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SYSTEMS OF POLYNOMIAL EQUATIONS, HIGHER-ORDER
TENSOR DECOMPOSITIONS AND MULTIDIMENSIONAL
HARMONIC RETRIEVAL: A UNIFYING FRAMEWORK.
PART II: THE BLOCK TERM DECOMPOSITION*

JEROEN VANDERSTUKKEN?, PATRICK KURSCHNER}', IGNAT DOMANOV?#, AND
LIEVEN DE LATHAUWER?

Abstract. In Part I we have proposed a multilinear algebra framework to solve 0-dimensional
systems of polynomial equations with simple roots. We extend the framework to incorporate multiple
roots: a block term decomposition (BTD) of the null space of the Macaulay matrix reveals the dual
(sub)space of a disjoint root in each term. The BTD is the joint triangularization of multiplication
tables and a three-way generalization of the Jordan canonical form in the matrix case, intimately
related to the border rank of a tensor. We hint at and illustrate flexible numerical optimization-based
algorithms.

Key words. system of polynomial equations, multilinear algebra, block term decomposition,
border rank, Macaulay matrix, multiplication table

AMS subject classifications. 13P15, 15A69, 54B05, 656H04

1. Introduction. Systems of polynomial equations arise often in science and en-
gineering. Solving such a system means finding all the common roots of the polynomi-
als. Many methods have become available to solve systems of polynomial equations:
algebraic geometry-based computer algebra methods, e.g., [5], Polynomial Homotopy
Continuation (PHC), e.g., [39, 4], (Macaulay) resultant- and linear algebra-based
methods [21, 37, 36] including, e.g., Numerical Polynomial Algebra (NPA) [28, 34]
and Polynomial Numerical Linear Algebra (PNLA) [1, 14], etc.

A higher-order tensor in multilinear algebra is a multi-way generalization of a one-
way vector and a two-way matrix in linear algebra. Tensor decompositions like the
Canonical Polyadic Decompostion (CPD) and the Block Term Decomposition (BTD)
are then generalizations of matrix decompositions. Despite the natural generalization,
multilinear algebra exhibits striking differences with linear algebra. First, a tensor
that has rank greater than R is said to have border rank R if it can be approximated
arbitrarily well by a (sequence of) rank-R tensor(s) [13]. [32] shows that this phe-
nomenon can be seen as a multi-way generalization of approximate diagonalization
of a non-diagonalizable matrix and that the limit point of the approximating rank-R
sequence can be seen as a multi-way generalization of the Jordan canonical form.
Second, the rank of a tensor depends on the field considered for the factor entries.
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2 J. VANDERSTUKKEN, P. KURSCHNER, I. DOMANOV AND L. DE LATHAUWER

For a tensor in R71*/2XXIN chosen at random according to continuous distribu-
tions (e.g., i.i.d. Gaussian entries), more than one distinct value of the rank occurs
with positive probability. These rank values are called typical.

In [38] we presented a multilinear algebra framework to formulate and solve 0-
dimensional polynomial root-finding problems, the solutions of which are isolated and
finite in number. This discussion was limited to systems with only simple roots.
For such systems we derived a connection between the null space of the Macaulay
matrix and multidimensional harmonic retrieval (MHR). By jointly exploiting the
multiplicative shift invariance in the different variables, we obtained a third-order
tensor CPD that reveals the common roots.

In this companion paper we discuss systems of polynomial equations that are
allowed to have roots with multiplicity greater than 1. Rather than just a single integer
for the multiplicity, the multiplicity structure (dual space) of a multiple root is an
essential means in providing characteristics of the root [6]. The dual spaces manifest
themselves in the null space of the Macaulay matrix. If a system has roots with
multiplicity greater than 1, the basis of the null space of the Macaulay matrix does
not fully exhibit multiplicative shift invariance anymore. Consequently, we cannot
derive a third-order tensor CPD that reveals the roots. Instead, we will derive a
third-order tensor BTD that reveals the dual (sub)spaces of the disjoint roots.

In [38] we explained that the multiplicative shift invariance-expressing CPD can
be seen in terms of the joint diagonalization of NPA’s multiplication tables. In this
companion paper we will explain that the BTD generalization can be seen in terms of
the joint block diagonalization/triangularization of the multiplication tables. Further,
BTD offers a three-way generalization of the Jordan canonical form of the Eigenvalue
Decomposition (EVD) in NPA. Such connections emphasize the unifying power of
the multilinear algebra framework and its ability to help us understand the “roots”
of polynomial systems and multilinear algebra more profoundly. Including BTD, our
approach is able to (recursively) detect various (nested) structures in the null space of
the Macaulay matrix. The multilinear approach opens a whole new range of numerical
optimization techniques to solve systems of polynomial equations.

The paper is organized as follows. Section 2 will review our notation and introduce
some necessary definitions. Section 3 will introduce the CPD and BTD as important
tensor decompositions for this study, present a new uniqueness result for a BTD with
special structure, and will update the structure of the null space of the Macaulay
matrix from the “simple root case” to the “case of roots with multiplicities”. In
section 4 we will then establish that the formerly resulting third-order tensor CPD
needs to be understood as a special case of a third-order tensor BTD that also covers
the more general case of roots with multiplicities. To develop insight, the emphasis
is on the affine case, but the results can easily be extended to the projective case.
Section 5 will further make connections between the BTD and the border rank of the
higher-tensor tensor and between the BTD and the possible difference between the
tensor’s rank over the complex field and its rank over the real field. In section 6 we
propose polynomial root-finding algorithms based on the insights from the previous
sections. Section 7 presents the results of numerical experiments and section 8 will
summarize our findings.

2. Notation. We give a quick summary of our notation. For more details the
reader is referred to [38].

2.1. Higher-order tensors. Scalars, vectors, matrices and tensors are denoted
by italic, boldface lowercase, boldface uppercase and calligraphic letters respectively:
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POLYNOMIALS, TENSORS AND HARMONICS — PART II: BTD 3

a€C,aecClh, AecCh*'2 and the Nth-order tensor A € Cl1¥*IN_ This paper
will not surpass the third-order case. a;, = a(i1) = (a),, is the i;th entry of vector
a. ai, i, = A(i1,i2) = (A), ,, is equal to the entry of matrix A with row index iy
and column index is. a;, = A(:,i2) = (A),, denotes the isth column of A. Likewise
for the entries (ai, i,,i;) and fibers (A(i1,:, ), A(:, i2,:), A(:,:,43)) of a tensor A; the
vector obtained when all but the nth index of A are kept fixed, is called a mode-n
fiber of A. The izth matrix slice A(:,:,43) of A is denoted as A;,. -*, .T H .=1
and -T denote the complex conjugate, transpose, Hermitian transpose, inverse and
Moore—Penrose pseudoinverse, respectively.

D = diag(d) represents a diagonal matrix with the vector d on its diagonal and
D;(C) = diag(C(i,:)) holds the ith row of the matrix C. I; is the identity matrix
of order I x I. span({aj,...,as}) is the span of the vectors a; through a;. col(A),
row(A) and null(A) are used to denote the column, row and right null space of
A, respectively. ra denotes the rank of A. Lastly, the Kronecker and Khatri-Rao
products are denoted by ® and @, respectively, and + is used to denote the direct
sum of subspaces.

A third-order tensor A is vectorized to vec(A) by vertically stacking all entries
@i, iy iz Such that i3 varies slowest and %; varies fastest:
iy yizsis = (VeC(A)) iy 1)1 14 (ia—1) 11 +4,- Lhe matrix representation Afi;39) is ob-
tained by stacking the mode-1 fibers of A as columns into a matrix, in such a way
that ip varies fastest along the second dimension: a;, i,:, = (A[1?3ﬁ2])i1,(i3—1)12+1'2'

The mode-1 product C = A-; B € C/*2%I3 of a tensor A € CI'*2%Is and a ma-
trix B € C/*!t then has the matrix representation Ciiz2) = BA[139), ie. it is
the result of multiplying all mode-1 fibers of A from the left with B. Other matrix
representations and according products are defined analogously.

The mode-n rank R,, = rank, (A) is the dimension of the mode-n fiber space, i.e.
R, =ra,,,, in which e indicates that the order of the indices different from n does
not matter. The tuple rankg(A) = (Ry, Ra, R3) is called the multilinear rank of A.
The outer product 7 = a® b ® ¢ of nonzero vectors a, b, c yields a rank-1 tensor
with entries t;, ;,,i; = @i, bi,Ciy. The minimal number of rank-1 terms that sum to a
particular tensor A is called the rank of A and denoted as r 4.

2.2. Polynomial equations. Let us consider the system of polynomial equa-
tions

fl(lll, NN ,l'n) =0
(1) :
fs(l‘l,. . .,Jin) = 0

in n complex variables z;, stacked in the vector x € C". A monomial x* = H?:l m?j
is defined by an exponent vector a. The degree of a monomial is defined as deg(x®) =
2?21 a;j. There exist several schemes for ordering monomials by their exponent vec-
tor. As in the companion paper [38], we will adopt the degree negative lexicographic
order. The monomials x® < x? are ordered by the degree negative lexicographic
order if one of the following two conditions is satisfied: (i) deg(x®) < deg(x?); or (ii)
deg(x®) = deg(x®) and the leftmost nonzero entry of 3 — a is negative.

