective
marginal distribution p(gi |D) or p(c j |D). In the manner
of Gibbs sampling, this can be done by sampling itera-
tively from the full conditional distributions

p(gi |gī , c, D), for i = 1, 2, . . . , n,

and p(c j |g, c j̄ , D), for j = 1, 2, . . . , m,

where gī (or c j̄ ) denotes a label vector with all but the i th
gene (or j th condition) label fixed.

Full conditional distributions
The full conditional distributions can be derived based on
the fact that

p(gi |gī , c, D) ∝ p(gi , gī , c, D) = p(g, c, D)

and p(c j |g, c j̄ , D) ∝ p(c j , g, c j̄ , D) = p(g, c, D).

Observe also that P(g, c, D) can be obtained by in-
tegrating �, φ, and λs out of the likelihood function
L(�, φ, λg, λc|g, c, D).

Given the background model φ, the pattern model �,
and the λs, the likelihood of the complete data (which
includes the observed data D and the labels g and c) is

L(�, φ, λg, λc|D, g, c)

=P(D, g, c|�, φ, λg, λc)

=P(D|g, c, �, φ) · p(g|λg) · p(c|λc)

=φc(b(g,c))
w∏

j=1

�
c(P . j (g,c))
. j

tλg
v(1 − λg)

n−v · λc
w(1 − λc)

m−w,

where v denotes the number of genes that belong to
the bicluster. In addition, we use b(x, y) (or P(x, y))
to denote the part of the data where the background (or
pattern) model is evaluated, with x and y (which are
respectively gene and condition label vectors) providing
information for selecting the data points for the evaluation.
We define c(·) as a counting function that returns a
vector of length l indicating the number of times each
discretized value is observed at the data points specified
in the bracket. We also define for the vectors r =
[r1, · · · , rk]T and s = [s1, · · · , sk]T that rs = rs1

1 · · · rsk
k ,

and 	(s) = 	(s1) · · · 	(sk) where 	(·) is the gamma
function generalizing the factorial.
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Integrating the model parameters out, we have,

P(D, g, c)

=
∫∫

[P(D, g, c|�, φ, λg, λc) · p(�) · p(φ)

· p(λg) · p(λc)] d� dφ dλg dλc

∝
∫

φ

φc[b(g,c)] φα−1 dφ ·
∫

�

w∏
j=1

�
c[P . j (g,c)]
. j �

β j −1
. j d�

·
∫

λg

λg
v (1 − λg)

n−vλg
ξg1−1 (1 − λg)

ξg2−1 dλg

·
∫

λc

λc
w (1 − λc)

m−wλc
ξc1−1 (1 − λc)

ξc2−1 dλc

∝ 	{c[b(g, c)] + α}
	

( ∑ {c[b(g, c)] + α})

·
w∏

j=1

	{c[P . j (g, c)] + β j }
	

( ∑ {c[P . j (g, c)] + β j }
)

· 	(v + ξg1) 	(n − v + ξg2)

	(n + ξg1 + ξg2)

· 	(w + ξc1) 	(m − w + ξc2)

	(m + ξc1 + ξc2)
,

where ξg1 and ξg2 denote respectively the first and the
second element in ξg , (same for ξc); and for a vector s,
the notation

∑
(s) denotes the sum of all the elements in

the vector.
By writing the concerned label separately from the rest

of the labels in the above equation and working further
on the reduction, we will finally arrive at the following
parameterization of the full conditional distributions.

The two terms that characterize the Bernoulli posterior
distribution of gene label gi are

P(gi = 1|D, gī , c) = 1

Zg

w∏
j=1

η̂[P . j (gī , c)]c[P j (δi ,c)]

· (vī + ξg1)

P(gi = 0|D, gī , c) = 1

Zg
η̂[b(gī , c)]c[P(δi ,c)]

· (n − 1 − vī + ξg2)

(4)

where δi denotes a gene label vector whose i th entry is 1
and the other entries are 0, vī is the number of gene labels
that are 1 in gī , and Zg is a normalization term such that
P(gi = 1|gī , c, D) + P(gi = 0|gī , c, D) = 1. The η̂(·)
in the above equation stands for a function for calculating
the posterior mean of the specified data points. We obtain
thus the byproduct of our method – the posterior pattern
model evaluated at the currently assigned biclustering

positions, and the posterior background model evaluated
at the currently assigned background positions.

