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SYSTEMS OF POLYNOMIAL EQUATIONS, HIGHER-ORDER1

TENSOR DECOMPOSITIONS AND MULTIDIMENSIONAL2

HARMONIC RETRIEVAL: A UNIFYING FRAMEWORK.3

PART I: THE CANONICAL POLYADIC DECOMPOSITION∗4

JEROEN VANDERSTUKKEN† AND LIEVEN DE LATHAUWER†5

Abstract. We propose a multilinear algebra framework to solve systems of polynomial equations6
with simple roots. We translate connections between univariate polynomial root-finding, eigenvalue7
decompositions and harmonic retrieval to their higher-order counterparts: a Canonical Polyadic8
Decomposition (CPD) that exploits shift invariance structures in the null space of the Macaulay9
matrix reveals the roots of the polynomial system. The new framework allows us to use numerical10
CPD algorithms for solving systems of polynomial equations. For the same degree of the Macaulay11
matrix as in Numerical Polynomial Algebra/Polynomial Numerical Linear Algebra (NPA/PNLA),12
the CPD is interpreted as the joint eigenvalue decomposition of the multiplication tables. In our13
approach the degree can also be lower. Affine roots and roots at infinity can be handled in the14
same way. With minor modifications, the technique can be used to estimate approximate roots of15
over-constrained systems.16

Key words. system of polynomial equations, multilinear algebra, canonical polyadic decompo-17
sition, harmonic retrieval, Macaulay matrix, Vandermonde matrix18

AMS subject classifications. 13P15, 15A69, 65H0419

1. Introduction. Systems of polynomial equations arise often in science and20

engineering (chemistry, mechanics, optimization etc.). Solving such a system means21

finding all the common roots of the polynomials. Formally, the roots of a system of s22

polynomial equations in n complex variables xj ∈ C23

(1)


f1(x1, . . . , xn) = 0

...
fs(x1, . . . , xn) = 0

24

are all points x ∈ Cn that satisfy (1). The problem has been studied extensively in al-25

gebraic geometry. Most of the algebraic geometry-based methods compute a Gröbner26

basis for the system, the common roots of which are easier to obtain. One semi-27

nal method to compute a Gröbner basis is due to Buchberger (1965) [3]. However,28

the implied symbolic manipulations are subject to numerical instabilities and they29

are not very meaningful when the polynomial coefficients are derived from measured30

data [13, 14]. Arguably the most popular numerical method to solve a system of31

polynomial equations is numerical Polynomial Homotopy Continuation (PHC) [37].32
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2 J. VANDERSTUKKEN AND L. DE LATHAUWER

Continuation retrieves the roots of an easy, parametrized system that can be continu-33

ously transformed into the more difficult given system. Among the first to look at (1)34

from a linear algebra point of view, were Sylvester (1853) and Macaulay (1902). Their35

work introduced a resultant (matrix) — itself a polynomial (matrix) that generalizes36

the characteristic polynomial in the univariate case. In his Numerical Polynomial37

Algebra (NPA), Stetter (2004) linked the problem to eigenvalue computations of so-38

called “multiplication tables” and brought it to the field of numerical linear algebra39

[30]. Batselier and Dreesen (2013) developed Polynomial Numerical Linear Algebra40

(PNLA): applying a reasoning known as “Estimation of Signal Parameters by Ro-41

tational Invariance Techniques” (ESPRIT) in array processing to the multivariate42

monomials in the null space of the system's Macaulay (resultant) matrix yields an43

eigenvalue decomposition (EVD) that reveals the roots of the system [1, 12, 25].44

A higher-order tensor is a multi-way array indexed by three or more indexes.145

As such, a tensor naturally generalizes the concept of a one-way vector, which is46

indexed by one index, and a two-way matrix, which is indexed by two indexes. Ten-47

sor decompositions like the Canonical Polyadic Decomposition (CPD) [19] are then48

generalizations of matrix decompositions. Whereas the matrix Singular Value Decom-49

position (SVD) is only unique due to the imposed orthogonality constraints, the CPD50

is unique under much milder conditions, making it a crucial tool for data analysis51

[4, 26].52

An isomorphism between polynomials and higher-order tensors has been long53

known in algebraic geometry. Yet, this paper translates the well-known connections54

between univariate polynomial root-finding, linear algebra and harmonic retrieval55

(HR) to their higher-order counterparts: systems of multivariate polynomial equa-56

tions, multilinear algebra and multidimensional harmonic retrieval (MHR). As does57

PNLA, we exploit the structure of the null space of a system’s Macaulay matrix —58

to then build a third-order tensor of which the CPD reveals the roots of the system.59

Moreover, we explain that this CPD may be seen as the joint EVD of NPA's multi-60

plication tables — opposed to only one EVD in PNLA. In our framework there is no61

need to handle affine and projective roots in a different manner. Numerical experi-62

ments confirm that the precision of our framework is as good as the precision of PHC.63

The roots may be found from a Macaulay matrix of lower degree. The framework64

also allows us to find the approximate roots of over-constrained systems.65

The paper is organized as follows. Section 2 will review our notation and intro-66

duce some elementary definitions. In sections 3–4 we will derive a connection between67

the null space of the Macaulay matrix of a generic system of polynomial equations,68

i.e. a system that has only (i) simple and (ii) affine roots, the MHR problem and69

CPD. The material will be discussed in a discipline-specific manner in section 3 and70

combined in section 4. At the end of section 4 we will have expressed the problem as71

a so-called coupled CPD. This is the polynomial equations counterpart of a recently72

developed technique for MHR [28, 29]. In section 5 we will go further and reduce the73

polynomial problem to a single CPD. In subsection 5.1 we focus on the case of affine74

roots only and in subsection 5.2 we will generalize to the projective case, i.e. in sub-75

section 5.2 we will drop constraint (ii) above. In section 6 we will make the connection76

with the generalized eigenvalue decomposition (GEVD) of a matrix pencil and with77

NPA/PNLA. In section 7 we will extend our approach to Macaulay matrices of degree78

one less than the degree required in PNLA. Section 8 will present the overall multilin-79

1An Nth-order tensor can be thought of as the outer product of N vector spaces. Mathematicians
tend to prefer this coordinate-free definition [23].
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POLYNOMIALS, TENSORS AND HARMONICS — PART I: CPD 3

ear algebra-based algorithm to find the roots of a system of polynomial equations that80

has only (i) simple roots. The companion paper [36] will drop constraint (i) as well81

and relates the topics to a third-order tensor block-term decomposition. Section 982

will present the results of two numerical experiments. Section 10 will summarize our83

findings.84

2. Notation.85

2.1. Higher-order tensors. To infer the type of a quantity from its notation,86

scalars, vectors, matrices and tensors are denoted by italic, boldface lowercase, bold-87

face uppercase and calligraphic letters respectively: a ∈ C, a ∈ CI1 , A ∈ CI1×I288

and the Nth-order tensor A ∈ CI1×...×IN . In this paper we will mainly work with89

third-order tensors (N = 3). We will consistently write ai1 = a(i1) = (a)i1 for the90

i1th (scalar) entry of the vector a and ai1,i2 = A(i1, i2) = (A)i1,i2 for the entry of91

the matrix A with row index i1 and column index i2. Using Matlab colon notation,92

ai2 = A(:, i2) = (A)i2 denotes the i2th column of A. Likewise for tensor entries and93

for fibers: a mode-n fiber of a tensor A is a vector obtained when all but the nth94

index of A are kept fixed. Mode-1 and mode-2 fibers correspond to column and row95

vectors, respectively. We denote the i3th matrix slice of A as Ai3 = A(:, :, i3). We96

use ·∗, ·T , ·H , ·−1 and ·† for the complex conjugate, transpose, Hermitian transpose,97

inverse and Moore–Penrose pseudoinverse, respectively.98

D = diag(d) represents a diagonal matrix with the vector d on its diagonal and99

Di(C) = diag(C(i, :)) holds the ith row of the matrix C. II is the identity matrix100

of order I × I. span({a1, . . . ,aI}) is the span of the vectors a1 through aI . col(A),101

row(A) and null(A) are used to denote the column, row and right null space of A,102

respectively. The dimension of a vector space is denoted by dim ·. The rank of matrix103

A is denoted by rA = dim col(A) = dim row(A) while kA is its Kruskal rank, i.e. the104

largest number k such that any subset of k columns of A is linearly independent. The105

Kronecker product of A ∈ CI1×J1 and B ∈ CI2×J2 is given by106

A⊗B
def
=

 a1,1B · · · a1,J1B
...

...
aI1,1B · · · aI1,J1B

 ∈ CI1I2×J1J2 .107

The Khatri–Rao or column-wise Kronecker product of A ∈ CI1×R and B ∈ CI2×R is108

given by A�B
def
= (a1⊗b1 · · ·aR⊗bR) ∈ CI1I2×R.109

A third-order tensor A is vectorized into vec(A) = a[3,2,1] by vertically stacking all110

entries such that i3 varies slowest and i1 varies fastest. In other words, the tensor entry111

ai1,i2,i3 corresponds to the entry of vec(A) with index (i3 − 1)I2I1 + (i2 − 1)I1 + i1.112

The mode-1 matrix representation denoted by A[1;3,2] is obtained by horizontally113

stacking the columns of A in such a way that i2 varies fastest along the second114

dimension. In other words, ai1,i2,i3 corresponds to the entry of A[1;3,2] with row index115

i1 and column index (i3 − 1)I2 + i2. Similarly, ai1,i2,i3 corresponds to the entry of116

A[1,2;3] with row index (i1 − 1)I2 + i2 and column index i3. Other mode-n matrix117

representations are defined analogously. The mode-1 product C = A ·1 B ∈ CJ×I2×I3118

of a tensor A ∈ CI1×I2×I3 and a matrix B ∈ CJ×I1 has the matrix representation119

C[1;3,2] = B · A[1;3,2], i.e. it is the result of multiplying all columns of A with B.120

Like-wise, the mode-2 product C̃ = A ·2 B̃ ∈ CI1×J̃×I3 is obtained by multiplying all121

rows of A with B̃ ∈ CJ̃×I2 . The mode-n rank Rn = rankn(A) is the dimension of122

the mode-n fiber space, i.e. Rn = rA[n;•] , in which • indicates that the order of the123

This manuscript is for review purposes only.