A polynomial f(z1,...,2,) = > 1_; fix]" is characterized by a coefficient vector
f. The degree d; of a polynomial f; in (1) is the degree of the monomial with the
highest degree in f;. The ring of all polynomials in n variables is denoted by C™. The
vector space C; is the subset of C™ that contains all polynomials up to degree d. Its
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4 J. VANDERSTUKKEN, P. KURSCHNER, I. DOMANOV AND L. DE LATHAUWER

dimension is given by
d
¢(d) = dimC? = (’” )
n

A polynomial is said to be homogeneous if all its monomials have the same degree.
A polynomial f can be homogenized to a polynomial f* by multiplying each monomial
x;" in f with a power §; of zo, such that deg(mgle") = d for all I. The ring
(vector space) of all homogeneous polynomials in n + 1 variables (up to degree d) is

denoted by P™ (P7). The projective space P™ is the set of equivalence classes on

CrH\{0}: (zp ) ... x;)T ~(zo @1 ... xn)T if there exists a A € C such
that (x{) ... xil)T =)\ (xo 1 ... a:n)T. Points with 2y = 0 cannot be

Z1 Tn

normalized to their affine counterpart (1 o o )T: they are points at infinity.

The degree of (1) is dy = max?_; d;. The set of all roots of (1) is called the solution
set. Under the same assumptions as in [38] that (1) is a square system (n = s) with
a O-dimensional solution set, the number of roots in the projective space, counting
multiplicities, is given by the Bézout number

If (1) has multiple roots, my < m denotes the number of disjoint roots. The mg
T

distinct roots of (1) will be denoted by (xék) B 2P zﬁP) eP k=1:

mo.

3. Tensor decompositions, Macaulay null space and harmonic struc-
ture: from simple roots to roots with multiplicities. Similar to the way [38]
was organized, in this section we display the ingredients from the study of tensor
decompositions, sets of polynomial equations and harmonic retrieval that we will
combine in our derivation. To allow roots with multiplicities, we will not only need
CPD, as in [38], but also a particular type of BTD (Section 3.1). We also need to
discuss the multiplicity structure of a root (Section 3.2). For handling roots with
multiplicities, we need to take the step from the multivariate Vandermonde structure
in [38] to a ”confluent” extension (Section 3.3).

3.1. Tensor decompositions.

3.1.1. CPD. An R-term polyadic decomposition (PD) expresses a tensor T €
ChxI2xIs a5 4 sum of R rank-1 terms

R
(2) T=[ABC|E Y a eb,ac,.
r=1

The matrices A € C1*E B € C2%F and C € C*E are called factor matrices. If R
is minimal, then the PD is a Canonical Polyadic Decomposition (CPD) and R = ry
is the rank of 7. Equation (2) can be expressed in an entry-wise manner as

R
Liyinis = E @iy rbigrCigrs iw=1:I1,i0=1:I,i3=1:I3.
r=1

In a slice-wise manner, (2) can be written as

Ty, = ADi3(C)BT, i3 =1:1I3.

This manuscript is for review purposes only.
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POLYNOMIALS, TENSORS AND HARMONICS — PART II: BTD 5

In matricized format, (2) can be written as
R
Tpos = Y (a-@b,)c) = (AOB)C”.
r=1
A CPD can only be unique up to permutation of the rank-1 terms and scaling/counter-
scaling of the vectors within the same term (i.e. we can allow a, «+ a,a;, b, + b,.f3,,
¢ < ¢y with By, = 1).

3.1.2. BTD. Block term decomposition (BTD) generalizes PD in the sense that
the terms do not need to be rank-1 (i.e. have multilinear rank (1, 1,1)) but only need
to have low multilinear rank [8, 9, 12]. Specifically, in this paper, we will deal with

the BTD
g /Cs”

G1 B, Gr Br
T = A +---+ |Ag

Fig. 1: BTD of a tensor 7 is a decomposition in terms that have low multilinear
rank.

r=1

R R
(3) T = Z [[gTa A,., B7-, CT]] déf Z gr ‘1 Ar °2 B7' °3 CT')
r=1

in which G, € CHrX#rxtr ig multilinear rank-(uy,, i, 1) and the matrices A, €
Chxur B, € C2%#r and C, € C3*#r have full column rank, » = 1 : R, implying that
(3) is a decomposition into a sum of multilinear rank-(,., -, ttr-) terms. Throughout
the paper we will consider only those decompositions of the form (3) for which the
matrices
4) B (B, ... Bp)eCTrmim and L (C, ... Cg)eCh*Tim
have full column rank. We say that 7 is indecomposable if 7 does not admit a
decomposition of the form (3) with R > 2 terms and such that condition (4) holds.
We say that decomposition (3) of 7 into a sum of R indecomposable multilinear
rank- (g, fr, pir) terms is unique if any other decomposition of T into a sum of R
indecomposable multilinear rank-(fi, fir, fir) terms necessarily coincides with (3) up
to permutation of the terms provided that Zil fhy = Zle . The counterpart
of the CPD scaling/counterscaling ambiguity is that we can allow A, <« ATMS}),
B, + B,M?, C, « ¢,MY, in which M € crrxwr MP ¢ crrxer, MP) ¢
-1
CHr>Fr are invertible, if the transformation is compensated by G, < G, -1 (Mg)) .

~1 -1
(M@) " (M&”) [9].
The following theorem presents a sufficient condition for uniqueness of BTD (3).
If yy = --- = pur = 1, that is, in the case of the CPD, Theorem 3.1 reduces to [38,
Theorem 3.1].

This manuscript is for review purposes only.
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6 J. VANDERSTUKKEN, P. KURSCHNER, I. DOMANOV AND L. DE LATHAUWER

THEOREM 3.1. Let T € Cl1*12XIs qdmit decomposition (3) into a sum of multi-
linear rank-(ir, tir, tbr) terms. Assume that

(5) the matrices B and C defined in (4) have full column rank,
(6)  the matriz [A1(:,1) ... Agr(:,1)] does not have proportional columns,

and that the core tensors G, € CHr>#rXtr haye slices Gp(I + 1,:,:) = G (:, 1+ 1,:) €
CHrxbr [ =0 : p, — 1, which are upper-triangular or, if | = 0, equal to I,,.. Then
BTD (3) is unique.

Proof. The proof is given in Appendix A. 0

Moreover, if the assumptions of Theorem 3.1 hold, the argumentation in Appendix A
gives a way to compute the BTD and its factor matrices algebraically by means of
a block-diagonalization by a similarity transform. As in Appendix A we consider
w.l.o.g. a tensor 7 where B, C are square, i.e., the second mode dimension of 7 is
equal to the third one: I = I3 = m = u; + -+ + pur. For T with larger second
and third mode dimensions, this can be achieved by, e.g., a compression using the

multilinear singular value decomposition (MLSVD)! [11]. Define two ”slice mixtures”

def def .
T, =T fT and Ty = T+ g7 € C"*™, where f, g € C* are two generic vectors.

Because
(7) T -1 h”T = B - Blockdiag(G; -1 (hTA4),..., G, -1 (hTAR)) - CT

for any vector h € C, the factor matrix B is, up to the intrinsic indeterminacies
mentioned above, given by the block-diagonal decomposition?

D,
T2T;1 =B B—l7 DT déf (gr o gTAT)(gT " fTAT)_l c CHrXbr
Dr

The factor matrix C can be obtained as C = T{B~7 (this follows easily from (7)),
again up to the intrinsic indeterminacies. The above block-diagonalization of Tngl
can in practice be computed, e.g., from a Schur decomposition of Tngl, see [19,
§7.6.3]. It also returns the partition of B into the blocks B, € C™*#r and conse-
quently also the partitioning of C into blocks C,. € C™*#r with correct column sizes.
We have

R R
-1 -1 -1 -1 0 0

T2B  3C = ;gr'lAr'Q (B™'B,)-3(C'C,) = ;gr'lAr‘z (IST)'3 (I;ér) ;
so we obtain the tensors G, def Gr-1 A, (indeed, the horizontal slices of T - B~1.3C~}
are block-diagonal matrices and the kth horizontal slice of G, is just the rth block
of the kth horizontal slice of T - B~1 .3 C71). It is clear that G, and A, can be
recovered from g~r7 again up to the intrinsic indeterminacies. For example, one can
compute the SVD UXVH = ér[273:1]7 take A, = U(;,1: u,.) and set G, = Gr 1 Af
Consequently, by doing this for all R terms we obtain the BTD (3).

n the following, we use the term “compression” to refer to the MLSVD-based compression.
2Step 1 in Proof of Theorem 4.4 in Appendix A ensures that a generic f will yield a nonsingular
matrix T.
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We conclude by mentioning that, instead of working with the above block-diagonalizationl]

of TQTl_l, one can also use a block-diagonalization of the matrix pencil (T4, Tg) which
is to be preferred numerically as it avoids the inverse of T';. The algebraic computation
discussed here generalizes the GEVD based computation of the CPD used in [38]. Just
as the CPD in [38] may be seen as an extension of GEVD to more than two matrices,
the considered BTD here may be seen as an extension of block-diagonalization to more
than two matrices. Furthermore, one can use optimization-based approaches [29] to
compute the BTD or, if necessary, refine the results obtained from algebraic methods.
This is, again, a similar situation as for the CPD in [38].