�̂. j = η̂[P . j (gī , c)] = c[P . j (gī , c)] + β j∑{c[P . j (gī , c)] + β j }
φ̂ = η̂[b(gī , c)] = c[b(gī , c)] + α∑{c[b(gī , c)] + α} .

(5)

Intuitively, by fixing all the other labels to the values sam-
pled in previous Gibbs sampling steps, the possibility that
gene i contributes to the pattern is associated with the
likelihood that the data of the gene under the currently
assigned bicluster conditions is generated by the pattern;
while the possibility that the gene belongs to the back-
ground is related to the likelihood that those data points
are drawn from the background model.

When it comes to the label of the j th condition, we
finally have a Bernoulli posterior distribution described by

P(c j = 1|g, c j̄ , D) = 1

Zc
· 	{c[b(g, c j̄ )] + α}
	

( ∑ {c[b(g, c j̄ )] + α})

· 	{c[P(g, δ j )] + β j }
	

( ∑ {c[P(g, δ j )] + β j }
) · (w j̄ + ξc1)

P(c j = 0|g, c j̄ , D) = 1

Zc
· (m − w j̄ − 1 + ξc2)

· 	{c[b(g, c j̄ )] + c[P(g, δ j )] + α}
	

( ∑ {c[b(g, c j̄ )] + c[P(g, δ j )] + α})
(6)

where δ j is a label vector whose j th entry is 1 and other
entries are 0, w j̄ is the number of condition labels that are
1 in c j̄ , and Zc is a normalization term such that P(c j =
1|g, c j̄ , D)+ P(c j = 0|g, c j̄ , D) = 1. Intuitively, the first
term in Equation 6 assumes the current prediction of the
background and extends the current bicluster by treating
the j th condition as one of the biclustering conditions,
while the second term in Equation 6 adds the j th condition
to the currently assigned background.

The algorithm
To summarize, the Gibbs biclustering procedure is

1. Initialization: Randomly assign gene labels and
condition labels to either 1 or 0.

2. Fix the labels of the conditions. For every gene i ,
(i = 1, 2, ..., n), fix the labels for all the other genes,
and

(1) Calculate the Bernoulli distribution for the
gene as described in Equation 4.

(2) Draw a label for gene i from the distribution.

3. Fix the labels of the genes. For every condition j ,
( j = 1, 2, ..., m), fix the labels of all the other
conditions, and
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(1) Calculate the Bernoulli distribution for the
condition as described in Equation 6.

(2) Draw a label for condition j from the distribu-
tion.

4. Go to Step 2 for a predefined number of iterations

From samples to the final pattern
We stated in the beginning of the section that Gibbs sam-
pling is a Markov chain Monte Carlo method. However,
so far we have only discussed the Markov chain property
inherited by Gibbs sampling, which is demonstrated by
its sampling procedure. The Monte Carlo property, on the
other hand, comes from the way by which Gibbs sampling
evaluates statistics, such as mean and variance, of the
target marginal distribution by using the population
quantities of the samples. Furthermore, even the marginal
distribution itself can be simulated by the Monte Carlo
method. For our problem, the mean of the marginal
distribution of a label can be estimated by

E[gi |D] = 1

T

T∑
t=1

E[gi |g(t)
ī

, c(t), D]

and E[c j |D] = 1

T

T∑
t=1

E[c j |g(t), c(t)
j̄

, D],
(7)

and the marginal distribution itself can be approximated
by

p̂(gi |D) = 1

T

T∑
t=1

p(gi |g(t)
ī

, c(t), D)

and p̂(c j |D) = 1

T

T∑
t=1

p(c j |g(t), c(t)
j̄

, D),

(8)

where t indexes the iterations and T is the total number of
iterations. The final positions of the bicluster are selected
as the ones where the expectations of both the gene label
and the condition label are above a threshold. Then, the
final pattern model is calculated as the posterior mean of
the bicluster.