4 J. VANDERSTUKKEN AND L. DE LATHAUWER

indices different from n does not matter. In particular, R1 and R2 are known as the124

column rank and row rank of A, respectively. The tuple rank�(A) = (R1, R2, R3) is125

called the multilinear rank of A.126

The outer product T = a ⊗ b ⊗ c with non-zero a, b and c yields a rank-1 tensor127

with entries ti1,i2,i3 = ai1bi2ci3 . In matrix format we can write T[1,2;3] = (a⊗b)cT .128

Note that the larger symbol ⊗ denotes the Kronecker product whereas the smaller129

symbol ⊗ denotes the outer product. We further define the inner product of two130

tensors as A,B ∈ CI1×I2×I3 as 〈A,B〉 =
∑
i1,i2,i3

ai1,i2,i3b
∗
i1,i2,i3

and the induced131

Frobenius norm as ‖A‖ =
√
〈A,A〉.132

2.2. Polynomial equations. In the system of polynomial equations (1), the133

basic building blocks are monomials xα =
∏n
j=1 x

αj

j with exponent vector α, and134

polynomials f(x1, . . . , xn) =
∑p
l=1 flx

αl

l with coefficient vector f . The degree of a135

monomial is defined as deg(xα) =
∑n
j=1 αj . There exist several schemes for ordering136

monomials by their exponent vector. In this paper, we will adopt the degree negative137

lexicographic order. The monomials xα < xβ if one of the following two conditions is138

satisfied: (i) deg(xα) < deg(xβ); or (ii) deg(xα) = deg(xβ) and the leftmost nonzero139

entry of β −α is negative.140

Example 2.1. Consider monomials in two variables. We have that (i) x2 < x21141

because deg(x2) = 1 < 2 = deg(x21) and (ii) x21 < x1x2 because deg(x21) = deg(x1x2) =142

2 and β −α =
(
−1 1

)T
, the first entry of which is negative.143

Each polynomial fi has a degree di equal to the degree of the monomial with the144

highest degree in fi. The ring of all polynomials in n variables is denoted by Cn. The145

vector space Cnd is the subset of the ring Cn that contains all polynomials up to degree146

d. Its dimension is given by147

q(d)
def
= dim Cnd =

(
n+ d

n

)
.148

A polynomial is homogeneous if all its monomials have equal degree. One can149

homogenize a polynomial f of degree d to fh by multiplying each monomial xαl

l150

in f with a power βl of the variable x0 such that deg(xβl

0 xαl

l ) = d for all l. The151

ring (vector space) of all homogeneous polynomials in n + 1 variables (up to de-152

gree d) is then denoted by Pn (Pnd ). Having introduced the variable x0, the pro-153

jective space Pn arises as the set of equivalence classes on Cn+1 \ {0}: we have154

that
(
x′0 x′1 . . . x′n

)T ∼ (x0 x1 . . . xn
)T

if there exists a λ ∈ C such that155 (
x′0 x′1 . . . x′n

)T
= λ

(
x0 x1 . . . xn

)T
. Points with x0 = 0 cannot be normal-156

ized to their affine counterpart
(
1 x1

x0
. . . xn

x0

)T
: they are points at infinity.157

The degree of the system (1) is d0 = maxsi=1 di. The set of all roots of (1) is called158

the solution set. For square (n = s) systems with individual degrees di, i = 1 : n,159

and under the important assumption that the solution set is 0-dimensional, meaning160

that all roots are isolated and that their number is finite2, the number of roots in the161

projective space, counting multiplicities, is given by the Bézout number162

m
def
=

n∏
i=1

di.163

2The solution set is called a variety in algebraic geometry. Its dimension equals the degree of the
Hilbert polynomial. As long as the greatest common divisor of the multivariate polynomials fi is a
constant, the solution set is 0-dimensional.
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POLYNOMIALS, TENSORS AND HARMONICS — PART I: CPD 5

The m roots of (1) will be represented by
(
x
(k)
1 x

(k)
2 · · · x

(k)
n

)T
∈ Cn, k = 1 : m.164

If there are roots of multiplicity greater than 1, m0 < m denotes the number of165

disjoint roots.3166

2.3. Vandermonde matrices. A (univariate) Vandermonde matrix is of the167

following form:168

169

(2) V(1)({zr}Rr=1)
def
=
(
v
(1)
1 . . . v

(1)
R

)
∈ CI×R,170

v(1)
r

def
=
(
1 zr z2r . . . zI−1r

)T
, r = 1 : R.171172

The scalars zr ∈ C are sometimes called the generators of V(1). The ((d + 1) ×m)173

univariate Vandermonde matrix generated by the jth coordinate of the m roots of174

(1), i.e. by
{
x
(k)
j

}m
k=1

, will specifically be denoted as V(j)(d), j = 1 : n.175

A multivariate Vandermonde matrix is of the following form:176

177

(3) V({zj,r, 1 ≤ j ≤ n, 1 ≤ r ≤ R})
def
=
(
v1 . . . vR

)
∈ Cq(d)×R,178

vr
def
=
(
1 z1,r z2,r . . . z21,r z1,rz2,r . . . zn−1,rz

d−1
n,r zdn,r

)T
, r = 1 : R.179180

The entries of multivariate Vandermonde vectors are ordered by the degree negative181

lexicographic order. The (q(d) × m) multivariate Vandermonde matrix generated182

by the coordinates of the m roots of (1), i.e. by
{
x
(k)
j , 1 ≤ j ≤ n, 1 ≤ k ≤ m

}
, will183

specifically be denoted as V(d).184

3. CPD, PNLA and MHR. In this paper we combine insights from three185

disciplines: tensor methods, PNLA and MHR. This section puts the ingredients that186

we will need on the table, presented in a way that will facilitate their combination.187

3.1. Tensor CPD and matrix GEVD. An R-term Polyadic Decomposition188

(PD) expresses a tensor T ∈ CI1×I2×I3 as a sum of R rank-1 terms189

(4) T =

R∑
r=1

ar ⊗ br ⊗ cr
def
= JA,B,CK ,190

where A ∈ CI1×R, B ∈ CI2×R and C ∈ CI3×R are called factor matrices. If R191

is minimal, then the PD is called a Canonical Polyadic Decomposition (CPD). The192

minimal number of rank-1 terms is called the rank of T and denoted as rT . The193

decomposition is visualized in Figure 1. In terms of matrix slices, (4) can be written194

as195

(5) Ti3 = A ·Di3(C) ·BT , i3 = 1 : I3.196

Working with matrix representations, (4) can also be written as197

(6) T[1,2;3] =

R∑
r=1

(ar ⊗br)c
T
r = (A�B) CT .198

3This case is handled in the companion paper [36].
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6 J. VANDERSTUKKEN AND L. DE LATHAUWER

T =

c1

a1

b1

+

c2

a2

b2

+ · · ·+

cR

aR

bR

Fig. 1: (C)PD of a third-order tensor is a decomposition in a (minimal) number of
rank-1 terms.

Obviously, the rank-1 terms in a CPD can be arbitrarily permuted and the cor-199

responding columns of the different factor matrices can be scaled/counterscaled. For-200

mally, the CPD of a rank-R tensor T ∈ CI1×I2×I3 is said to be essentially unique iff201

T = JA,B,CK =
r
Ã, B̃, C̃

z
implies that there exist a permutation matrix Π ∈ CR×R202

and nonsingular diagonal matrices ΛA ∈ CR×R, ΛB ∈ CR×R and ΛC ∈ CR×R such203

that204

Ã = AΠΛA, B̃ = BΠΛB, C̃ = CΠΛC and ΛAΛBΛC = IR.205

For brevity, we will drop the term “essential” from now on. The following theorem206

presents a first sufficient uniqueness condition.207

Theorem 3.1. [24] Let T ∈ CI1×I2×I3 admit a PD T = JA,B,CK where A ∈208

CI1×R and B ∈ CI2×R have full column rank, then209

210

rT = R 4 and the CPD of T is unique ⇔ kC ≥ 2.211

Under the conditions in Theorem 3.1, the CPD is not only unique; it can directly212

be obtained from a matrix GEVD. To explain this, let us consider two matrices213

T̃1, T̃2 ∈ CI1×I2 , with I1 ≥ I2 (w.l.o.g.), structured as T̃1 = AD1B
T and T̃2 =214

AD2B
T . Here we assume that A ∈ CI1×R and B ∈ CI2×R have full column rank,215

that D1,D2 ∈ CR×R are diagonal and that there are no collinear vectors in the set216

{((D1)r,r, (D2)r,r)
T }Rr=1. Clearly, the columns of B†,T are generalized eigenvectors217

of the pencil (T̃1, T̃2) and the GEVD is unique since all the generalized eigenvalues218

are distinct. Condition kC ≥ 2 in the theorem means that no two columns of C are219

collinear. This implies that it is possible to take T̃1, T̃2 equal to two of the tensor220

slices Ti3 , or to suitable linear combinations of the slices if this is needed to ensure221

that all the generalized eigenvalues are distinct. Note that CPD may be seen as an222

extension of GEVD to more than two matrices.223

One could say that, under the conditions in Theorem 3.1, the computation of a224

CPD is a task of linear algebra. However, this is a matter of perspective. Although225

the CPD has algebraically been reduced to a matrix GEVD, there are numerical dif-226

ferences. Formally, collapsing the structure of the full tensor into the structure of227

a matrix pencil may increase the condition number [2]. Moreover, in many appli-228

cations the tensor T is only known with limited precision (e.g. it consists of noisy229

measurements) and the CPD structure does not hold exactly. In such cases, the factor230

matrices are most often estimated by a numerical optimization routine that fits the231

CPD model to the given tensor [27, 39, 26], and this is clearly a multilinear problem.232

4In other words, R is the minimal number of rank-1 terms and the PD is canonical.
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POLYNOMIALS, TENSORS AND HARMONICS — PART I: CPD 7

In practice, one often initializes the optimization algorithm with estimates obtained233

by GEVD. In other words, the problem of linear algebra is solved to obtain a first234

estimate of the solution of the multilinear problem.235

It may come as a surprise that the CPD of T can be obtained from a matrix236

GEVD, while CPD is known to be an NP-hard problem [18]. Again this is a matter237

of perspective. The qualification “NP-hard” concerns “CPD in general”. However,238

in Theorem 3.1 we consider a specific class of CPDs, namely the class for which239

rA = rB = R and kC ≥ 2. Under these conditions it is indeed possible to obtain240

the factors from a GEVD. At least, there is an algebraic guarantee for CPDs that241

are exact. However, as mentioned above, there are numerical aspects and also data242

quality aspects. For instance, the CPD structure that we will discuss in subsection 3.3243

is, under certain application-specific assumptions, known to hold exactly for a range of244

array processing problems in the absence of noise. In practice, data are noisy and the245

CPD model describes what happens with the “true” underlying signals. One assumes246

that the Signal-to-Noise Ratio (SNR) is high enough to allow the factor matrices to247

be estimated with reasonable accuracy. Simulations may give an idea of the SNR that248

is required. The numerical experiment in subsection 9.2 will be an example of this249

approach.250

Theorem 3.1 assumes that two factor matrices, A and B, have full column rank.251

The next theorem relaxes this to a full column rank assumption on a single factor252

matrix; for notational convenience we take C for the latter. The theorem is formu-253

lated in terms of compound matrices. For A ∈ CI×R, the second compound matrix254

M2(A) ∈ C(I
2)×(R

2) is the matrix that contains all (2×2) minors, ordered lexicograph-255

ically [10, Section 2].256

Theorem 3.2. [7, 20] Let T ∈ CI1×I2×I3 admit a PD T = JA,B,CK where257

C ∈ CI3×R has full column rank. If M2(A)�M2(B) ∈ R(I
2)(

J
2)×(R

2) has full column258

rank, then rT = R and the CPD of T is unique.259

Like Theorem 3.1, Theorem 3.2 admits a constructive interpretation [7]. Let T[1,2;3] =260