3.2. The Macaulay null space. Our approach exploits the Vandermonde
structure in the null space of a Macaulay matrix of sufficiently high degree.

3.2.1. Simple roots.

DEFINITION 3.2. [15, p. 263] Let f; € C},i=1:s, be s polynomials of degree
d; in n variables 1, . ..,x,, then the Macaulay matriz M(d) of degree d contains as
its rows the coefficients of

fi
r1f1
_ '(1) S _
M(d) = | 0 | ¢ et
fa
x1 fa
ri e,
where each polynomial f;,i = 1 : s, is multiplied with all possible monomials x%,

deg(x*)=0:d—d; € N.

If the system (1) has only simple roots, the null space of M(d) constructed at a de-
gree d greater than or equal to the so-called degree of regularity d*, is m-dimensional;
it is generated by m multivariate Vandermonde vectors

(8)

T
Vk(d):<]. B g8 g2 gkl g g dt xﬁf”) € CcU9,

where ¥ denotes the jth coordinate of the kth root, k =1:m, j = 1: n. For more
background, see [38].

3.2.2. The multiplicity structure of a root. Let the fixed set of m points
Z = {zx};, C C" represent the solution set of the system (1). The system is then
defined by a basis F for the polynomial ideal Z C C™ of all polynomials that attain
zero on the set Z. The set of residue classes [r] = {r' € C"|r — ' € T} is a quotient
ring C"/Z induced by the polynomial ideal Z.

If all elements of Z occur with multiplicity 1, i.e. if the system defined by F has
only simple roots, then the characterization of the residue classes is straightforward.
We have that a polynomial g € Z < g(zg) = 0 for all k. Further, g € [r] & g—1r €
T & (g —r)(zr) =0 for all k. Any residue class is completely characterized by the
value evaluations of its members on the set of m points Z, and dimC"/Z = m.

However, if one or more of the elements of Z occur with multiplicity greater than
1, i.e. if the system defined by F has coinciding roots, things become more subtle.

This manuscript is for review purposes only.
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Say there are my < m disjoint roots Zy = {zx},~, C Z, occurring with multiplicity
i in Z, such that >-;"°) ur = m. One can show that the dimension of C"/Z remains
m but that g(zg) = 0 for all k = 1 : mg is no longer sufficient for g € Z [35, pp.
91-92]. For a concise characterization of the residue classes, we introduce differential
functionals. Differential functionals act on a polynomial f € C™ first by differentiation
() and then by evaluation [-].

DEFINITION 3.3 (differential functional). /25, p. 90] Let z € C™ and f € C™, then
a differential functional monomial is defined by

> di
yla)(f) = 0,5, 12)(f) = —— ( 0 «f) (2)

]1']71' 83:{1 61‘#

where j = (j1 jn)T € N™. Any linear combination Zj B;0;(2](f) with 8; € C of
differential functional monomials 0;(z|(f) is a differential functional.

The order of the differential functional monomial 0; is defined as o (9;) = |j| =
o1 g1 [6, p. 2145]. The order of a linear combination is the order of the highest
order differential functional monomial in that linear combination.

Let us turn back to the characterization of the residue classes. Grobner Duality
formulates a sufficient condition for g € 7 in terms of differential functionals.

DEFINITION 3.4 (Grobner Duality). [20, p. 174-178] Let the system of polynomi-
als defined by a basis F for the ideal Z have mg < m disjoint roots. Then zy is a root
of the system with multiplicity py iff pr linearly independent differential functionals
>_; Bids[zx](g) vanish for g € T.

Hence, given the fixed set Z, Grobner Duality states that a sufficient condition for
g € T is that cg(g) = 0 for all k =1 : mg, where, for the kth root (with multiplicity
k), we need to consider cgo = Op[zg] of order 0 and pp — 1 differential functionals
cir of order greater than 0. The collection D[zi](F) = {cu |V f € F : cru(f) =0}
containing these differential functionals is referred to as the multiplicity structure of
the root zp. The dimension of D equals u; and the depth d; of D is defined as the
highest order of the differential functionals in D.® Summarizing, a residue class is
now completely characterized by value and derivative evaluations contained in all the
D|zi] together, k =1 : my.

Several algorithms to compute the multiplicity structure have been proposed in
the literature [26, 7, 41, 6]. One such algorithm is Macaulay’s algorithm [26]. The idea
of Macaulay’s approach is to compute D by computing the null space of Macaulay-
like matrices at increasing degrees. Indeed, as already mentioned in [38], the m-
dimensional null space of M(d) at a degree d > d* is isomorphic with the set of all
residue classes C} /7.

In the remainder of this paper, we will write 9;[v] or, more generally, c[v] for
a differential functional that acts on a multivariate Vandermonde vector v first by
differentiation and then by evaluation of its entries.

EXAMPLE 3.5. [106, Example 7] Consider the system of s = 2 polynomial equations

in n = 2 variables
fl(xl,xz) = (SCQ - 2)2 = O
fg(.’tl,l’g) = (IL’l — X9 + 1)2 =0

3The differential functionals constitute a basis for the so-called dual space of the ideal Z and
the dimension of D is the dimension of the dual subspace spanned by the elements of D — see also
Definition B.1.
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where dV) =d® =2, d*=24+2—-2=2and m=2-2=4, but my = 1. The system
T
has mo = 1 disjoint root x(V) = (l‘gl) x§1)> = (1 2)T with multiplicity py = 4. It

can be verified that a basis for the (m = 4)-dimensional null space of

40 -4 0 0 1
M(d)_<1 2 -2 1 -2 1>

at d = d* is given by the multivariate Vandermonde vector cio[v(d)] = Oo[v(2)] =
v(2), the “first-order derivative vectors” c11[v(2)] = 010[v(2)]
and c12[v(2)] = 001[v(2)] and the linear combination of “second-order derivative

vectors” c13[v(2)] = (2020 + 011) [V(2)] (In the notation of Definition 3.3, we have
Boo = Bro = Bor = P11 = 1 and Pag = 2). This basis* is stacked in a matriz that will
be called confluent multivariate Vandermonde in subsection 3.3.2:

(9) V(©2) = (cov@)] env(2)] enM@)] V)
= (B00[v(2)] 810[v(2)] dn[v(2)] (2020 + 1) [V(2)])
1 0 0 0
M 1 0 0
Y 0 1 o
2 2 0 2
x(ll)zgl) xél) x(ll) 1
7 0 22V o

The depth 6, of D[xV)] is equal to the order of c13[v(2)]: §; = 2.

3.3. Vandermonde matrices. In what follows matrices having Vandermonde
structure will play an important role, so we shall recall some properties here for both
uni- and multivariate Vandermonde matrices.

3.3.1. Vandermonde matrices with distinct generators. We consider uni-
variate Vandermonde matrices VU )(d) e CldHDxm geperated by the jth coordinate

of the m roots of (1), denoted by {arg-k)}, k=1:m,j=1:n

; j ; j k) (K Ka\ T
VU (d) = (V%J)(d),..wvg,{)(d)), v,(cj)(d) = (1,x§- )793; 2 W ) .

The univariate Vandermonde matrix V) (d) has full column rank if all generators
x§-k> are distinct, k = 1 : m. We will make use of spatial smoothing [30]. This means

that if we take the outer product of subvectors v,(cj)(l L) - v,(cj)(l cd—L+2)7, the

4Like the multivariate Vandermonde basis in the case of simple roots, this confluent multivariate
Vandermonde basis is only one possible basis for the Macaulay null space. In practice, it is a numerical
basis that will be computed. Both are related by an a priori unknown basis transformation — see
(17).
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result is a rank-1 Hankel matrix:

) 1
k
| | a0 g
10) v 1:0)ev?(1:d-L+2)= ! ® 7 =
x(_k)('Lq) :
j xgk)(d—L+1)
1 T
1 k
2 x(gk;
vec ! T
L) :
j OISR
J
1 :L'(-k) o x(_k)(dequ)
) I(k)z o xfk)(d—L+2)
= vecC / /
$§k)(L_l) x;k)L o Jigk)d
=H;

The structure is called (multiplicative) shift-invariance, referring to the shifting of

entries when the power of xg»k) is raised. In [38] we have used the variant for L = 2.
In Part II we will use the variant for L > 2.