It is important to realize that samples simulated before
the Gibbs sampler reaches its convergence should not be
regarded as samples drawn from the target distribution.
We examine the convergence of the Gibbs sampling pro-
cedure by monitoring the likelihood of the data. Once con-
vergence is reached, the Gibbs sampler is run for another
desired numbers of iterations to collect samples for eval-
uating the properties of the target posterior distributions,
namely using Equations 7 and 8. To distinguish the addi-
tional sampling procedure performed after convergence is
reached from the one that prepares for the convergence,
we call the latter burn-in while we refer to the former as
sampling.

Another important issue is that the samples produced
by the Gibbs sampler at successive iterations are not
independent. This dependency implies that the variance
(i.e. the accuracy) of the model obtained by averaging
the parameters may be much higher than if the samples
were independent. The autocorrelation time is the sum
of the autocorrelation values for all positive lags and its
square root gives the factor by which we must increase
the number of iterates of the autocorrelated estimates to
obtain the same accuracy as with independent estimates.
Denoting by ωt the sets of parameters obtained at each
iteration and by ω̄ = (1/T )

∑T
t=1 ωt the average set of

parameters, the autocorrelation function for a lag of k can
be estimated as

ρ̂k = Cov(ωt , ωt+k)

Var(ωt )
=

∑T −k
t=1 (ωt − ω̄)(ωt+k − ω̄)∑T −k

t=1 (ωt − ω̄)2
.

(9)

In the frequent case where the autocorrelation function
can be described as an autoregressive process, the auto-
correlation time τ = ∑∞

k=1 ρ̂k can be simplified to τ =
(1 + ρ̂1)/(1 − ρ̂1). Such an estimate can be easily com-
puted at the hand of the iterates of a run of the algorithm.

Data without a bicluster
To decide that a data set does not or no longer contain
a bicluster, we check the number of genes or conditions
that belong to the bicluster after Step 2 and Step 3 of
the addressed algorithm. If either of the numbers equals
zero, we reinitialize the algorithm and perform Gibbs
sampling again. However, if after a predefined number of
reinitializations (for example, 50 in our implementation)
the algorithm still does not succeed to reach convergence,
we terminate the algorithm and consider that the data set
does not contain a bicluster.

RESULTS
Synthetic data
Data with one embedded bicluster. We embedded a
pattern of 25 rows by 8 columns (see Fig. 2d) into a
data set of size 100 by 30 (see Fig. 2b). The pattern
was described by eight sharp multinomial distributions,
while the background was generated from a multinomial
distribution close to a uniform distribution.

We ran the algorithm for 500 iterations on the data
set. The average autocorrelations (see Equation 9) for
E[gi |g(t)

ī
, c(t), D] and E[gi |g(t)

ī
, c(t), D] are 0.0807 and

0.0404 respectively. So we decide that the number of
samples is sufficient for evaluating the models. From the
trace of the likelihood and from monitoring the expected
values of the labels (i.e. E[gi |D], and E[c j |D]), we
observed that convergence had been reached by the end of
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Fig. 1. (a) Trace of the log likelihood of the synthetic data evaluated at the end of each iteration during the whole Gibbs sampling procedure.
(b) and (c) reflects the evolution of the expected values of respectively the row labels and the column labels. For every label, we estimated
E[gi |D] or E[ci |D] over every possible window of 50 iterations to obtain the trace of the expected value (every trace contains thus 451
points); then we centered each trace around the mean of its last 100 points; finally we examined the variance of these centered traces across
the whole set of the row (gene) labels or the column (condition) labels. Shown in (b) and (c) are the plus and minus one standard deviation.

the first 50 iterations, (see Fig. 1). Thus, we used samples
drawn from the last 450 iterations to simulate the posterior
distributions of the labels.