E·FT denote a rank-revealing decomposition of T[1,2;3]. Comparing with (6), we want261

to find a nonsingular matrix G ∈ CR×R such that EG takes the form of a Khatri–262

Rao product. If the matrix G is unique (up to trivial indeterminacies), then A, B,263

C follow immediately from the connection with (6). It turns out that, under the264

conditions in Theorem 3.2, an auxiliary tensor U ∈ CR×R×R can be derived from T ,265

with CPD given by U =
q
G−1,G−1,F

y
, in which F ∈ CR×R is also nonsingular.266

As the auxiliary CPD satisfies the conditions of Theorem 3.1, the desired G can267

be obtained from a GEVD. The auxiliary tensor U itself can be obtained from an268

overdetermined set of linear equations.269

Summarizing, also under the conditions in Theorem 3.2, the computation of an270

exact CPD can be reduced to a matrix GEVD. If the tensor T is only known with271

limited precision, then we may proceed as follows. The GEVD derived from the272

auxiliary tensor U may be used to initialize a numerical optimization algorithm that273

fits a CPD model to U . The resulting estimate of G yields first estimates of the factor274

matrices A, B, C of the original tensor T . The latter may in turn be used to initialize275

a numerical optimization algorithm that fits a CPD model to T .276

The conditions in Theorem 3.2 can be relaxed further; see [26, Section IV] for a277

short tutorial on CPD uniqueness results.278

3.2. The Macaulay matrix. To fully comprehend the construction of the279

Macaulay matrix, polynomial ideals and their quotient rings need to be introduced280
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8 J. VANDERSTUKKEN AND L. DE LATHAUWER

first. A polynomial is defined as a linear combination of p monomials. An extension281

is given by a polynomial combination g =
∑s
i=1 cifi where both fi and ci are poly-282

nomials in Cn, i = 1 : s [5]. The subset of the ring Cn that is reached by polynomial283

combinations of the elements of F = {fi}si=1 is an ideal: it is closed under polynomial284

combination. On the other hand, given a fixed set of m points Z = {zk}mk=1 ⊂ Cn,285

the subset I ⊂ Cn of polynomials that attain zero in Z is also an ideal. Indeed, every286

polynomial combination of the polynomials in I is again zero in Z. If F is now a287

(non-unique) basis for I5, we write I = 〈F〉 and we know that Z is nothing but the288

solution set of the system defined by the basis F .289

If g is a polynomial that satisfies ∃ z ∈ Z : g(z) = a 6= 0, then g ∈ I is impossible.290

Instead, we can write g =
∑s
i=1 cifi + r with r(z) = a, or, more generally, g(zk) =291

r(zk) for all k. We say that g ∼ r ⇔ g− r ∈ I and that the residue class of g mod I292

is the set [g] = {r ∈ Cn| g ∼ r} [32]. In particular, [0] = I. If g ∈ I, it follows that293

g(zk) = r(zk) = 0 for all k. One can show that, if all roots in Z defined by the294

elements of F are simple, then the converse is true, i.e. g(zk) = 0 for all k is sufficient295

for g ∈ I. The set of all residue classes [r] is a quotient ring Cn/I of the polynomial296

ideal I. From the above reasoning, any residue class is completely characterized by297

the values its members take on Z and dim Cn/I = m.298

Definition 3.3 defines the aforementioned Macaulay matrix. The definition is299

most easily understood by means of Example 3.4. For a given system (1) and a300

chosen degree d ≥ d0, the Macaulay matrix M(d) is a matrix constructed from the301

polynomial coefficients in such a way that its row space Md is the set of polynomial302

combinations303

Md =

{
s∑
i=1

cifi| ci ∈ Cnd−di

}
.304

Definition 3.3. [14, p. 263] Let fi ∈ Cndi , i = 1 : s, be s polynomials of degree305

di in n variables x1, . . . , xn, then the Macaulay matrix M(d) of degree d contains as306

its rows the coefficients of307

M(d) =



f1
x1f1

...
xd−d1n f1
f2
x1f2

...
xd−dsn fs


∈ Cp×q(d)308

where each polynomial fi, i = 1 : s, is multiplied with all possible monomials xα,309

deg(α) = 0 : d− di ∈ N — eventually determining the number of rows p.310

Example 3.4. [12, p. 17] Consider the system of s = 2 polynomial equations in311

n = 2 variables x1 and x2312 {
f1(x1, x2) = −x21 + 2x1x2 + x22 + 5x1 − 3x2 − 4 = 0
f2(x1, x2) = x21 + 2x1x2 + x22 − 1 = 0

313

5One such basis is the Gröbner basis for the ideal.
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where d1 = d2 = 2. The system has m =
∏n
i=1 di = 2 · 2 = 4 solutions

(
x
(k)
1 x

(k)
2

)T
,314

k = 1 : 4, namely
(
0 −1

)T
,
(
1 0

)T
,
(
3 −2

)T
and

(
4 −5

)T
.315

We start constructing the Macaulay matrix at d = 2 ≥ 2 = d0. The rows of316

M(2) are shifted versions of the polynomial coefficient vectors that are the result of317

multiplying each fi with each x2−2j = x0j = 1, j = 1 : 2. Simply stated, M(2) does not318

involve any shifts:319

M(2) =

1 x1 x2 x2
1 x1x2 x2

2( )
f1(x1,x2) −4 5 −3 −1 2 1

f2(x1,x2) −1 0 0 1 2 1
.320

Note that we have adopted the degree negative lexicographic order for the monomials321

in the columns.322

It should be clear that the common roots of f1 and f2 generate bivariate Vander-323

monde vectors in the null space of M(2):324

(7)

(
−4 5 −3 −1 2 1
−1 0 0 1 2 1

)


1
x1
x2
x21
x1x2
x22

 = 0.325

The rank rM(2) = 2, hence the nullity of M(2) is m = 4.326

At d = 3, M(3) contains four additional rows, which are the result of multiplying327

both f1 and f2 with both x11 and x12:328

M(3) =

1 x1 x2 x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x
2
2 x3

2



f1(x1,x2) −4 5 −3 −1 2 1 0 0 0 0

f2(x1,x2) −1 0 0 1 2 1 0 0 0 0

x1f1(x1,x2) 0 −4 0 5 −3 0 −1 2 1 0

x2f1(x1,x2) 0 0 −4 0 5 −3 0 −1 2 1

x1f2(x1,x2) 0 −1 0 0 0 0 1 2 1 0

x2f2(x1,x2) 0 0 −1 0 0 0 0 1 2 1

.329

The bivariate Vandermonde vectors in the null space of M(3) reach the additional330

monomials x31, x21x2, x1x
2
2 and x32 and the dimension of the embedding space C10 of331

M3 has grown to 10. It can be verified that also rM(3) has increased to 6, so that the332

nullity 10− 6 = 4 has remained unchanged: it is still equal to the number of solutions333

m of our set of polynomial equations.334

Say we flip the columns of M(d) from left to right and bring the flipped matrix into335

reduced row echelon form. The monomials that correspond to the linearly dependent336

columns of the result are known as the standard monomials or the normal set [1, p.337

97]. They constitute a basis for the orthogonal complement ofMd. For d greater than338

or equal to the so-called degree of regularity d∗, the null space of M(d) is completely339

isomorphic with Cnd /I, its dimension r(d) = dim Cnd /I = m and, most important, it340

contains all the necessary information to determine whether the associated system341

This manuscript is for review purposes only.
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has any common roots [14, p. 275]. This implies that for d ≥ d∗ the nullity of M(d)342

does not change. From the study of resultants, for the square homogeneous case, i.e.343

s = n+ 1, d∗ is bounded by [5, p. 104]:344

(8) d∗ ≤
s∑
i=1

(di − 1) + 1 =

n+1∑
i=1

di − n.345

For the square affine case, i.e. s = n, where one is interested in solutions in the346

projective space, one can take dn+1 = 0 in the right-hand side in (8) [22]. Example 3.5347

illustrates how PNLA finds the solutions of a square affine system from an EVD of a348

basis matrix for the null space of the Macaulay matrix constructed at degree d∗ + 1349

[12].350

Example 3.5. Consider again the system in Example 3.4. For this system d∗+1351

is bounded by 2+2−2+1 = 3. Let us collect the m = 4 bivariate Vandermonde vectors352

that constitute a basis for null (M(3)) in a bivariate Vandermonde matrix V(3):353

(9)



1 1 1 1

x
(1)
1 x

(2)
1 x

(3)
1 x

(4)
1

x
(1)
2 x

(2)
2 x

(3)
2 x

(4)
2

x
(1)2
1 x

(2)2
1 x

(3)2
1 x

(4)2
1

x
(1)
1 x

(1)
2 x

(2)
1 x

(2)
2 x

(3)
1 x

(3)
2 x

(4)
1 x

(4)
2

x
(1)2
2 x

(2)2
2 x

(3)2
2 x

(4)2
2

x
(1)3
1 x

(2)3
1 x

(3)3
1 x

(4)3
1

x
(1)2
1 x

(1)
2 x

(2)2
1 x

(2)
2 x

(3)2
1 x

(3)
2 x

(4)2
1 x

(4)
2

x
(1)
1 x

(1)2
2 x

(2)
1 x

(2)2
2 x

(3)
1 x

(3)2
2 x

(4)
1 x

(4)2
2

x
(1)3
2 x

(2)3
2 x

(3)3
2 x

(4)3
2



=



1 1 1 1
0 1 3 4
−1 0 −2 −5
0 1 9 16
0 0 −6 −20
1 0 4 25
0 1 27 64
0 0 −18 −80
0 0 12 100
−1 0 −8 −125


.354

Multiplication of the kth column of V(3) with x
(k)
1 yields:355

(10) vk(3) · x(k)1 =



1

x
(k)
1

x
(k)
2

x
(k)2
1

x
(k)
1 x

(k)
2

x
(k)2
2

x
(k)3
1

x
(k)2
1 x

(k)
2

x
(k)
1 x

(k)2
2

x
(k)3
2



· x(k)1 =



x
(k)
1

x
(k)2
1

x
(k)
1 x

(k)
2

x
(k)3
1

x
(k)2
1 x

(k)
2

x
(k)
1 x

(k)2
2

x
(k)4
1

x
(k)3
1 x

(k)
2

x
(k)2
1 x

(k)2
2

x1x
(k)3
2



,356

for every value of k. Multiplication of the first six entries in vk(3) with x
(k)
1 has the357

effect of the selection of entries from vk(3) that is visible in the right-hand side of358

(10). On the other hand, the last four monomials in the right-hand side do not occur359

in vk(3). To formalize things, let S0,S1 ∈ R6×10 denote the row selection matrices360

that select the rows of vk(3) from degree 0 up to d − 1 = 2 and the rows onto which361
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they are mapped after multiplication with x
(k)
1 , respectively:6362

(11) S0V(3)D1 = S1V(3)363

where D1 = diag(x
(1)
1 , . . . , x

(4)
1 ).364

In practice, one cannot readily compute V(3), as this would require knowledge of365

the roots. It is possible however to compute a numerical basis for the null space of366