For multivariate generators {(xgk), e ,a:ﬁ[“))}, k =1 :m, we define multivariate
Vandermonde matrices of degree d as
(11) V(d) = (vi(d) ... vn(d) e Cidxm,

where each column vi(d) is in the multivariate Vandermonde form of (8). Multi-
variate Vandermonde matrices exhibit a multiplicative shift structure in each vari-
able x;. More precisely, a multivariate Vandermonde matrix consists of the rows
of the Khatri-Rao product of the n univariate Vandermonde matrices V) (d) that
are associated with the monomials up to degree d. Formally, we have V(d) =
S(a+1)m =g (VP (d) ©...0 VM(d)), where VUI(d) € CUTD>*m i = 1 : n, are
univariate Vandermonde matrices of degree d constructed from the jth coordinate
of the m roots and Sgy1)n ) € Ra(D)x(@+1)" eliminates all duplicate rows in the
Khatri-Rao products, truncates the monomials of degree higher than d, and reorders
the remaining ¢(d) monomials according to the chosen monomial order. The matrix
S(d+1)n—q(d) can be constructed by n-fold composition of the “elimination matrices”
in [27]. See [38] for more details, where the n-fold multiplicative shift structure was
used to connect the null space of the Macaulay matrix to CPD.

3.3.2. Confluent Vandermonde matrices. If mg distinct univariate genera-
tors a:;k) occur each with multiplicities ux > 1, and m = ka:“l 1y is the total number
of generators, the associated univariate Vandermonde matrix V) (d) set up in a naive
way would have identical columns and, hence, be rank deficient. Confluent univariate
Vandermonde matrices

VU)(d) = (V&”(d), V) (d))

mo
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357 capture the multiplicities by including “derivative vectors” in submatrices of the form

s VP@ = (W@ G @ gl e v @) e e = 1)

359  with Vandermonde vectors v,ij)(d) as in subsection 3.3.1, see, e.g., [22, 10]. Only the
360 first column v,(j )(d) of V,(Cj )(d) enjoys the multiplicative shift-invariance mentioned
361 in subsection 3.3.1. The submatrices V,(fj)(d) are for I,1 — L+ 1 > py, related to a
362 rank-p; Hankel matrix via Hy = V,(Cj)(d)(l 1 L,:) ~D,(€j) ~\~/’,(€j)(d)(1 : I —L,:), where

1 R
(k) 2 (k)3
{ng ‘Tj zj PN 0
363 D](CJ) = xjk)Z $§.k)3 w;k>4 e 0 c (Cp.k X fir
T

J

364 is nonsingular and Hankel, see, e.g., [3, 10]. This can be seen as block generalization
365 of the spatial smoothing structure in (10).

366 For the multivariate case, the multiplicity structure of a multiple root defined in
367 subsection 3.2.2 gives rise to a generalization of multivariate Vandermonde matrices
368 of the form

360 (12) V(d) = (Vi(d) ... Vp(d) € cadxm

370 in which

is of full column rank m and constitutes a basis for the m-dimensional nullspace of
M(d) for d > d*.

371 Vk(d) = (\N’k,o(d) \N"k’l(d) . {’k’uk,1(d))

372 = (cwolvi(@)] e [Vi(d)] ... crui[vi(d)]) € CHDxw,

373 for k = 1: mg, where ¢ ; are the differential functionals from the multiplicity structure
374 Dlzg](F). We shall refer to (12) as confluent multivariate Vandermonde matrices, see
375 also [17]. Bach submatrix Vi (d) € CXD*#x reflects the multiplicity structure Dlzy]
376 of the kth root. The depth 0y of D[z] is the highest order of the corresponding cy,.
377 in Vi(d). Only the first column cio[vi(d)] = Vi,0(d) = vi(d) in each submatrix has
378 the shift-invariance property. The confluent multivariate Vandermonde matrix V(d)
37¢

}Z\

381 4. From the Macaulay null space to BTD. Here we unravel the BTD struc-
382 ture in the Macaulay null space K(d), d > d*. For the sake of presentation and
383 simplicity, we mainly restrict ourselves to the affine case, but generalizations to the
384 projective case follow by interpreting Vandermonde vectors v(d) as

T
385 (13) vh(d):(zg ad ey L 2% 2T, zd) e 1),

386 and consequently using j € N?*! in the differential functionals (i.e., also include
387 partial derivatives in x¢), see [15]. Details on a special treatment of roots at infinity
388 (zo = 0) are given when necessary.
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4.1. CPD and simple roots. [38] jointly exploits the multiplicative shift in-
variance in each variable x; in the null space of the Macaulay matrix of a system
with only simple roots. The null space admits a multivariate Vandermonde basis,
corresponding to the columns of V(d) € C#®>*™  This multivariate Vandermonde
basis is not readily available. What we can find is a numerical basis, which we stack
in K(d) € C¥9)*™_ Obviously, we have K(d) = V(d)C(d)” with an invertible basis
transformation matrix C(d) € C™*™. Exploiting the structure results in the following
third-order tensor CPD [38]:

1)
. d—1)-K(d)
Y[172;3] =
<,
S"(d—1)-K(d)
1 1 ... 1
oV 2B g .
(14) = . . . |eB@-1) | ca)
.’Eg) .’Kg) SL';m)
= (V(1)@V(d 1)) - C(d)T e clinth-ald=1)xm
(15) or Y = [V(1),V(d—1),C(d)] € Crthxald=1)xm

where S (d—1) selects all rows of K(d) onto which the rows of K(d), associated with
monomials of degree at most d —1 in z;, are mapped after multiplication with z;. In
the projective case the CPD in (14) is constructed using multivariate Vandermonde
matrices V(1), V(d — 1) of the form V"(d) = (v{(d) ... vl (d)) € Ccadxm
T

with v2(d) as in (13) and containing the kth root (SU((Jk) xgk) x%k)) in the
projective interpretation.

4.2. BTD and multiple roots. Let now V(d) as in (12) denote a confluent

multivariate Vandermonde (“multivariate Vandermonde plus derivative”) basis for the
null space of the Macaulay matrix of a system with multiple roots:

(16)  M(d) - Vi(d) = M(d) - (cko[v(d)] ... chpp—1[V(d)]) =0,  k=1:my.

The multiplicity structure in (16) is not unique [15] (unless py = 1 for all k). Indeed,
multiplying both sides in (16) with a nonsingular transformation matrix T € CHr*#&
yields the equally valid relation

(17) M(d)V(d)T = M(d) (Vk(d)T) — 0.

In the following we partition the invertible transformation matrix C(d) so that it
matches the partition in (12):

C(d) = (Ci(d) ... Cpyld)) €C™™.

We emphasize that Vi (d) (V(d)) is not multivariate Vandermonde and that the newly
introduced columns in V(d) (in V(d)) do not exhibit shift invariance as discussed
in [38, Section 3.3]. Hence, we cannot implement simple spatial smoothing to exploit
this shift invariance and we do not obtain the CPD in (2) anymore.
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/ c1(2) / es(2)

1 ‘I ] ‘I ]
- = V1(2) + V2(2)
T2

Vl(l) Vg(l)
1 z1 =2 zf;clxrzwg
+ -
_ V3(2
Vs(1) Gs(1,2) 3(2)

Fig. 2: Schematic of the BTD (19) for Y € Ca(d)xa(d®)xm o 5 system of s = 2
polynomial equations in n = 2 unknowns. Counting multiplicities, the number of
roots m = 4. The number of distinct roots mg = 3. The first two roots are isolated
(11 = p2 = 1). The third root has multiplicity us = 2 with depth 63 = 1. The degrees
in Theorem 4.2 are chosen as d¥) = 1 and d® = 2 such that d) +d® =3 > d* = 2.

EXAMPLE 4.1. Consider again the system in Example 3.5. Since it has mg = 1
distinct roots, we omit the subscript indicating the numbering of the distinct roots
in (12) and use V(2) = V1(2) as in (9). The first column of V(2) enjoys shift-
tmoariance:

1 (M
v(23,1)-20 = | 2 |2 = | 20T | = V([245],1).
11(1) .’I}gl).’Egl)

Similarly, V([123],1) - x(Ql) = V([356],1). However, the other columns do not ex-
hibit this shift invariance property. For instance, for the second column (\7(2))2 =
O10[v(2)] we have:

0 0 1
V(123,220 = | T |2V = 20 | #| 227 | =v(245]2)
0 0 e

Nonetheless, we can formulate a BTD for ) using a more general row selection
in the confluent multivariate Vandermonde null space of the Macaulay matrix. The-
orem 4.2 gives this decomposition and its derivation is given in Appendix B.

Let us already give that Example 4.7 at the end of this section clarifies the up-
coming insights on the well-known univariate playground.