Figure 2a shows the posterior probability for each
position in the data matrix that it belongs to the bicluster.
The posterior probability is reflected by the brightness
associated to every position in the plot, where the two
extremes, white and black, imply respectively probability
1 and 0. The inner bars around the main plot in Figure 2a
indicate the expected values of the labels, which can
be calculated from Equation 7. The outer bars mark the
embedded positions of the bicluster by a white tag. A
further examination of the expected values showed that
the row labels are separated into two groups, one of which
includes labels whose expected values are larger than 0.7,
and the other contains labels whose expected values are
less than 0.4. We thus use 0.7 as the threshold for the row
labels, and likewise 0.8 as the threshold for the column
labels, and consider the positions the positions of the target
bicluster to be the ones that possess higher expected values
than the thresholds at both dimensions. The final pattern
of the bicluster revealed by our algorithm is shown in
Figure 2c. From these pictures we see that all the columns
where the embedded pattern locates were correctly found,
and most of the embedded rows were recovered.

A more detailed look showed that there was quite a
variability for the biclusters retrieved at each iteration.
However, these biclusters overlapped with each other most
frequently at the positions of our final decision, which
is reflected by Figure 2a. This is a typical characteristic
of Gibbs sampling, which presents targets in terms of
distributions rather than deterministic values. In this way,
Gibbs sampling also avoids the problem of local maxima
that often hinders Expectation–Maximization.

Data with multiple biclusters. To examine the ability of
the algorithm to find multiple biclusters, especially when
overlap between biclusters are present, we embedded

three biclusters into a noisy background described by a
distribution close to uniform distribution. The data set
was of size 200 rows by 40 columns, and the three
embedded biclusters are of the following size – 40 by 7
for Bicluster 1, 25 by 10 for Bicluster 2, and 35 by 8 for
Bicluster 3. Figure 3 shows the data and the result, where
the rows and the columns of the data set and the found
biclusters are reordered for the convenience of display.
(The algorithm was performed on the original data set,
where the biclusters are scattered around.)

As can be seen in the main plot of Figure 3a, Bicluster 1
(located at the bottom left of the figure) overlapped with
the Bicluster 2 (the middle bicluster in the figure) at two
columns, and Bicluster 3 (the most top right one among
the three) overlapped with Bicluster 2 at five rows and
three columns.

By masking the rows of every discovered bicluster, the
algorithm succeeded in finding three biclusters. The bars
in Figure 3a indicate the expected values of the labels for
evaluating the final positions of the biclusters. From the
outer one to the inner one, the bars show the expected
values of the labels in the first run, the second run (i.e.
after the rows of the first bicluster found was masked), and
the third run. The first bicluster found (whose pattern is
shown in Fig. 3b) contains all the columns of Bicluster 3,
and most of its rows. Only two rows that were embedded
for Bicluster 3 were missing in the bicluster found.
However, another two rows that were not designed as
part of Bicluster 3 were added to the bicluster, because
the patterns at these two rows happened to match the
one that characterized the rest of the bicluster found. The
second bicluster revealed by the algorithm (see Fig. 3c)
corresponded to Bicluster 1. Again, all the columns were
found back, and the rows that were neglected by by the
discovered bicluster are often among the most noisy rows
in Bicluster 1. The third discovered bicluster (see Fig. 3d)
contained 18 out of 19 rows that were still available
for Bicluster 2, (the first bicluster found included all the
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Fig. 2. Results from the synthetic data set. (a) Main plot: The posterior probability that a position of the data matrix belongs to the bicluster.
Inner bars: expected values of the labels. Outer bars: positions of the embedded pattern. (b) The data matrix. (c) Pattern of the bicluster
revealed by the Gibbs sampling algorithm. (d) Pattern of the embedded bicluster.

five rows at the overlapping area of Bicluster 2 and 3,
in addition, it also picked up one of the rows that was
designed to belong to Bicluster 2). Like the two biclusters
found earlier, this final bicluster also recovered all the
columns designed for Bicluster 2.