M(3) by means of standard linear algebra tools (e.g. an orthonormal basis). Stacking367

the numerical basis vectors in K(3) ∈ C10×4, writing K(3) = V(3)C(3)T where C(3)368

is an invertible basis transformation matrix, and plugging into (11), we obtain the369

rectangular GEVD370

(12) S0K(3)C(3)−TD1 = S1K(3)C(3)−T .371

Equation (12) can be converted into the square EVD372

(13) TD1T
−1 = (S0K(3))

†
S1K(3) and T = C(3)−T .373

The eigenvalues correspond to the x1 components of the solutions. The matrix V(3) =374

K(3)T reveals all solution components. Note that this was not possible for the smaller375

Macaulay matrix M(2). Indeed, for d = d∗ the selection matrices S0,S1 ∈ R3×6 lead376

to a (3× 3) EVD that does not reveal m = 4 > 3 solutions.377

3.3. The MHR problem. In this section we introduce the (M)HR problem378

and some relevant properties. This will help us understand how the structure in null379

space of the Macaulay matrix can be exploited.380

Given a matrix W ∈ CI×M , the (1D) HR problem7 consists of finding the factor-381

ization382

(14) W = V(1)CT =

R∑
r=1

v(1)
r

⊗ cr383

where V(1)({zr}Rr=1) ∈ CI×R is (univariate) Vandermonde and C ∈ CM×R is uncon-384

strained, if W admits such a factorization8. Due to its multiplicative shift structure,385

a Vandermonde matrix exhibits an important property called shift invariance [28, p.386

531]: let V
(1)

and V(1) denote the matrix V(1) with its first and last row removed,387

respectively, then388 (
V(1)

V
(1)

)
=

(
v
(1)
1 . . . v

(1)
R

v
(1)
1 z1 . . . v

(1)
R zR

)
=

(
1 1 . . . 1
z1 z2 . . . zR

)
�V(1) def

= V(2,1)�V(1).389

The rth column of V(2,1)�V(1) is the Kronecker product of two vectors. Each such390

6We could as well have considered the multiplication of all rows with x
(k)
2 . In practice, PNLA

suggests to use a linear combination of multiplications with xj , j = 1 : n. Section 9 will show that
there exist means to simultaneously take all variables into account.

7In array processing terminology, we will more specifically discuss the “multichannel 1D HR
problem”.

8For clarity, W is given and both V(1) and C are unknown.
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a column corresponds to a vectorized (2× (I − 1)) rank-1 Hankel matrix391

392

(15)
(
V(2,1)�V(1)

)
r

=

(
1
zr

)
⊗


1
zr
z2r
...

zI−2r

 = vec

((
1
zr

)(
1 zr z2r . . . zI−2r

))
393

= vec

((
1 zr . . . zI−2r

zr z2r . . . zI−1r

))
.394

395

Applying the same process to factorization (14), we obtain396

(16)

(
W
W

)
=

(
V(1)

V
(1)

)
CT =

(
V(2,1)�V(1)

)
CT = Y[1,2;3],397

which is a matrix representation of the (C)PD of a two-slice tensor398

(17) Y =
r
V(2,1),V(1),C

z
=

R∑
r=1

(
1
zr

)
⊗ v(1)

r
⊗ cr ∈ C2×(I−1)×M .399

The process relying on shift invariance, outlined above, is called spatial smoothing;400

it has allowed us to go from the second-order matrix model (14) to the third-order401

tensor model (17).402

Example 3.6. HR is one of the basic problems in signal and array processing.403

Assume R = 2 source signals {cm1} and {cm2}, transmitted at the same discrete time404

instances m = 1, 2, . . . ,M and at the same frequency, but from different locations. Af-405

ter propagation, the signals are captured by a so-called uniform linear array consisting406

of I = 3 antennas, one of the antennas positioned exactly in the middle between the407

other two. We assume that the sources are in the “far field” of the array, meaning408

that the distance from source to array is substantially larger than the array itself. If409

we assemble the observations in a matrix W ∈ CI×M where wim gives the observation410

at antenna i at time m, then the data model which allows one to estimate the original411

source signals is given by412

(18) W = V(1)CT =


(
1
2

)0 (
1
3

)0(
1
2

)1 (
1
3

)1(
1
2

)2 (
1
3

)2
CT =

1 1
1
2

1
3

1
4

1
9

CT
413

where C ∈ CM×2 holds the source signal values and V(1) is the antenna response414

matrix; the latter is a Vandermonde matrix, of which the generators, here chosen415

equal to z1 = 1
2 and z2 = 1

3 , depend on the angles of arrival with which the R = 2416

signals impinge on the M = 2 antennas [25]. Leveraging the shift invariance property417

of V(1), we obtain418

(
V(1)

V
(1)

)
=


1 1
1
2

1
3

1
2

1
3

1
4

1
9

 =

(
1 1
1
2

1
3

)
�
(

1 1
1
2

1
3

)
.419
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Applying the very same spatial smoothing to the observed matrix W, we obtain420 (
W
W

)
= Y[1,2;3]421

which is the matrix representation of a tensor Y ∈ C2×2×2. Re-organizing the observed422

samples wim in such a tensor Y, we obtain the CPD Y =
r
V(2,1),V(1),C

z
, with here423

V(2,1) = V(1). This CPD is unique if rC = 2, i.e. if the two source signals are not424

the same up to scaling.425

Given a tensor W ∈ CI1×I2×...×IN×M , the (N -dimensional) MHR problem con-426

sists of finding the constrained CPD427

(19) W =

R∑
r=1

v(1)
r

⊗ v(2)
r

⊗ . . . ⊗ v(N)
r

⊗ cr =
r
V(1), . . . ,V(N),C

z
428

where V(n)({zr,n}Rr=1) ∈ CIn×R is univariate Vandermonde, n = 1 : N , and C ∈429

CR×M is unconstrained, if W admits such a CPD. Analogous to the third-order case430

(6), the CPD in (19) can be matricized as:431

(20) W[1,2,...,N ;N+1] =
(
V(1)� . . .�V(N)

)
CT ∈ C(

∏N
n=1 In)×M .432

Eq. (20) is a multivariate generalization of the univariate HR problem (14). With all433

factor matrices V(n) Vandermonde, spatial smoothing is possible in each mode. Let434

S
(n)

and S(n) denote the row selection matrices that delete all rows of W[1,2,...,N ;N+1]435

in (20) associated with the top and bottom row of V(n), respectively. Formally, S
(n)

436

and S(n) can be defined as follows. Let IIn ∈ R(In−1)×In and IIn ∈ R(In−1)×In be ex-437

tracted from the identity matrix IIn by deleting the top and bottom row, respectively.438

Then S
(n)

= ⊗n−1p=1 IIp ⊗ IIn⊗Np=n+1IIp and S(n) = ⊗n−1p=1 IIp ⊗ IIn⊗
N
p=n+1IIp . Like spa-439

tial smoothing turned the 2nd-order model (14) into the (2 + 1)th-order model (16),440

exploiting the multiplicative shift structure in the Vandermonde matrix V(n) turns441

the (N + 1)th-order model (20) into the (N + 2)th-order model442

(21) Y(n) =

(
S(n)W[1,2,...,N ;N+1]

S
(n)

W[1,2,...,N ;N+1]

)
=
(
V(2,n)�B(n)

)
CT

443

where444

V(2,n) =

(
1 1 . . . 1
z1,n z2,n . . . zR,n

)
, B(n) =

(
�n−1p=1V(n)

)
�V(n)�

(
�Np=n+1V

(n)
)
.445

This can be expressed in a third-order tensor format, analogous to (17):446

(22)

Y(n) =
r
V(2,n),B(n),C

z
=

R∑
r=1

(
1
zr,n

)
⊗b(n)

r
⊗cr ∈ C2×((

∏n
p=1 Ip)(In−1)(

∏N
p=n+1 Ip))×M ,447

n = 1 : N . Let us take a step back here. So far, the 1-dimensional and N -dimensional448

case are not too different. By exploiting the structure of the problem, spatial smooth-449

ing allowed us to increase the order of the factorization by 1. The true difference450
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1

z1

z21

z31

1 z2 z22 z32

(a)

1

x1

x21

x31

1 x2 x22 x32

(b)

Fig. 2: Illustration of the difference between the products that appear in MHR (Sec-
tion 3.3) and the products that determine the Macaulay null space (Section 3.2) for
the case N = n = 2 and I1 = I2 = 4. (a) The (4 × 4) square represents all products
that appear in the outer product of the univariate Vandermonde vectors generated
by z1 and z2. The dark and light shaded entries correspond to the rows of B(1) and
B(2) in (21), respectively. Clearly, B(1) 6= B(2). (b) The triangle as a whole repre-
sents the rows of the multivariate Vandermonde matrix V(3) in (9), which correspond
to the 10 monomials of degree d ≤ 3. The filled entries correspond to the rows of

B(2)
def
= V(2) = B(j)(2), j = 1 : 2, in (27).

arises if we exploit the structure not just once, but N times. Considered together,451

the
{
Y(n)

}N
n=1

in (22) admit a coupled CPD where the coupling takes place through452

the third factor matrix C. An algebraic method to reduce such a coupled CPD to a453

matrix GEVD is given in [29, Algorithm 1]. By exploiting the structure in all modes454

together, [28] has derived the most relaxed MHR uniqueness conditions to date.455

4. From the Macaulay null space to coupled CPD. In the previous section456

we have displayed the ingredients needed to establish a connection between the struc-457

ture in the null space of the Macaulay matrix and the CPD structure in the MHR458

problem. In this section we will explain how the roots of (1) can be obtained from a459

coupled CPD that is derived from the Macaulay null space. In section 5 the coupled460

CPD will be reduced to a single CPD.461

From Example 3.4, we know that the null space of M(d) (at least for d ≥ d∗) is462

generated by m multivariate Vandermonde vectors. Consistent with subsection 2.3463

we stack these vectors in the multivariate Vandermonde matrix464

(23) V(d) =
(
v1(d) . . . vm(d)

)
∈ Cq(d)×m.465

Further,466

(24) V(j)(d) =
(
v
(j)
1 (d) . . . v

(j)
m (d)

)
∈ C(d+1)×m

467

denotes the univariate Vandermonde matrix of which the kth column is generated by468

the jth coordinate of the kth root x
(k)
j , k = 1 : m, j = 1 : n.469

To contrast the derivation in the present section with the discussion in Section470

3.3, and in particular with the structure in (20), note that vk(d) 6= v
(1)
k (d) ⊗ · · · ⊗471

v
(n)
k (d). Indeed, the entries of vk(d) correspond to all the monomials up to degree d,472

while v
(1)
k (d) ⊗ · · · ⊗ v

(n)
k (d) also involves monomials of higher degree, but not all of473
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them. (Compare (2) and (3); the difference is also illustrated in Figure 2.) Similarly,474

the multivariate Vandermonde matrix V(d) holds only the rows of the Khatri–Rao475

product V(1)(d)� · · ·�V(n)(d) that correspond to the monomials up to degree d (and476

in a different order). Formally, we have477

(25) V(d) = S(d+1)n→q(d)