THEOREM 4.2. Let the system of polynomials F in n (affine) variables x1, ..., x,
have mg < m disjoint roots with multiplicity g, k =1 : mg. Assume d = dV) 4+d3) >
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14 7. VANDERSTUKKEN, P. KURSCHNER, I. DOMANOV AND L. DE LATHAUWER
d* with 1 < dV < d. Consider the third-order tensor with matriz representation

5P4@) . K@M + q2))

§Y (@) . K(d® + @
(18) Y[12'3](d(1)7d(2)): S (d ) K(d +d ) e(c(q(d(l))'q(d(z)))xvn

S @) K (@ 4 ¢@)

where K(d + d?) is a basis for the null space of M(dM) + d®).  Moreover,

§(l)(d(2)) € RW)xa@) | = ¢ q(dM) denote the row selection matrices that se-

lect the rows of K(d(l) + d(z)) onto which the monomials of degree 0 up to d® are
mapped after multiplication with the (I + 1)th monomial of degree at most d® in the
degree negative lezicographic order. Then Y1 2,31 admits the BTD

(19)

YW, d?) = Z Gr(d®,d@) oy Ap(dP) 3 B(d?) -5 Ci(d) € Ca(@™M)xq(d®)xm

with factor matrices Ai(dV) = Vi(dD) e Cad®)xp Bi(d?) = V,(d?®) e
Cad®)xms - gnd Ci(d) € C™ s, The core tensors Gp(dV),d?)) € CH¥rEX1E haye
slices Gi(I+1,:,:) = Gp(:,1+1,:) € CH+>*Fr [ =0 pg, — 1, which are upper-triangular
or, if l =0, equal to I, .

In words, Theorem 4.2 states that if we choose d(") and d(?) appropriately, then
the third-order tensor ) admits the BTD in (19). See Figure 2 for an illustration.
Each of the mg terms in Figure 2 reveals in its first and second factor matrix a disjoint
root and its multiplicity structure. The dimensions of the core tensors correspond to
the multiplicities py. Recall from subsection 3.1.2 that BTD is subject to basic linear
transformation indeterminacies. This is consistent with the multiplicity structure of
a root being determined up to an invertible basis transformation matrix, as shown in
(17).

If all roots are distinct, i.e. if mg = m, the BTD simplifies to a CPD. In other
words, the CPD in [38, Eq. (31)} is the special case of the BTD (19) for which dM) =
d® =d—1and Vi = (V), = v), = cxo[v]. Note that, if dV) > 1, Y(d1),d®) holds
more than n 4 1 horizontal slices.

EXAMPLE 4.3. Consider again the system in Example 3.5. Take dV) = d(?) = 2,
such that 2+ 2 = 4 > 2 = d* and the assumptions of Theorem 4.2 are satisfied.
Following the reasoning in Appendiz B, it can be verified that Y(2,2) in (19) admits
the single-term BTD

Y(2,2) = G(2,2) -1 V(2) 2 V(2) -5 C(4) € CO*

with V(2) giwen in (9), and with
G(2,2)152,3) = G(2,2) 2,13 =

comprising identity and upper-triangular matriz slices.
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Theorem 4.2 gives only the BTD (19) but not its uniqueness nor a way to compute
it algebraically. However, if it is unique, it could already be computed by means of
optimization based algorithms [29].

4.3. Uniqueness and algebraic computation of the BTD. The following
Theorem 4.4 gives conditions that ensure uniqueness of (19) and, furthermore, enable
an algebraic computation of the factor matrices using block-diagonalization of certain
matrices. We will see that for this to work, a higher Macaulay degree d and further as-
sumptions on d*), d® might be necessary than only for constructing (19). Moreover,
Theorem 4.4 forms the counterpart to [38, Theorem 6.1] which established the unique-
ness of the CPD (15) and the ability to compute it via eigenvalue decompositions in
the case of only simple roots.

THEOREM 4.4. Define A %< (A1 ... A,,) e Cad)xm

B &f (Br ... Bp,) € Ca@?)xm gnd let C € C™*™ be the invertible basis trans-

formation from above. Let d = d) + d?) where dV,d?) satisfy
1. d® > g*,
2. dV > max {1, maxy 0y }.

Then the BTD (19) is unique.

Proof. The condition d® > max {1, maxy, d; } ensures that all individual blocks
A, =V, (dV), r =1 : mg have full column rank, so (19) is a decomposition into
a sum of multilinear rank-(p,, ., 1) terms. To prove uniqueness we show that the
assumptions in Theorem 3.1 hold for R = mq, I; = q(d(l)), I = q(d(g)), and I3 = m.
By Theorem 4.2, it is sufficient to show that assumptions (5) and (6) hold. Note that
both conditions always imply d > d*+1. For d > d* we have that dim null(M(d)) = m
and that the numerical basis K(d) € C4(4*™ has full column rank TK(d) = m. Thus,
C has also full column rank. Since B = V(d®)) and (a2 = m for d® > d* [15],
the second condition ensures full column rank of B. Finally, since the first columns
of the Ak, k = 1 : mg are genuine multivariate Vandermonde vectors associated to
the mg distinct roots, (6) is always satisfied for d® > 1. O

EXAMPLE 4.5. We revisit Example 3.5 (see also Example 4.3) with n = s = 2,
initial degree dy = 2 so that dy = dog-n—n =2, mg =1 <m:d(2) =4, 1y =4,
81 = 2. Taking d® =2 and dV) = 2 as we did before satisfies the conditions 1. and
2. of Theorem 4.4.

Under the conditions of Theorem 4.4, the BTD of Y and its factor matrices can
be computed algebraically by following the steps outlined in subsection 3.1.2. Similar
as in [38, Algorithm 1], we start from a compressed version Y. € Ca(dD)xmxm of V.

The algebraic method in subsection 3.1.2 requires a block-diagonal decomposi-

. _ def def -
tion of ToT] ! where Ty € Y, 1 £, Ty € Y, 1 g7 € C™™ are generic linear

combinations of the horizontal slices V.(i,:,:) with f, g € Ct. In practice, one would
compute this block-diagonal decomposition of Tng1 from a Schur decomposition,
see [19, §7.6.3], resulting in factor matrices A, B that are not in confluent multivari-
ate Vandermonde form, but rather in the form A = V(d))R(M, B = V(d®?)R®
with some unknown invertible transformations R, R e C™*™. This does not
immediately reveal the roots but we will see later in section 6 how the roots and their
multiplicities can nevertheless be retrieved.

4.4. Connection with NPA. Let the system of polynomials F have my < m
disjoint roots. Consider the family of multiplication tables {ij }?:1 where A, €
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C™*™ represents a multiplication with the residue class [h] in the m-dimensional
quotient ring C"/Z = C"™/(F) associated to an arbitrary basis, e.g., the standard
monomials®. Then the central theorem of NPA [34, Theorem 2.27] states that a -

fold root x¥) of F yields eigenvalues acg-k) of A, with algebraic multiplicity u. There
is also an associated joint invariant subspace span (Xy), Xi € C™*#t such that

Ta;
(20) Ar, (X1 0 X)) = (X1 o0 Xi)
ij#ﬂo
with T, € CHe*H+ upper-triangular and xgk) on the diagonal. Note that only the
first columns of Xy, are joint eigenvectors. In case of only simple roots (m = my), this
reduces to a joint diagonalization of the multiplication tables {Al.]. }?:1. Briefly, [38,

Corollary 6.3] showed that if a tensor #(d) € C**"™*™ is constructed as in (14),(15)
but using a column echelon echelon basis H(d) of null(M(d)) as well as n proper
selection matrices, associated to the m standard monomials, then the n slices of H
are equal to the n multiplication tables w.r.t. the normal set basis for C"/(F), i.e.
V(j,::) = Ag;, j = 1:n. Corollary 4.6 extends this result to roots with multiplicities
using the BTD from Theorem 4.2. The tensors H in Corollary 4.6 and [38, Corollary
6.3] are constructed in the same manner, but in the case of roots with multiplicities,
the expressions are more involved.

COROLLARY 4.6. Let the polynomial system F have mqg < m disjoint affine roots
with multiplicity pr,k = 1 : mg, and let H(d) hold the column echelon basis of
null(M(d)). For d > d* + 1 let dV, d® satisfy the conditions of Theorem 4.4.
Consider the third-order tensor H(d) with matriz representation

~(1)
S (d—1)H(d)

H[1,2;3] _ c (C(nwn)xm

§"(d— 1H()

=J
where S (d — 1) denotes the row selection matrix that selects the rows of H(d) onto
which the m standard monomials are mapped after multiplication with x;. Then the n
slices {M(j,:,:)}j—, of H(d) are equal to the n multiplication tables {A,, };l:l w.r.t.
the normal set basis for the quotient ring C™/(F).