Leukemia data
We have also applied our algorithm on a leukemia data
set, see (Armstrong et al., 2002) for a detailed description
of the data. In their paper, Armstrong et al. showed
that differences in gene expression are robust enough to
classify leukemias correctly as mixed-linkage leukemia
(MLL), acute lymphoblastic leukemia (ALL) or acute
myelogenous leukemia (AML). We want to explore the
possibility to use our algorithm to find fingerprints of gene
expression profiles for the three patient groups.

The data set consists of expression data from Affymetrix
chips for 12 600 genes collected from 72 leukemia pa-
tients, of which 28 were diagnosed with ALL, 20 were
MLL patients, and 24 were AML patients. In contrast with
the emphasis in the theoretical presentation, the task here
was to identify patients that share similar expression be-
havior over a subset of genes.

Because data points with low values are noisy and non-
reproducible, a threshold of 100 was put on the original
data. A ceiling of 1600 was also placed because of
saturation effects. Next, the variation of each gene along

all the patients was examined. Since the genes that have
consistent behavior over all the patients are not of much
interest, only the first 15 percent of genes with the highest
standard deviation were selected for further analysis. In
this way, the size of the data set was reduced to 1887 genes
by 72 patients. This reduced data set was then discretized
according to the equal frequency principle. That is, for
every gene, we first put its expression data over all the
patients in an ascending order, and then divided the data
points into a desired number of bins, (which is 3 in the case
presented below), in a way such that the number of data
points in every bin is the same. Note that the use of the
equal frequency principle enables the application of the
one-multinomial background introduced in Equation 1.
We use data from the last three patients of every category
to construct a test data set. Data from the rest of the
patients were used as a training set.

By masking the patients found after each run, the
algorithm succeeded in discovering three biclusters one
after another for the training data set. The algorithm
stopped after discovering three biclusters one after another
for the training data set. Figure 4 demonstrates the
ability of our algorithm to group patients based on their
expression behavior over a subset of genes. Furthermore,
the patients collected in every bicluster came from the
same category. More specifically, (a) the first bicluster
selected 19 patients all of whom are out of the 25 AML
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Fig. 3. (a) Main plot: The data set where three biclusters are embedded. The bars indicate the expected values of the labels for deciding the
positions of the biclusters discovered. (b), (c) and (d) Three biclusters found by masking the rows of a found bicluster.

patients in the training set, and 80 genes; (b) the second
bicluster included 18 (out of 21) ALL patients, and 87
genes; (c) the third bicluster consisted of 14 (out of 17)
MLL patients and 62 genes.

In Figure 5, we illustrate the idea that the pattern of the
genes of a bicluster discovered by our algorithm provides
a signature for identifying patients of the particular patient
class featured by the bicluster. The scores in the figure
are calculated as the log ratio of the likelihood that the
data points at those genes are generated by the pattern
model versus the likelihood that they are drawn from the
background model. One can see that all the patients of the
category characterized by the bicluster (including those
that were not detected by the bicluster) had higher scores
than those of the rest of the patients, with one exception
for the score of the 38th patient obtained under pattern
(c). More importantly, in the test data set, patients of the
correct category were also associated with much higher
scores than the patients of the other categories. This result
shows that the patterns discovered by our algorithm can be
used directly for prediction.

To test the significance of the found patterns, we
performed the algorithm on 100 permutated data sets
of the test data. Tests were done under three sets of
pseudocounts (see Equation 3), representing the prior
knowledge of three levels (i.e. high, medium, and low) of
noisiness in the desired pattern. No pattern was found for
any of the data sets under any setting of the pseudocounts.
By this we mean that for every iteration in the tests, a
small bicluster (often consisting of only one patient and
several genes) was sampled at most iterations but that, if
we look at the evolution of the bicluster throughout all
the iterations, the revealed biclustering positions ambled
around and did not have a consistent core. This result
demonstrates that the patterns found by Gibbs biclustering
are statistically highly significant.