(
V(1)(d)� · · ·�V(n)(d)

)
∈ Cq(d)×m478

where S(d+1)n→q(d) ∈ Cq(d)×(d+1)n denotes the row selection and ordering matrix that479

(i) selects all rows of the Khatri–Rao product that correspond to the q(d) monomials480

from degree 0 up to degree d and (ii) permutes these rows to the degree negative481

lexicographic order.482

In practice, it is a numerical basis of null (M(d)) that will be computed. The483

matrix K(d) ∈ Cq(d)×m in which such a numerical basis is stacked, is related to the484

matrix of multivariate Vandermonde vectors V(d) by an invertible transformation:485

K(d) = V(d)C(d)T .9 Substitution of (25) yields the following variant of the MHR486

model (20):487

(26) K(d) = S(d+1)n→q(d)

(
V(1)(d)� · · ·�V(n)(d)

)
C(d)T ∈ Cq(d)×m.488

Note that the matrix C(d) is square and that its size corresponds to the number489

of solutions to the polynomial system, i.e. in the notation of Section 3.3 we have490

M = R = m.491

Now let us investigate the counterpart of the coupled CPD in (22). As in Section492

3.3, we can apply spatial smoothing in each mode, i.e., for each variable xj . Let493

S
(j)

(d − 1) ∈ Cq(d−1)×q(d) and S(j)(d − 1) ∈ Cq(d−1)×q(d) denote two additional row494

selection matrices (i.e. they implement a further selection, on top of the selection by495

S(d+1)n→q(d) in (26)). The matrix S(j)(d− 1) selects all the rows that correspond to496

the q(d − 1) monomials from degree 0 up to degree d − 1, so that globally S(j)(d −497

1) · S(d+1)n→q(d) = S(d+1)n→q(d−1). Note that S(j)(d − 1) is the same for all j. On498

the other hand, the matrix S
(j)

(d − 1) does depend on j; it selects all the rows that499

correspond to the q(d − 1) monomials up to degree d that have at least degree 1 in500

xj . In Figure 2b, S(1)(2) = S(2)(2) would select the filled entries, S
(1)

(2) the filled501

entries shifted one position down and S
(2)

(2) the filled entries shifted one position to502

the right.503

Exploiting the multiplicative shift structure in the corresponding univariate Van-504

dermonde matrix V(j)(d) yields505

(27) Y(j) =

(
S(j)(d− 1) ·K(d)

S
(j)

(d− 1) ·K(d)

)
=
(
V(2,j)�B(d− 1)

)
C(d)T ∈ C(2·q(d−1))×m

506

where507

V(2,j) =

(
1 1 . . . 1

x
(1)
j x

(2)
j . . . x

(m)
j

)
∈ C2×m

508

9Perhaps less obviously, C(d) depends on d as well. Indeed, the q(d− 1) top rows of V(d) equal
the rows of V(d − 1), but this does not hold for the computed K(d) and K(d − 1). For instance,
K(d − 1) and C(d − 1)−T could be the orthogonal and triangular factor in a QR-factorization of
V(d − 1); it is clear that C(d − 1)−T does not necessarily orthogonalize the larger matrix V(d) as
well.
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and B(d− 1) = V(d− 1) ∈ Cq(d−1)×m contains the top rows of V(d) that correspond509

to the q(d − 1) monomials from degree 0 up to degree d − 1. Expressing (27) in a510

third-order tensor format, similar to (22), yields:511

Y(j) =
r
V(2,j),B(d− 1),C(d)

z
(28)512

=

m∑
k=1

(
1

x
(k)
j

)
⊗ bk(d− 1) ⊗ ck(d) ∈ C2×q(d−1)×m, j = 1 : n.513

Equations (27)/(28) and (21)/(22) are similar but there is important difference:514

the matrix B(d − 1) in (27)/(28) is the same for all j. More precisely, we have515

B(d− 1)
def
= V(d− 1) = B(j)(d− 1), j = 1 : n. Indeed, to ensure that the rows, onto516

which the rows of B(d − 1) are mapped after multiplication with the second row of517

V(2,j), occur in K(d), we need to remove all rows of degree d — rather than only518

the rows in which xj has degree d, as was the case in Section 3.3. Consequently, the519

matrices
{
Y(j)

}n
j=1

in (27) have their first q(d − 1) rows in common; these are the520

rows of V(d − 1)C(d)T . In Figure 2b the rows of V(d − 1) correspond to the filled521

entries.522

Example 4.1. Consider again V(3) in Example 3.5. We have523

V(2,1) =

(
1 1 1 1

x
(1)
1 x

(2)
1 x

(3)
1 x

(4)
1

)
=

(
1 1 1 1
0 1 3 4

)
524

and, using Matlab notation for indexing,525

B(2)
def
= B(1)(2) = B(2)(2) = V(2) =

(
v1(2) v2(2) v3(2) v4(2)

)
= V(3)(1 : 6, :),526

where the rows of the latter correspond to the black triangle in Figure 2b. It is easy527

to verify that528

529

(29)
(
V(2,1)�B(2)

)
C(3)T =

(
1 · v1(2) 1 · v2(2) 1 · v3(2) 1 · v4(2)
0 · v1(2) 1 · v2(2) 3 · v3(2) 4 · v4(2)

)
C(3)T530

=



1 1 1 1
0 1 3 4
−1 0 −2 −5
0 1 9 16
0 0 −6 −20
1 0 4 25
0 1 3 4
0 1 9 16
0 0 −6 −20
0 1 27 64
0 0 −18 −80
0 0 12 100



C(3)T =

(
S(1)(2) ·K(3)

S
(1)

(2) ·K(3)

)
= Y(1).531

532

Note that533

S(1)(2) =
(
Iq(2) 0q(2)×(4

3)

)
=
(
I6 06×4

)
534
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deletes all rows from K(3) (and V(3), see (9)) associated with the entries that are535

white in Figure 2b. On the other hand,536

S
(1)

(2) =


0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0

537

deletes all rows associated with the entries that are white after shifting the black tri-538

angle down over one position. (Like-wise, S
(2)

(2) deletes all rows associated with the539

entries that are white after shifting the black triangle to the right over one position.)540

5. From coupled CPD to CPD. When considered together, the tensors541 {
Y(j)

}n
j=1

in (28) admit a coupled CPD. Unlike the coupled CPD (22) that we ob-542

tained for MHR in Section 4, the coupled CPD for polynomial equations in (28) can543

easily be reduced to a single CPD of a third-order tensor, which in turn can be com-544

puted by means of a matrix GEVD. In subsection 5.1 we first consider the case of545

only affine roots. In subsection 5.2 we also allow roots at infinity.546

5.1. Simple affine case. Because the Y(j) do not only have the third factor547

matrix C(d) in common but also the second factor matrix B(d− 1), simple stacking548

yields:549

(30) Ystack
[1,2;3]

def
=


Y(1)

Y(2)

...
Y(n)

 =




1 1 . . . 1

x
(1)
1 x

(2)
1 . . . x

(m)
1

...
...

...
1 1 . . . 1

x
(1)
n x

(2)
n . . . x

(m)
n

�B(d− 1)

C(d)T .550

Dropping the redundant rows of the first factor matrix in (30) and the corresponding551

redundant rows of Ystack
[1,2;3], we obtain:552

Y[1,2;3]
def
=


S(1)(d− 1) ·K(d)

S
(1)

(d− 1) ·K(d)
...

S
(n)

(d− 1) ·K(d)

(31)553

=




1 1 . . . 1

x
(1)
1 x

(2)
1 . . . x

(m)
1

...
...

...

x
(1)
n x

(2)
n . . . x

(m)
n

�B(d− 1)

C(d)T554

= (V(1)�V(d− 1)) C(d)T ∈ C(n+1)·q(d−1)×m.555

In the third-order tensor format we have:556

(32) Y = JV(1),V(d− 1),C(d)K =

m∑
k=1

vk(1) ⊗ vk(d− 1) ⊗ ck(d) ∈ C(n+1)×q(d−1)×m;557

see Figure 3 for an illustration.558
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x2

x1

1

1 x1 x2 x
2
1x1x2x

2
2

=

c1

 1

x
(1)
1

x
(1)
2


b1(d− 1) + · · ·

Fig. 3: The horizontal slices of the third-order tensor Y ∈ C(n+1)×q(d−1)×m in (32),
for n = 2, d = 3 and m = 4, contain the rows that correspond to the filled entries in
Figure 2b, the entries shifted one position downwards (x1) and the entries shifted one
position to the right (x2), respectively.

5.2. Simple projective case. Let us now drop the constraint that there are559

only affine roots. Equations (31) and (32) admit the projective interpretation:560

Y[1,2;3] =


S
(0)

(d− 1) ·K(d)

S
(1)

(d− 1) ·K(d)
...

S
(n)

(d− 1) ·K(d)

(33)561

=



x
(1)
0 x

(2)
0 . . . x

(m)
0

x
(1)
1 x

(2)
1 . . . x

(m)
1

...
...

...

x
(1)
n x

(2)
n . . . x

(m)
n

�Bh(d− 1)

C(d)T562

=
(
Vh(1)�Bh(d− 1)

)
C(d)T ∈ C((n+1)·q(d−1))×m,563

564
(34)

Y =
q
Vh(1),Vh(d− 1),C(d)

y
=

m∑
k=1

vhk(1) ⊗ vhk(d− 1) ⊗ ck(d) ∈ C(n+1)×q(d−1)×m,565

respectively, in which566

S
(0)

(d− 1)
def
= S(1)(d− 1),567

and Bh(d)
def
= Vh(d) =

(
vh1 (d) . . . vhm(d)

)
∈ Cq(d)×m with568

569

(35) vhk(d) =
(
Vh(d)

)
k

def
=570 (

x
(k)d
0 x

(k)d−1
0 x

(k)
1 . . . x

(k)d−2
0 x

(k)2
1 x

(k)d−2
0 x

(k)
1 x

(k)
2 . . . x

(k)d
n

)T
∈ Cq(d).571

572

Recall from subsection 3.1 that CPD is always subject to trivial scaling indeter-573

minacies, i.e., the corresponding columns of the different factor matrices can be574

scaled/counterscaled as long as the overall rank-1 terms do not change. These in-575

determinacies can now be interpreted very naturally as scaling equivalences in the576

coordinates of a solution point in the projective space Pn. In (33), (34) roots at in-577

finity are handled in the same way as affine roots. The only difference is whether the578

value x
(k)
0 = 0 or not.579
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5.3. Computing only affine roots. In practice, computing only the affine580

roots might be sufficient as the roots at infinity are typically of less interest. In [13, 12]581

strategies are proposed that restrict the computation to the affine roots only. Having582

computed a null space basis K(d) of M(d), one can separate the parts associated583

to the roots at infinity and the affine roots by a column compression of K(d). The584

number ma ≤ m of affine roots corresponds to the cardinality of the set of affine585

standard monomials [1], a subset of the set of standard monomials associated to the586

linearly independent rows of K(d). As shown in [12, 1] a precise knowledge of those587

sets is not needed since ma can be read off easily from M(d) by basic rank decisions.588