_ Proof. The structure in (19) does not depend on the specific choice K(d) =
V(d)C(d)T that is made for the basis of null(M(d)), so the BTD (19) holds for
K(d) = H(d) as well. For a slice of H(d) we have

vee (2. 9)" = Luet) Ty S Ar(D) - (Gald)y - (Celd) @ Butd — 1))
k=1

where By, € C™*#% contains the m rows of By(d — 1) € C4(4=D*ur that correspond
to the m standard monomials. At least one standard monomial has exactly degree

5Standard monomials refer to the monomials in the normal set basis, which relate to the Macaulay
matrix as follows. If we flip the columns of M(d) from left to right, then the standard monomials
are those monomials that correspond to the linearly dependent columns of the row echelon form of
the flipped matrix [1, p. 97]. Equivalently, they correspond to the first m linearly independent rows
of a multivariate Vandermonde basis for null(M(d)) [14].
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d*, meaning that d = d* + 1 is needed for Bi(d — 1) to contain all the rows that
correspond to the standard monomials. The multiplication with (In_H)jT+1 reveals

mo

R T

(21)  veec(H(j,»)" =D AW +1:) Gruay -(Ck®Bk)
k=1
:xi'k)'Gk[l;S,z](17:)+1J'Gk[1;3,2](l+17:)

U € C™ ™ is an invertible transformation matrix and CT = U~!. [16, Proposition 1]
shows that (B1 e Bmo) = U which, together with a matricization of (21), yields

H(j,::) =Y By (x§k) G150+ 1 -Gl 4+ 1, )) ct

k=1
mo Tﬂﬁj,l 0
=2_Bsx (xg‘k)'Iuk+1j'gk(l+1,:,r)> Ci=U U!
k=1 = 0 Ta; s
where the right-hand side equals A, per [34, Theorem 2.27]. O

We give an example that connects the insights that have emerged for multivariate
polynomial equations with multiple roots to the basic univariate case.

ExampLE 4.7. Consider the univariate polynomial equation
f@)=(—-a)? =2 -2ax+a*>=0

of degree d = 2 and with a total number of m = 2 roots. The polynomial f has only
mo = 1 disjoint root (V) = «, with multiplicity pq = 2.
The Frobenius companion matriz of f,

0 1
As = (—a2 2a> ’

is the matriz that describes the effect of multiplying the normal set {1,2} with h =«
in terms of {1,x}, i.e., in terms of [34, Theorem 2.27] it is a multiplication table.
The matriz A, has the eigenvalue V) = o with algebraic multiplicity p; = 2 but
with geometric multiplicity 1. Consequently, A, cannot be diagonalized but it admits
a Jordan canonical form, A, = UTU™!, in which

M1 a 1 —a 1
=y L) = (5 o) e U= (T2 )

are an upper-triangular matriz with both diagonal elements equal to (V) = a and a
matriz whose columns span the invariant subspace of dimension u, = 2, respectively.
In the univariate case, the multiplicity structure is of the form

DzW] = {§,[zV)] ;;1(;1. A confluent Vandermonde basis for the (m = 2)-dimensiona1l

null space of fT = ( a? —2a 1 ) is thus given by

- 1 0
Vi = (do[vi] u[vi]) = a2 1

o® 2«
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18 J. VANDERSTUKKEN, P. KURSCHNER, I. DOMANOV AND L. DE LATHAUWER
with vi(2) = (1 « a2)T. Take dV) = d) = 1, such that the conditions in Theo-
rem 4.2 are satisfied: dP) +d® =1+1=2>2=d*+1 > d*.

Next, as mentioned in the proof of Corollary 4.6, Y(1,1)[1,2:3) in (18) may be
constructed from H(2) = V1CT as a special case of K(2) = V(2)C(2)7:

1 0
I, 0) H(2) H 0 1 I
Yol 1) = ( EOZM 212% TH(2) ) N <H> 7o 1| T ( A, )

_ < (I, 051) -V1(2) )0(2)T ~ (9olv1(2)] 51[V1(2)}> c@) =
]

(021 Io)-Vy(2) 12 91[v1(2)

1 0
a 1 ’
a? 2o

in which the basis transformation matrix

-1
r (10
= (1 0)"
It can be verified that Y(1,1) admits the single-term BTD
(22) V(1,1) =G -1 Vi(1) =2 Vi(1) -3 C(2) € C2**x2

in which the core tensor, given by

1 0|0 1
(23) Gizg = Gl = < 0 1/0 0 ) ’

can be seen as a three-way variant of a (2 x 2) Jordan cell. Given that dpv1] = v1,
(22) becomes

(24) y(]., ].) = V1(1)®V1(1)®C171+01 [Vl(l)] ® Vl(].) ®C1.2 + Vl(l) ® 81 [Vl(l)] ®C1.2.

01[v1(1)®v1(1)]®cy,2

5. Connection with border rank and typical rank. The concepts of border
and typical rank belong to the striking differences between linear (matrix) algebra
and multilinear (tensor) algebra. Subsection 5.1 and 5.2 will discuss border rank and
typical rank of a tensor, respectively, and establish a connection with the BTD in
Theorem 4.2. Next to novel fundamental insights, the conclusions at the end of each
subsection will be used to design algorithms in section 6.

5.1. Border rank. The set of tensors that have rank at most R,

SR(IhIQ,Ig) = {T < (ChXIzXIg |7“'T S R}
= {T e Chxl2xIs |I3A e CI*E B e C*E Cc e Cl+*® . T =[A,B,CJ},

is not closed for R > 2 [13]. A consequence is that the computation of the best rank-
R approximation of 7 € C1>*/2XI3 may result in a sequence of rank-R estimates 7,

This manuscript is for review purposes only.



606
607
608
609
610
611
612
613
614

615

616

617
618
619
620

621

632

633
634
635
636
637
638
639
640
641
642
643
644
645
646

POLYNOMIALS, TENSORS AND HARMONICS — PART II: BTD 19

that converge to a boundary point T of Sr(I1, I2, I3) which itself has rank r3 > R.
In such a case, the best rank-R approximation does not exist; the cost function has
an infimum but not a minimum. If a tensor T can be approximated arbitrarily well
by rank-R tensors, and R is minimal in this sense, then 7 is said to have border
rank R. Numerically, it is observed that the convergence towards 7T is slow and that
some of the rank-1 terms “diverge” in the sense that they become increasingly linearly
dependent, while their norms grow without bound [25, 24]. The columns of A, B and
C that correspond to the diverging rank-1 terms necessarily become more and more
linearly dependent as well.

EXAMPLE 5.1. [13, Proposition 4.6] Consider the third-order tensor
(25) T=ueuev+ueveu+veousou

with w and v linearly independent. The tensor T is known to have rank r =3 > 2
and border rank 2 [25]. It is approzimated arbitrarily well, for n — oo, by a sequence
of two diverging rank-1 terms:

(26) Tn=71(11+lv> ® (u+1v) ® (u—l—lv) —nueuseu
n n n

1 1 1
=T—|—<v®v®u+v®u®v+u®v®v+V®V®V> =T+ 0(-).
n n n

Theorem 5.2 shows that, if 7 is the limit sum of two diverging rank-1 terms, it
has multilinear rank (2,2,2) and the core tensor admits a third-order variant of the
Jordan canonical form of (2 x 2) matrices.

THEOREM 5.2. [13, Lemma 4.7] For a group of R = 2 diverging rank-1 terms, T
can be written as

27) T=G-1A2B4C

where ra =18 =rc = 2 and where G € C2*2%2 §s given by

1 0|0 1
o S EITES)

Moreover, rg = ry = 3.

More generally, divergence can happen in several groups of rank-1 terms, and
groups can involve more than two terms [33]. Divergence can be avoided by decom-
posing the tensor in block terms of proper multilinear rank, rather than rank-1 terms.
The multilinear rank of a block term matches the cardinality of the group of diverging
rank-1 terms that it represents. In [32] third-order variants of the Jordan canonical
form are derived for groups up to four diverging rank-1 terms. In [31, Section 2]
a procedure is proposed to estimate the multilinear rank of the block terms and to
obtain an initialization for the BTD algorithm from a “naively fitted” CPD.

Recall from [38] that in the case of simple roots, V(d) has rank m. The CPD of
Y(d) can be related to a matrix EVD in which all eigenvalues are distinct. Example 5.3
illustrates that Y(d),d®) in Theorem 4.2 has border rank m in the case of multiple
roots. Indeed, roots with multiplicity greater than 1 may be seen as the limit case
of simple roots that get closer and closer. In Theorem 4.2 the mg groups of ug
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diverging rank-1 terms are collected in mg block terms of multilinear rank (pg, px, tig),
k =1:mgy. While the CPD is related to an EVD in the case of only distinct roots,
the BTD in (19) may be seen as a third-order generalization of the Jordan canonical
form when there are eigenvalues that have an algebraic multiplicity greater than the
geometric multiplicity.

EXAMPLE 5.3. Consider again the polynomial equation in Example 4.7. Recall
that we built Y(1,1) from the slices Is and A,. The matriz (12)_1 A, =A_ has a
double eigenvalue v with geometric multiplicity 1. The matriz A, cannot be diago-
nalized but it does admit a Jordan canonical form. Further, Y(1,1) itself admits the
third-order variant of the Jordan canonical form in Theorem 5.2, i.e. (22) is an in-
stance of (27) and (23) matches (28). One can show that ry = 3 but that Y(1,1) has
border rank m = 2. Trying to compute a rank-2 PD of Y(1,1) results in a sequence
of m = 2 diverging rank-1 terms as in Example 5.1.

On the other hand, Example 4.3 exhibited in fact the third-order variant of a
(4 x 4) Jordan cell in the form of the core tensor G(2,2). The root with multiplicity
4 led to a block term of border rank 4. Fitting a rank-4 PD results in a sequence of
m = 4 diverging rank-1 terms.