DISCUSSION
We have introduced Gibbs sampling method to the biclus-
tering problem of discretized microarray data and have
demonstrated the effectiveness of our approach on two
synthetic data sets and a real-life data set of leukemia pa-
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Fig. 4. Three biclusters featuring (a) AML patients, (b) ALL
patients, and (c) MLL patients. Top: Patterns of the bicluster.
Bottom: Discretized data of the genes in the bicluster from the
patients who were not selected by the bicluster.

Fig. 5. Scores of the patients in both the training data set and the test
data set. The scores are calculated using the pattern models of the
biclusters characterizing (a) AML patients, (b) ALL patients, and
(c) MLL patients.
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tients. We showed that our method detects biclusters that
are statistically contrasted with the noisy background. We
examine this contrast at every iteration by evaluating the
model of the pattern as the posterior mean of the data
points in a bicluster, (see Equation 5), which infers that
the prior knowledge (represented by the pseudocounts) as
well as the sample mean of the data points in the biclus-
ter participate in the evaluation of the pattern model. Our
method fits in the Bayesian framework so that the power
of the prior knowledge fades as the number of data points
in the bicluster increases. This explains why our algorithm
discovers relatively large biclusters. Small biclusters with
a consistent pattern (e.g. a bicluster of the size 2 × 2 out
of a data set of the size 100 × 20) are neglected (because
of the regularization caused by the pseudocounts), which
protects our algorithm from specious false-positive biclus-
ters.

We have developed our approach for discretized mi-
croarray data, which is an acceptable trade off given the
high level of noise observed on microarray (this noise
decreases the importance that must be given to detailed
measurement values). In Section Results, we used three
discretization bins for all the data sets. However, this does
not mean that three is the value of choice for the number
of bins to be used in discretization. Users can change it to
a value suitable for their data set. For the leukemia data
set we analyzed, however, we found that the final indices
of the biclusters was not much affected by different
choices of discretization levels. A generalization for the
approach to accommodate continuous data is possible,
but the choice of continuous distribution (e.g. Gaussian
noise model) should be carefully investigated and this is a
further topic of our research.

We introduced the background model as a single multi-
nomial distribution (see Section ‘model and assumptions’,
Equation 1), which is suitable for data sets where the
background data shares the same distribution under every
condition. However, if distribution of the background data
under each condition differs significantly from each other,
it might be better to use several multinomial distributions,
each of which describes the background under an individ-
ual condition. The background model will then look like
the pattern model described in Equation 2. Extending the
formulae of the algorithm to accommodate a background
described by several multinomial distributions is possible.
Nevertheless, for the patient-gene orientation that was
introduced in Section ‘leukemia data’, the condition
for applying the one multinomial background model
can be easily achieved by applying the equal frequency
principle to the discretization of the data under each
gene.

Our algorithm has a computational requirement on
the ratio of the row size and the column size of the
data set being analyzed. Here the row dimension refers

to either the gene dimension in the gene-condition
orientation (introduced at the beginning of the paper)
or the patient dimension in the patient-gene orientation
(as addressed in Section ‘leukemia data’). Observe
that the row dimension is actually the dimension along
which the multinomial models are evaluated, while the
column dimension is where feature selection is per-
formed. In general, our algorithm works well on the
gene-condition orientation where the row dimension
is usually much larger than the column dimension.
However, when working on the patient-gene orienta-
tion, the algorithm will meet computational difficulties
if the number of patients is too low compared to the
number of genes. An example is that the algorithm
could not perform correctly on a data set of 22 patients
with some 3000 genes, while the problem no longer
appeared once the number of patients was increased to
60.
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