As a matter of fact, this detection can already be done during the construction of the589

numerical null space [1, Alg. 5.1]. Define p
def
= q(d̂), where d̂ is the highest degree590

within the affine standard monomials. Let K(d) =
(
KT

1 KT
2

)T
with K1 ∈ Cp×m be591

a corresponding partition of K(d) and let K1 = UΣQT denote the SVD of K1. Then592

K̂
def
= K(d)Q =

(
K̂11 0

K̂21 K̂22

)
593

yields K̂11 ∈ Cp×ma , containing all the required information for the ma ≤ m affine594

roots. PNLA then continues the GEVD-based root finding as illustrated in Exam-595

ple 3.5 using K̂11 and appropriate selection matrices associated with the reduced596

degree d̂, see [12, Theorem 6.10]. For our approach this entails using K̂11 and S
(j)

(d̂),597

S(j)(d̂− 1) in (31).598

Alternatively, since the roots at infinity correspond to the highest degree stan-599

dard monomials, one can work with a reduced Macaulay matrix where the associated600

columns have been discarded.601

The potential downside of both approaches is that they may still require the con-602

struction of a relatively large Macaulay matrix (and the computation of its null space)603

in order to extract a possibly small number ma of affine roots. For computational604

efficiency it would be desirable to a priori deflate roots at infinity from the system.605

We leave this issue for future research.606

6. CPD, GEVD and NPA for d ≥ d∗ + 1.607

6.1. CPD and GEVD. In the case d ≥ d∗ + 1, the CPD in (32)/(34) can608

directly be connected to Theorem 3.1.609

Theorem 6.1. Let Y[1,2;3] ∈ C((n+1)·q(d−1))×m be derived from M(d) with d ≥610

d∗ + 1 as in subsection 5.1/subsection 5.2. Then rY = m and the CPD of Y in611

(32)/ (34) is unique.612

Proof. It suffices to show that all the conditions in Theorem 3.1 are satisfied for613

decomposition (32) if d ≥ d∗ + 1. For (34) it suffices to add the superscript ·h.614

• If all roots are simple, then no columns in V(1) are collinear: kV(1) ≥ 2.615

• If all roots are simple and d ≥ d∗, then K(d) is related to V(d) by K(d) =616

V(d)C(d)T in which C(d) ∈ Cm×m is invertible and thus C(d) has full column617

rank m.618

• The m standard monomials correspond to the linearly independent rows of619

V(d). At least one standard monomial has exactly degree d∗, meaning that620

d ≥ d∗ + 1 guarantees that dim row (V(d− 1)) = dim row (V(d∗)) = m, such621

that also V(d− 1) ∈ Cq(d−1)×m has full column rank m.622
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Since for d ≥ d∗ + 1 the conditions in Theorem 3.1 are satisfied, the CPD of Y623

is not only unique; it can be computed by a matrix GEVD, cf. the discussion in624

subsection 3.1.625

6.2. Connection with NPA. The ESPRIT-like reasoning in section 4 allows626

us to further interpret (32). As illustrated in Example 3.5, the exploitation of the627

multiplicative shift structure in x1 in the null space of the Macaulay matrix derives628

from the system of polynomial equations a single rectangular GEVD or a single square629

EVD (for the example, given in (12) and (13), respectively). The exploitation of the630

multiplicative shift structure in all variables in the CPD of the (n+1)-slice third-order631

tensor Y in (32) can be interpreted as the joint EVD of n matrices. Corollary 6.3632

below demonstrates that there is in fact a tight connection between (32) and the633

joint diagonalization of the n so-called “multiplication tables”
{
Axj

}n
j=1

in NPA’s634

Theorem 6.2 in the simple affine case.635

Theorem 6.2 (Central Theorem of NPA). [30, Theorem 2.27] Let the system636

of polynomials F have m0 ≤ m disjoint roots. Consider the family of multiplication637

tables
{
Axj

}n
j=1

. The matrix Ah ∈ Cm×m represents a multiplication with the residue638

class [h] in the m-dimensional quotient ring Cn/I = Cn/〈F〉 w.r.t. an arbitrary basis,639

e.g., the normal set denoted by {[tk]}mk=1:640

φh : Cn/I → Cn/I :

 [t1]
...

[tm]

 7→
 [h · t1]

...
[h · tm]

 = Ah

 [t1]
...

[tm]

 .641

For each µk-fold root x(k), k = 1 : m0, the matrices Axj have x
(k)
j as an eigenvalue of642

multiplicity µk and the associated joint eigenvector643 (
[t1(x(k))] . . . [tm(x(k))]

)T ∈ span (Xk) .644

Here, span (Xk) denotes the associated joint invariant subspace of dimension µk, such645

that646

(36) Axj

(
X1 . . . Xm0

)
=
(
X1 . . . Xm0

)Txj,1 0
. . .

0 Txj,m0

 ,647

where Txj,k
∈ Cµk×µk is upper-triangular with diagonal entries x

(k)
j .648

If m0 = m, i.e. if all roots are simple, then Theorem 6.2 implies that (36) is an649

EVD and that the set of matrices
{
Axj

}n
j=1

is jointly diagonalizable.650

Corollary 6.3. Let the polynomial system F have m roots and let the column651

echelon basis of null(M(d)) be stacked in the matrix H(d).10 Consider the third-order652

tensor H(d) ∈ Cn×m×m with matrix representation653

H[1,2;3](d) =


Ŝ
(1)

(d− 1) ·H(d)
...

Ŝ
(n)

(d− 1) ·H(d)

 ∈ C(n·m)×m,654

10The matrix H(d) ∈ Cq(d)×m is such that its top m rows form Im, see Example 6.4 for an
illustration.
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where Ŝ
(j)

(d− 1) denotes the row selection matrix that selects the rows of H(d) onto655

which the m standard monomials are mapped after multiplication with xj. If656

1. all roots are simple,657

2. all roots are affine and658

3. d = d∗ + 1,659

then the n slices
{

Hj(d)
def
= H(j, :, :)(d)

}n
j=1

are equal to the n multiplication tables660

w.r.t. the normal set basis for the quotient ring Cn/〈F〉.661

Proof. The structure in (31) does not rely on the specific choice662

K(d) = V(d)C(d)T that is made for the basis of null(M(d)), so the CPD (32) holds663

for K(d) = H(d) as well and664

Hj(d) = B̂(d− 1) ·Dj(V(2 : n+ 1, :)) ·C(d)T .665

The matrix B̂(d − 1) ∈ Cm×m contains the m rows of B(d − 1) ∈ Cq(d−1)×m that666

correspond to the m standard monomials. At least one standard monomial has exactly667

degree d∗, meaning that one needs to choose d = d∗ + 1 for B(d − 1) to contain668

the rows corresponding to all standard monomials. Let V(d) = H(d)T where T =669 (
t1 . . . tm

)
∈ Cm×m is an invertible transformation matrix and C(d)T = T−1.670

[15, Proposition 1] shows that tk contains the m standard monomials evaluated at671

the solution x(k). From this, B̂(d− 1) = T and672

(37) Hj(d) = T diag(x
(1)
j , . . . , x

(m)
j )T−1 = Axj

, j = 1 : n,673

where the last equality is implied by Theorem 6.2 for simple affine roots.674

We give an example that connects the insights that have emerged for multivariate675

polynomial equations to the basic univariate case.676

Example 6.4. Consider the univariate polynomial equation of degree d = 2677

(38) f(x) = adx
2 + ad−1x+ ad−2 = x2 + a1x+ a0 = x2 − 5

6
x+

1

6
= 0.678

Flipping the columns of fT =
(

1 − 5
6

1
6

)
from left to right and reduction to the

row echelon form
x2 x 1

( )1 0 0

yields the normal set {1, x} as the monomials associated with the last two columns.679

The Frobenius companion matrix of f (with ad = 1)680

Ax
def
=

(
0(d−1)×1 Id−1
−a0 . . . − ad−1

)
=

(
0 1
− 1

6
5
6

)
681

can be interpreted as the matrix that describes the effect of multiplying {1, x} with682

h = x in terms of {1, x}, i.e. as a multiplication table:683

x · (1 · 1 + 0 · x) = 0 · 1 + 1 · x684

x · (0 · 1 + 1 · x) = 1 · x2 = −1

6
· 1 +

5

6
· x.685

The m = d = 2 simple roots x(1) = 1
2 and x(2) = 1

3 of f are obtained as the isolated686

eigenvalues of the multiplication table Ax.687
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Next, as mentioned in the proof of Corollary 6.3, Y[1,2;3] in (31) may be con-688

structed from H(2) as a special case of K(2) = V(2)C(2)T :689

(39) Y[1,2;3] =

( (
I2 02×1

)
·H(2)(

02×1 I2
)
·H(2)

)
=

(
H(2)

H(2)

)
=


1 0
0 1
0 1
− 1

6
5
6

 .690

It is easy to verify that Y can be written as Y = JV(1),V(1),C(2)K where691

V(1) =

(
1 1
1
2

1
3

)
and C(2) =

(
−2 3
6 −6

)
.692

The factor matrices in the two-slice CPD follow from the GEVD of the matrix pencil693

(Y(1, :, :),Y(2, :, :)) =
(
H(2),H(2)

)
. As H(2) = I2 and H(2) = Ax, the GEVD694

matches the EVD of Ax.695

Note that, for the univariate polynomial equation (38), H(2) = V(2)C(2)T is an696

instance of the 1D HR problem (14) in subsection 3.3 and that (39) corresponds to697

its spatially smoothed variant (16).698

Let us also contrast the way the projective case is handled in (34) to PNLA.699

PNLA proposes some “artificial” solutions to cope with roots at infinity: either the700

affine roots are separated from the roots at infinity in K(d) at a degree d � d∗ or701

projective shift relations are introduced to make the EVD work [15].702

7. CPD and GEVD for d ≥ d∗. So far, we have obtained the insightful tensor703

CPD interpretation in (32)/(34), which comes with numerical tensor algorithms and704

a uniform way of handling affine roots and roots at infinity. However, section 6 hasn’t705

really offered new or less restrictive working conditions than NPA. We will take this706

step in the present section. Recall that NPA works with the Macaulay matrix M(d)707

at d = d∗ + 1. It turns out that in the CPD approach it is possible to work with the708

smaller Macaulay matrix M(d) at d = d∗.709

Theorem 7.2 establishes the generic uniqueness of (34) at a degree d ≥ d∗.710

A generic uniqueness condition is meaningful, as in Part I our assumption of a 0-711

dimensional solution set with m solutions in the projective space and assumption (i)712

of only simple roots were in fact already generic. First, Definition 7.1 draws from [11]713

to explain when we say that decomposition (33) is generically unique.714

Definition 7.1. Let Ω ⊂ Cm·(n+1) be the subset of vectors with m(n+1) entries,715

where all m roots of a set of n homogeneous polynomials in n+1 variables are stacked716

vertically. Let z ∈ Ω contain the roots of a system of n homogeneous polynomials in717

n + 1 variables11 and let µm·(n+1) be a measure that is absolutely continuous w.r.t.718

the Lebesgue measure on Cm·(n+1). The CPD (34) is generically unique iff719

720

(40) µm·(n+1){z ∈ Ω | the CPD of the tensor721

Y =
q
(Vh(1))(z), (Bh(d− 1))(z), (C(d))(z)

y
in (34) is not unique} = 0.722723

724

Let us have a look at how the factor matrices depend on the parameter vector z.725

First, as Vh(1) holds all the roots, we simply have z = vec(Vh(1)). The dependence726

11The restriction to Ω is necessary, since not every choice of m points in Cn+1 devises the solution
set of a system of n polynomial equations of degree d0 if d0 < m [17].
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of Bh(d− 1) on (z) follows from (35). We do not make any assumptions on how C(d)727

depends on z.728

We now establish generic uniqueness of the CPD in (34) for d down to d = d∗.729

The theorem involves a bound on m that is little restrictive, as we will clarify in730

section 9.731

Theorem 7.2. Let Y ∈ C(n+1)×q(d−1)×m admit a PD of the form (34), then732

generically rY = m and the CPD unique if733

(41) d ≥ d∗ and m ≤ mmax(d)
def
=

(
n+ d

n

)
− n− 1.734

735

Proof. To show the sufficiency of (41), we resort to an algebraic geometry-based736

tool for checking generic uniqueness of structured matrix factorizations of the form737

Y(z) = M(z)C(z)T , in which the entries of M(z) can be parametrized by rational738

functions of z, see [11, Theorem 1].739

From (34), the parameters are taken equal to z =
(
x
(1)
0 . . . x

(m)
n .