We can conclude that, if we proceed in the multiple root case as we have done
for simple roots in [38], i.e. by fitting a rank-m CPD to Y(1,d — 1), this will result
in mg groups of diverging rank-1 terms, with uj rank-1 terms in the kth group. Such
divergence does not occur if we fit the BTD (19) to Y(d"),d®). The crucial point is
not to split a multilinear rank-(ug, p, k) term into terms of lower multilinear rank,
such as rank-1 terms. As in [31, Section 2], estimates of the multiplicities p, and an
initialization for the BTD algorithm may nevertheless be obtained from a “naive” use
of the algorithm for simple roots in [38] (see section 6 for an illustration).

5.2. Rank over the real or the complex field. The rank of a tensor depends
on the field of the entries. Consider for instance 7 € R2*2*2 whose entries are sampled
randomly from a continuous probability distribution. If A, B and C are constrained
to be real, then r = 2 and r+ = 3 occur both with nonzero probability — whereas if
A, B and C can be complex, ry = 2 occurs with probability 1 [23, 2]. When the rank
takes more than one value with nonzero possibility, the values that occur are called
typical. A rank value that occurs with probability 1, is called generic.

The roots of a system of polynomial equations with real-valued coefficients are
real-valued or appear in complex conjugated pairs. Example 5.4 shows that a simple
pair of complex conjugated roots yields a real-valued block term of multilinear rank
(2,2,2) that takes rank 2 over C but rank 3 over R. In general, the computation
of the roots of a system of polynomial equations with real-valued coefficients can be
done in R provided we allow block terms, where block terms that take rank 2 over
C but rank 3 over R, capture simple pairs of complex conjugated roots. Block terms
that capture a pair of real-valued simple roots have rank 2 over both C and R; such
terms can be further decomposed in two real-valued rank-1 terms that correspond to
the individual roots.

EXAMPLE 5.4. Consider the univariate polynomial equation
flz)y=2*-22+2=0

of degree d = m = 2. There are m = 2 complex conjugated roots: () =1+ i and
2 =1 —1i. The degree of reqularity d* = 1. Atd =d*+1 =2, Y(1,d—1) =
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V(1,1) € R?2*2X2 s constructed from K(2)(= V(2)C(2)T) € R**2 as follows:

1 1
o (IQ 02><1) K(2) _ 1471 1—1 T (2:2)x2
Y[1,2;3](17 1) - ( (02><1 12) B K(2) = T+ 13 0(2) cR .

(1+44)? (1—1)2

Since both roots are simple, Y admits the CPD Y(1,1) = [V(1),V(1),C(2)] with

V(1)<1—1|—i 1£i )

We can rewrite the CPD as a single-term BTD:

Y(1,1) =G(1,1) -1 A(1) -2 B(1) -3 C(2)

1 0(0 O
G[1,3,2](171)_<0 0olo 1)

and in which the (2 x 2) factor matrices A(1) = B(1) = V(1) and C(2) are complez-
valued. From the sparsity pattern of G it is obvious that rg =1y =m = 2.
The tensor Y(1,1) can equally well be decomposed as

in which

Y(1,1) =G(1,1) 1 A(1) 2 B(1) 5 C(2),

in which

G(1.1) = L1 - (MD) o (M) (@)

and A(1) = A(1)M® B(1) = B(1)M®, C(1) = C(1)M®) e C2*2,
where MM M®@) MG € C2*2 are invertible basis transformation matrices. If we

take
1
2
)
2
then A(1),B(1),C(1) are real-valued and

= 2 0 0 -2
G[1;3,2](171) = ( 0 -2 -2 0 ) .

The core tensor G(1,1) € R2*2*2 has rank 3 over R. (On the other hand, like Y(1,1),
it has rank 2 over C.)

M® — M® — M® — M — (

N N

6. Algorithm. The goal of this section is to use the fundamental insights from
the previous sections to design numerical methods for the multivariate rootfinding
problem.

6.1. A BTD based root-finding method. Theorem 4.4 hints at an algebraic
BTD-based algorithm illustrated in Algorithm 1 for finding the roots of a polynomial
system that can handle roots multiple roots. It generalizes the algebraic method in [38,
Algorithm 1]. For roots with multiplicities, the algorithm first finds the column spaces

of the BTD factor matrices B %< (Bl Bmo) c Cad®)xm_ These correspond
to the ug-dimensional multivariate confluent Vandermonde subspaces associated with
the dual spaces of the mg disjoint roots.
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Algorithm 1 BTD for multivariate polynomial root finding

Input: A system f; € Cj,i=1:n,inn+ 1 projective unknowns z; € C,j =0:n.
Output: Roots :c(lk), N ,zﬁf) and multiplicities ug, k=1 : my.
1: Choose d(l), d® such that d = dV +d® > d* + 1 and d(1)7d(2) satisfy the
conditions of Theorem 4.4.
Construct Macaulay matrix M(d).
Compute null space basis K(d) < null (M(d)).
for j =0:¢(d")—1do
V(G +1,5:) « P A®) . K(a).
: Compute the SVD Yp,1 5 = U® . 5@ . g4,
Orthogonal compression: Y. + ) -9 U®H,
Compute the BTD

@ N > g oW

mo
(29) YVe= Gr1Ax-2By3Cr
k=1

with Gy, € CHexmexin Ay € CI4) %k and By, Cp, € C™% | k=1 : my.
9: Expand B, = U®B,, € Cad®)xmr and retrieve the roots via generalized ESPRIT
approach, k=1 : mg.

(k) (k
1

10: return z ,...,zn) and pg, k=1:my.

We comment on the main steps of Algorithm 1:
Step 1. The degrees dV), d® have to be chosen sufficiently large according to the
conditions of Theorem 4.4 to ensure uniqueness of the BTD and to allow its algebraic
computation. The condition dV > max {1, maxy 0, } leads to the obstacle that the
depths d; of the roots are generally unknown beforehand. It holds d; < pux — 1, but
also the multiplicities s, are generally not known either. However, if the degree d(!) is
chosen large enough, the number myg of distinct roots and the individual multiplicities
i are directly obtained in the course of the algebraic computation of the BTD in
Step 8, where myg is the number of detected terms and the py appear as the sizes
of the individual blocks in the factor matrices. One obvious possibility is to use the
upper bound §; < max;d; and set dV) = max; d;. However, such an increase in d
would lead to a larger Macaulay matrix and make the computation of basis for the
null space more expensive.

Steps 2 — 5. These are the same calculations as in [38, Algorithm 1] for simple

roots. The only difference is that in Step 5, more than n + 1 selections g(])(d@)) are
applied if d*) > 1. These execute a generalized spatial smoothing with monomials of
degree greater than one.

Steps 6, 7. As in the root-finding procedure for simple roots [38, Algorithm 1]
compression of ) is carried out. This reduces the computational load in the later
steps.

Step 8. Here the factor matrices and cores of the BTD (29) are obtained using the
algebraic computation outlined in subsection 3.1.2. The main computational step is
the block-diagonalization by similarity of an mxm matrix. This block-diagonalization
returns By, Cp € C™*F+ k = 1 : mg, where the column dimensions match the
multiplicity ug of the kth root (provided d®,d® have been chosen appropriately).

This manuscript is for review purposes only.



w

[ SN, SN, BN BNe; |
\)

~

T W N =

e

-~ ~ ~ ~ =~ =~ =3
~N ~ 3 9 3

788
789
790
791
792

793

POLYNOMIALS, TENSORS AND HARMONICS — PART II: BTD 23

The blocks B, = U(Q)Bk, C;, are the blocks of the second and third factor matrix B,
C of the BTD (19). With By, Ci the blocks Ay of the first factor matrix and cores
Gi. can be obtained. In the next step 9 we will see that for obtaining the roots, only
A or By, are required.

As an alternative one could, similar to the CPD root finding method in [38], compute
the BTD (19) in step 8 by, e.g., NLS type methods [29]. Although this requires
in theory less stringent conditions on d(*),d®) in practice the performance of such
NLS methods is highly dependent on good initial guesses. Thus, the outcome of the
algebraic method can be used as initial guess for NLS methods which would then
refine the quality of the result.

Step 9. The decomposition of ) obtained in step 8 yields a splitting of contribu-
tions of the my different roots. Rank-1 terms are given by vectors ay = Ay € (CQ(d(l)),
b, =B € Ca@®) and belong to simple roots (ux = 1) which can be readily retrieved
from Ay or By by means of a simply scaling (e.g., dividing Ay by its first entry) as
discussed in [38]. Alternatively, the multiplicative shift structure of multivariate Van-
(k)

dermonde vectors and matrices can be used: g(i)Ak = §(O)A;c ~x;’, 1 =1:n, where

g(o), g(z) select the rows associated to monomials of degree 0 to d*) — 1 and, respec-
tively, the rows associated to monomials up to degree d) where x; is of degree at
least one. Using the by vectors works in the same way.