)T
On the740

other hand, the entries of M(z) = Vh(1)�Bh(d− 1) take the form
∏n
j=0 x

(k)αj

j . The741

latter are monomials and thus rational functions of z. [11, Theorem 1] states that the742

structured matrix factorization is generically unique if the number of rank-1 terms m743

is bounded by m ≤ N̂ − l̂, where the meaning of N̂ and l̂ will be clarified below.744

• N̂ is a lower bound on the dimension of the vector space spanned by arbitrary745

column vectors of M(z), i.e. by arbitrary vectors of the form vh(1)⊗bh(d−746

1). The distinct entries in vh(1)⊗bh(d−1) are the same as the distinct entries747

in vh(1)⊗ . . .⊗vh(1)︸ ︷︷ ︸
d times

, which in turn are the entries in vh(d), so N̂ ≤ q(d).748

We will show that N̂ = q(d). Let749

(42) x
(k)
0 = 1 and x

(k)
j = e2π·i·

k−1
q(d)
·(
∑j−1

l=0 d
l), k = 1 : q(d).750

Then Vh(1)� . . .�Vh(1)︸ ︷︷ ︸
d times

∈ C(n+1)d×q(d) and751

Vh(1)�Bh(d− 1) ∈ C((n+1)·q(d−1))×q(d) contain q(d) distinct rows of a Van-752

dermonde matrix with the q(d) different generators x
(k)
1 in (42), which span753

the entire q(d)-dimensional space [21, Proposition 4]. Hence, N̂ = q(d).754

• l̂ is an upper bound on the number of parameters needed to parametrize a755

vector vh(1)k ⊗bhk(d− 1), so l̂ = n+ 1 is equal to the number of components756 {
x
(k)
j

}n
j=0

.757

In the proof of Theorem 7.2 the use of [11, Theorem 1] leads only to (41) because758

(33) exploits the multiplicative shift structure contained in all modes of (25).12 In759

other words, we owe the bound to the simultaneous exploitation of the shift structure760

in all modes. NPA does not allow such a result, as it essentially exploits only one761

shift structure13.762

12The same argument actually proves [28, (26)] for MHR. The bound for R there and the bound
for m here are very similar. Only q(d) needs to be replaced by

∏n
j=1 Ij = (d + 1)n: q(d) is exactly

the number of rows that is selected by S(d+1)n→q(d) ∈ Cq(d)×(d+1)n in (26) or the number of rows
left when going from Figure 2a to 2b.

13Similarly, MHR approaches that exploit the shift invariance in only one mode do not reach the
bound in [28, (26)].
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The conditions in Theorem 7.2 do not guarantee that two factor matrices have763

full column rank, i.e., the CPD of Y does not necessarily satisfy the conditions in764

Theorem 3.1. On the other hand, the conditions in Theorem 7.2 do guarantee that765

the conditions in Theorem 3.2 are generically satisfied. (In the discussion of CPD766

uniqueness in [26, Section IV], this corresponds to the fact that [26, Theorem 5]767

implies [26, Theorem 6].) We conclude from subsection 3.1 that, under the generic768

conditions in Theorem 7.2, the CPD of Y is not only unique; via an overdetermined769

set of linear equations it can be reworked into an auxiliary CPD that does satisfy770

the conditions in Theorem 3.1, and the latter can be reduced to a matrix GEVD.771

In a particular (non-generic) case, the conditions in Theorem 3.2 may be verified for772

A = Vh(1) and B = Bh(d− 1).773

8. Algorithm. The goal of this section is to put the theoretical insights from774

the previous sections to the fore.775

Algorithm 1 CPD for multivariate polynomial root-finding

Input: A system fi ∈ Cndi , i = 1 : n, in the n+1 projective unknowns xj ∈ C, j = 0 : n,
with m0 = m simple roots.

Output:
{
x(k)

}m
k=1

1: Choose d ≥ d0 = maxi di.
2: Construct M(d).
3: K(d)← null (M(d)).

4: Build Y slice-wise by row selection Y(j + 1, :, :)← S
(j)

(d− 1) ·K(d), j = 0 : n.
5: Compute the SVD Y[2;1,3] = U(2) · S(2) ·U(1,3)H .

6: Orthogonal compression: Yc ← Y ·2 U(2)H .
7: Compute the CPD Yc = JA,Bc(d− 1),C(d)K .
8: Columnwise scaling: X←∼ A.
9: return X

Algorithm 1 summarizes the polynomial root-finding procedure implied by the776

derivation in the previous sections. Although the sequence of steps matches the777

derivation closely, the comments below are in order.778

Step 1. d0 is the minimum value needed to construct M(d), according to Defini-779

tion 3.3. If further one takes d ≥ d∗, Algorithm 1 can determine the roots of a generic780

system (section 6) and if one takes d ≥ d∗ + 1, the roots will be found in all cases781

(section 7).782

Steps 2–3. The Macaulay matrix M(d) quickly becomes large while on the783

other hand it is sparse [12]. Instead of constructing M(d) explicitly and calculating784

K(d) using dense linear algebra tools, e.g., the SVD-based null command in Matlab,785

one may resort to numerical algorithms for sparse matrices, such as the sparse QR786

algorithm in [6]. An alternative is to not construct M(d) explicitly: [1, Algorithm 4.2]787

is a recursive orthogonalization scheme that exploits the sparsity properties of M(d)788

to obtain K(d) via updating.789

Steps 5–6. The matrix B(d − 1) quickly becomes very tall: the number of790

columns m is fixed, while the number of rows grows as q(d−1) ≈ 1
n! (d−1)n � m. To791

reduce the cost of the computation in Step 7, we may replace Y by an orthogonally792

compressed variant Yc = Y ·2 U
(2)H
c . This compression is lossless iff col(Y[2;1,3]) ⊆793

col(U(2)). A numerical basis of minimal size m is given by the m dominant left794

singular vectors of Y[2;1,3], i.e. we can take U(2) ∈ Cq(d−1)×m equal to the matrix795
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of left singular vectors in the “economic size” SVD of Y[2;1,3]. Such a dimensionality796

reduction is a common preprocessing step in tensor computations [8, 26, 4]. Note that797

(Yc)[2;1,3] = S(2) ·U(1,3)H , i.e. Yc ∈ C(n+1)×m×m can be obtained by tensorizing the798

matrix S(2) ·U(1,3)H .799

Step 7. The core of Algorithm 1 is the computation of the CPD of Yc. If800

d ≥ d∗ + 1, the CPD of Yc can directly be found from a matrix GEVD (section 6801

and Theorem 3.1). If d = d∗ and the conditions in Theorem 3.2 are satisfied (which802

is generically the case for d = d∗), an auxiliary CPD is derived first. The factor803

matrices of the auxiliary CPD can then be found from a matrix GEVD (section 7).804

The procedure is detailed in [7].805

Approximate roots of a noisy polynomial system may be estimated by means of numer-806

ical optimization-based CPD algorithms such as nonlinear least squares (NLS) [27].807

GEVD may provide a starting value for the optimization. In optimization algorithms808

prior knowledge about the roots (e.g. nonnegativity) can be imposed as constraints809

on A and/or B(d − 1) [26]. The compression in steps 5–6 allows a reduction of the810

computational cost of the numerical optimization, also in constrained cases [39]. For811

a further discussion of CPD algorithms we refer to [39, 26] and references therein.812

Step 8. As is clear from both (31) and (33), the m simple roots of the polynomial813

system appear in the first factor matrix. To distinguish between affine roots and roots814

at infinity, we normalize each column x(k) to its affine counterpart (x
(k)
0 = 1) iff x

(k)
0 ≥815

τ‖x(k)‖, given some tolerance τ . Eventually we obtain X =
(
x(1) . . . x(m)

)
∈816

C(n+1)×m.817

Table 1 gives an overview of the computational cost of the different steps of818

Algorithm 1. The derivation is given in Appendix A. Figure 4 shows a concrete819

example. We note the following:820

• Although in general tensor problems suffer from the curse of dimensionality,821

this needs to be interpreted with some care. When solving sets of polynomial822

equations, the curse of dimensionality does not reside in the computation823

of the third-order CPD but in the size of M(d), which is the same for all824

Macaulay matrix based methods. Not step 7 but steps 3 and 2 are the825

bottleneck in Figure 4a and 4b, respectively.826

• The possibility in our approach to take d = d∗ < d∗ + 1, and hence to work827

with a smaller Macaulay matrix, conveys a far from marginal improvement828

of the bottleneck. The gain in steps 3 and 2 compensates the higher cost of829

the NLS algorithm that replaces the GEVD in step 7.830

9. Experimental results. This section contains the results of some numerical831

experiments that illustrate the potential of our approach.832

9.1. Uniqueness. Theorem 7.2 states that the CPD in step 7 in Algorithm 1833

is generically unique if one takes d ≥ d∗ and if m ≤ mmax(d). Turned the other834

way around, Algorithm 1 will generically find the polynomial roots if d ≥ d∗ and835

m ≤ mmax(d). Table 2 shows the degree of regularity d∗, the Bézout number m836

and mmax(d) for systems of n multivariate polynomial equations of degree d0 in n837

affine variables, for various combinations of n and d0. The table indicates that the838

condition m ≤ mmax(d) is little restrictive at the minimally necessary degree d = d∗.839

Only for bivariate quadratic systems it is not satisfied (n = d0 = 2). Moreover, the840

gap between m and mmax(d) increases with n and d0.841

These findings are confirmed by numerical experiments. By way of example, Fig.842
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Table 1: Complexity and memory usage of Algorithm 1. The Macaulay matrix M(d) ∈
Cp×q(d) and q = q(d − 1). The cost in step 3 is given for the computation of K(d)
by the SVD-based null command in Matlab. In step 7, “it” denotes the number of
iterations of the NLS algorithm.

Step Complexity (flop) Memory usage (el.)

2 pq
3 O

(
2pq2

)
5 O

(
2qn2m2

)
6 O

(
2qnm2

)
7

GEVD O
(
30m3

)
nm2

NLS O
(
it
(
6n+O

(
102
))
m3
)

3 5 6
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Fig. 4: Illustration of (a) computational complexity and (b) memory requirements of
the different steps of Algorithm 1, detailed in Table 1. For the example we take n = 4,
di = d0 = 4, i = 1 : 4. We consider both d = d∗ = 12 (filled) and d = d∗ + 1 = 13
(white). We set it = 10, as this is usually sufficient.

5 shows histograms over 200 Monte Carlo simulations of the relative forward error843

(43) εX̂ =
‖X̂−X‖
‖X‖

844

on the estimated solution X̂ of random polynomial systems with n = 3 and d0 =845

3. The systems are generic in the sense that all their coefficients have been drawn846

independently from the standard Gaussian distribution with mean 0 and standard847

deviation 1. The CPD in Step 7 of Algorithm 1 is computed by the algorithm in [7],848

which we denote as “SD”. For this we used the cpd3 sd function of Tensorlab [40].849

For the CPD of the auxiliary tensor, we used the extended QZ iteration in [35, 9].850

The reference solution X in (43) is obtained with the general purpose homotopy851

continuation-based solver from PHCPACK [38]. In Figure 5, we let d vary between852

d0 = 3 and d∗ + 1 = 7. We observe the following:853

• d ≥ d∗ is indeed necessary and generically sufficient to retrieve the correct854

roots up to machine precision.855

• Remarkably, even if d < d∗, i.e. if rK(d) = ν < m, the SD algorithm retrieved856

most roots with a reasonable accuracy (about half the machine precision).857
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Table 2: Values of d∗ =
∑n
i=1 di−n = n · (d0−1), m =

∏n
i=1 di = dn0 and mmax(d∗) =(

n+d∗

n

)
− n − 1 for systems of polynomial equations in n affine variables with di =

d0, i = 1 : n. Only for n = d0 = 2 we have m > mmax(d∗) (underlined).

d0 2 3 4

n d∗ m mmax(d) d∗ m mmax(d) d∗ m mmax(d)

2 2 4 3 4 9 12 6 16 25
3 3 8 16 6 27 80 9 64 216
4 4 16 65 8 81 480 12 256 1815

−16 −8 0
0

1

d = 3

−16 −8 0

d = 4

−16 −8 0

log10

(
εX̂
)

d = 5

−16 −8 0

d = 6

−16 −8 0

d = 7

Fig. 5: Histogram over 200 trials of the relative forward error εX̂ on the estimated
roots of a generic system of polynomial equations with n = 3, d0 = di = 3, i = 1 : n,
for which d∗ = 6. The CPD in Step 7 of Algorithm 1 was computed in all cases by
the SD algorithm underlying Theorem 3.2.

The formal justification of this requires further study.858

• Recall that GEVD and PNLA can only be used from d ≥ d∗ + 1 onward;859

under this condition they retrieved all roots correctly.860

9.2. An over-constrained system of polynomial equations. We consider861

an over-constrained polynomial system, consisting of N noisy specifications (with862

limited precision) of the same underlying square (s = n) polynomial system [12,863

Chapter 8]. Such an over-constrained system may result from N measurements in864

the presence of noise. Applications may be found in, e.g., chemistry, kinematics865

and computer vision. The over-constrained system has more equations (s = Nn)866

than unknowns (n). Typically there is no exact solution, which makes the problem867

unsuitable for the symbolic manipulations in computer algebra. However, Algorithm 1868

can be used with slight modifications. First, note that for s = Nn, the Bézout number869

m =
∏n
i=1 di and the degree of regularity d∗ =

∑n
i=1 di−n are the same as for s = n,870

since the degrees di have not changed. Step 3 in Algorithm 1 requires some attention,871

because the null space of M(d) of the over-constrained system has typically dimension872

0. Instead, we could fill K(d) with the right singular vectors that correspond to the873

m smallest singular values of M(d). PNLA [12, Algorithm 6] proposes the same874

modification. The matrix Y[2;1,3] in Step 5 may not be exactly rank-m, so a best875

rank-m approximation is in order here. The CPD in Step 7 is not exact either. It876

may still be estimated by a numerical optimization algorithm, and the latter may be877

initialized by GEVD or SD, as explained in subsection 3.1.878
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In an experiment, consider the underlying system [12, Example 8.3]:879

(44)

{
f1(x1, x2) = x31 + x32 − 9x21x2 + 20x1x2 − 3x1 − 20 = 0
f2(x1, x2) = x21 + 4x22 − x1x2 − 80 = 0

880

where s = n = 2 so that m = 6. Zero-mean Gaussian noise eTi is added to the n = 2881

coefficient vectors fTi in (44), and the variance chosen such that882

(45) 10 log10

(
‖fi‖2

‖ei‖2

)
883

is equal to a preset SNR. We repeat this N times and collect the Nn noisy coefficient884

vectors in an over-constrained system. Figure 6 shows the median approximation885

error εX̂ over 200 Monte Carlo trials for varying SNR and N ∈ {1, 2, 5, 10}. We make886

use of the compression in step 6 of Algorithm 1. PHCPACK does not provide a solver887

for over-constrained systems; for reference we report the error that is obtained by888

PHCPACK for a square noisy system. The figure indicates the following:889

1. If N = 1, all algorithms “see” the square noisy system as if it was a differ-890

ent but exact system. They all return the same roots and show the same891

asymptotic performance as the SNR increases14.892

2. As N increases, the over-constrained system provides more information than893

the square system, and the Macaulay matrix-based algorithms become more894

accurate than PHCPACK.895

3. At low SNR, the SD variant of Algorithm 1 is clearly the most accurate896

algorithm, because it takes the multiplicative shift structure in all variables897

into account.898

4. The higher accuracy of the GEVD variant of Algorithm 1 compared to (GEVD-899

based) PNLA can be explained by the denoising effect of the orthogonal com-900

pression in Steps 5 and 6. Indeed, recall that Step 5 involves a truncation,901

i.e. the smallest “noise” singular values are discarded.902

The standard deviations of the relative errors ε in the 200 trial runs were similar903

for all used methods: starting from about 0.09 for SNR=0 down to 6 · 10−4 for904

SNR=60. Using an NLS type algorithm, we obtained the same results as with SD, if905

a good initial value was provided. Because of their expensive first step, the Macaulay906

resultant-based methods were roughly 10 times slower than PHCPACK on a 16 GB907

RAM Intel Core i7-5500U CPU server. Recall from the discussion in section 8 that908

various speed-ups are possible.909

10. Conclusions. As a thought-provoking implication of the Central Theorem910

of NPA, it has been stated that “The numerical solution of 0-dimensional systems of911

polynomial equations is a task of numerical linear algebra” [30, p. 52]. From a partic-912

ular point of view this statement is correct. Nevertheless, in this paper we have shown913

that, in line with what one would expect, the problem is rightfully qualified as a task914

of numerical multilinear algebra. Under certain working assumptions, linear algebra915

yields the exact solution of the exact equations. However, it exploits the available916

structure only partially. Technically, the CPD of a multi-slice tensor is collapsed in917

the GEVD of a pencil that captures the structure in only two of the slices. The sig-918

nificance of the multilinear perspective becomes clear when the working assumptions919

are relaxed and/or when the equations are inexact and only approximately satisfied.920

14The asymptotic performance depends on the condition of the roots. The asymptotic performance
shown in Figure 6 is representative for a large number of relatively well-conditioned polynomial root-
finding problems with n = 2 and n = 3.
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Fig. 6: Relative forward error εX̂ on the estimated roots of the over-constrained system
of noisy polynomial equations derived from (44) for varying N . The median over 200
trials is plotted as a function of SNR. The results are shown for Algorithm 1 using a
GEVD ( ) or SD ( ) in step 7, and PNLA ( ). We also show the PHCPACK
results for a square subsystem (i.e. N = 1) ( ).

Combining different higher-order tensor decompositions, each one exploiting the921

multiplicative structure in just one of the unknowns, we have eventually obtained922

the CPD in (34). This is arguably our central decomposition: it improves upon a923

“flat” matrix model, it can be linked to the joint (G)EVD of NPA’s multiplication924

tables and it does not distinguish between affine and projective roots. We have also925

illustrated some of the potential of Algorithm 1, which follows naturally from the926

derivation. The accuracy of the algorithm is as good as PHC, it allows the use of927

Macaulay matrices of degree d = d∗ instead of d > d∗ + 1 and it can handle over-928

constrained systems. Like in “linear” Macaulay resultant based algorithms, the size929

of the Macaulay matrix is the computational bottleneck. Therefore, a clear need930

for fast, e.g., matrix-free algorithms that fully exploit the sparsity of the Macaulay931

matrix, remains. The companion paper [36] will drop the constraint of only (i) simple932

roots and relates the topics of our study to a more general third-order block-term933

decomposition. The recent work in [33, 31, 32] opens an interesting perspective on a934

further extension to sparse sets of polynomial equations, the polyhedral structure of935

which results in smaller matrices.936

Appendix A. Computational complexity of Algorithm 1.937

The memory usage in number of elements stored should be self-explanatory. Here,938

we derive the computational complexity in flop. The operation count of the SVD of an939

I1 × I2 matrix with I1 > I2 is approximately O
(
2I1I

2
2

)
[34, p. 238]. To compute the940

CPD of a I1×I2×I3 third-order tensor T by means of a GEVD, it is assumed that a QZ941

algorithm is used, which requires O
(
30I3

)
flop for square I×I pencils [16]. The com-942

putation of an R-term CPD of T by means of the (inexact) Gauss-Newton algorithm943

with dogleg trust region costs O
(
2(3 + ittr)R

∏
In + itcg( 45

2 R
2 +R3 + 8R2

∑
n In)

)
944

flop per iteration. Within each iteration the dogleg trust region step requires ittr it-945

erations, and itcg conjugate gradient iterations are required to solve the linear system946

to a prescribed accuracy [27, p. 708]. The cost of the steps in Algorithm 1 is then947

given by948
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O
(
2pq2

)
(SVD-based null of M(d))

O
(
2q(nm)2

)
(SVD of Y[2;1,3])

O
(
nm22q

)
(matrix product)

O
(
30m3

)
(CPD by means of a GEVD)

O
(
it
(
2(3 + itgn)mnm2 + itcg

(
45
2 m

2 +m3 + 8m22m
)))

(CPD by means of NLS)
= O

(
it
(
8nm3 +O

(
102
)
m3
))

where q = q(d), q = q(d − 1), “it” denotes the number of iterations of the Gauss–949

Newton algorithm. The final estimate is based on the experience that typically less950

than 10 conjugate gradient iterations and only one trust region iteration are needed.951
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