Retrieving the roots with multiplicities requires some additional work because,
due to the (multi)linear transformation indeterminacies, the computed block matrices
A, and By do not directly reveal the roots. The roots can be found from Ay or
B by using the generalized multiplicative shift structure of confluent multivariate
Vandermonde matrices, see Lemma B.4. We will illustrate this using the Ay blocks
here, but the variant using the By works in the same way. Note that we originally
used this multiplicative shift structure to derive the BTD (19) in Theorem 4.2. Recall
that Ay = Vk(d(l))Mk for some invertible M, € C#+ Xtk | =1 : mg. For an affine
root x; with multiplicity ui > 1 and depth d; < pg—1, we have for the corresponding
confluent multivariate Vandermonde matrix Vi (d(®)

SOV, (dD) = SOV @)D, i =1:n,

where S(© selects the first Ij, > p, rows of Vk(d(})) such that S(O)Vk(d(l)) € Clrxr
has full column rank, S selects the rows of Vk(d(l)) onto which these I, > ug
monomials are mapped after a multiplication with the ith variable z;, and J ,(;) €

CHeXHPr ig upper triangular with 2 (the value of the ith variable of the kth distinct

root) on the diagonal, see Lemma B.4 in Appendix B.1 or [15, Section 4.4], [14,
Section 6.1] for details. Using Vi (dM)) = A, M, ! yields

~ t.,. - N~ s
(S©AL) SOAL = MIIM TP, =1

In other words, J ,(f) can be obtained by solving the linear system (S(O)Ak) jg) =
®)
eigenvalue can be retrieved by xgk) = trace(j ,(f)) /iy or from a Schur decomposition
(k)

i

SMA, and it has a single distinct eigenvalue z;"’ with algebraic multiplicity pg. This

j,(f) = Q,{ZiRk,iQk,i with Qg unitary and Ry ,; upper-triangular with ;" on the
diagonal.
Step 9 is the only part of Algorithm 1 that needs to be slightly adapted in case of

Mo

roots at infinity. If :rék) =0, azg is a root in the n+ 1 projective coordinates,
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SO A, will not have full column rank because V,(d(V)) will have zero columns and
zero top rows. Thus, we use a rank test on SV A, to decide whether the kth root is
projective or not. If rgw 5, < px then the kth root is at infinity and we set xék) =0.

(F)

Otherwise, we are in the affine situation and set z;” = 1 and proceed as outlined

above. For a root at infinity, recall that the components x( ), i =1 : n are only
determined up to scalar factor A # 0. We continue in this case by testing if S() A,

(k)

has full column rank for ¢ =1 :n. If rgu,, < pr we set z; " = 0, otherwise we

(k)

continue as in the affine case to retrieve the component x;"’. Note that at least one

component x( ) , © =1 :n has to be nonzero.

In the form presented in Algorithm 1, the method will return the roots and the
individual multiplicities, but not their complete multiplicity structures. One possibil-
ity to get the multiplicity structure for a known root with known multiplicity g > 1
is to find the differential functionals cx; = Zj B;05, = 0 : ug — 1 from all possible dif-
ferential functional monomials (Definition 3.3) up to order px —1: 9o,01,0...,0,- - - s On,
|h| = px — 1. It holds

Vk(d) = (Ck()[Vk] . Ckukfl[vk]) = (ag[vk] 81’0“,’0[Vk] 8h[Vk]) Pk,

def
=Ug

where Pk e Calsn—Dxur holds the coefficients 3 of the functional cg. Only Uy €
Ca(dDxalme=1) js explicitly known in the above equality. Since M(d)V(d) = 0, the
matrix P can be computed from the nullspace problem

(M(d)Uyg) Py =0,

see also [1, Section 3.6.2] for similar approaches. Alternatively, one could resort to
algorithms for computing the multiplicity structure [26, 28, 7, 41, 6].

2. A recursive root-finding method. The BTD in Algorithm 1 and sec-
tion 5 prompt the unconstrained recursive polynomial root-finding Algorithm 2. The
algorithm allows us to (recursively) detect various (nested) structures in the null space
of the Macaulay matrix. We give this algorithm as an illustration of the remarkable
new possibilities in our framework.

Some explanation is in order. In Example 5.4 we combined (a) pair(s) of rank-1
terms, which per definition are pairs of multilinear rank-(1,1,1) terms, to rewrite
the CPD of Y(1,d — 1) as a BTD. That is, we expressed Y(1,d — 1) as a BTD with
(one) multilinear rank-(2,2,2) term(s). There is no reason why we should refrain to
further combine pairs of multilinear rank-(2, 2, 2) terms to obtain a BTD in multilinear
rank-(4,4,4) term(s), and so on. The converse of this bottom-up reasoning is the
top-down schematic in Figure 3; Algorithm 2 is the implied recursive root-finding
algorithm. It proceeds as follows. Take the initial input Y= )>(1, d — 1) embodying
all R = m roots. Next, compute the BTD in step 7 with, for instance, Ry = |m/2] and
Ry = [m/2]. Then descend to the next level of the tree in Figure 3. Recursively run
the same procedure on Yy embodying R = Ry = |m/2] roots and on Y, embodying
R = Ry = [m/2] roots. After having repeated this procedure O (log, m) times, each
CPD in step 2 in Algorithm 2 (at the leave nodes in Figure 3) reveals the minimum
possible R = 2 roots left. The columns of the obtained factor matrices An, B,, and
C,, could thereby serve as an initialization for computing the BTD or the CPD at a
lower level.
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Ry = |m/2] Ry = [m/2]

R =1 Ry =2 Ry =2 Ry =2

1 » © O

Fig. 3: Tree-like schematic of a complete run of Algorithm 2 for Y= y(l,d -1 €
C(rth)xmxm BTDs at the top levels (second and third mode dimensions R > 2) are
indicated in black and CPDs in the leaves (with R < 2) are indicated in white. The
rank values 7y, = R are also depicted in each node.

Algorithm 2 Recursive multivariate polynomial root-finding

Input: A compressed Y € CHD*EXR (R < ) for the system f; € Cy,i=1:n,in
the n + 1 projective unknowns z; € C, j = 0 : n, with mg = m simple roots.
Output: {x(k)};j:l
1: if R <2 then > termination
2: Compute the R-term CPD Y = [[A, B, C]] .

X « ~A.
return X
else > divide
Ry «+ |R/2] and Ry < [R/2].
Compute the BTD

N2 R

.)A):gAl’l Al ’QBl °3 Cl+62 ‘1 AQ '2]:)’2 °3 CZ

:3}1€Cn+1xR1xR1 :)}QGCnJAXszRQ

in which G, € CTf1*Fixfr and G, € ClaxRaxRz,
8: Compress )y and Yo using the MLSVD. .
9: return { ALGORITHM 2())), ALGORITHM 2()s) } > conquer

The root node in Figure 3 embodies (a full basis for) the (R = m)-dimensional
null space of the Macaulay matrix. The lower-level nodes embody increasingly lower-
dimensional nested subspaces C C". They provide an increasingly finer-grained view
on the roots x*) € C™ of the system. One could alternatively terminate the recursion
over R at a multilinear rank-(2, 2, 2), rank-3 term that corresponds to a pair of complex
conjugated roots, or at a multilinear rank- (g, fik, (g ) term. In the latter case the leaf
node would embody the pi-dimensional dual space D[x(k)]. Owing to many NLS
runs, the recursive procedure does in the case of simple roots not compete with [38,
Algorithm 1] in terms of computational cost, but it is extremely flexible and interesting
conceptually. One could for instance decide to “zoom in” on a select cluster of roots
in one block term. Example 6.1 sketches the idea.

ExXaMPLE 6.1. Consider first the univariate case. Say that we are only interested
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in the roots of a univariate polynomial f(x) within a A-neighborhood of a given x,
i.e. Toots x + 6, |0| < A. For

ve=(1 z 2* .. xd)T and vyps=(1 x40 (z+46)?2 ... (x+6)d)T
we have

< > 1—[z(x+6))4+!

Vi, Vats 1—z(xz+0)
30 COS (VpdVgas) = = .
30 o) S el = o [

1—22 1—(z+6)?

Evidently, lim|sj<a—0 €08 (Vo<<Vyys) = 1. To assess whether a candidate root y is

sufficiently close to x to be of further interest, we will consider |x — y|, if both values
are available. If the Vandermonde vectors v, and vy are available, we may obviously
also compare the latter, as is clear from (30). However, the block terms in step 7
of Algorithm 2 are characterized by confluent Vandermonde subspaces rather than
individual Vandermonde vectors. The subspaces may be generated by several roots,
which can themselves be simple or have multiplicity greater than 1. Here, we can
assess the angle between a subspace (say S) and Vandermonde vector v, of matching
size. For a block term that captures (possibly among other roots) a root y that is close
to x, cos (vy<S) is bounded from below by (30) for a given tolerance A. Conversely,
we can discard the block terms for which cos (v,<S) is not large enough, since their
subspaces cannot contain a Vandermonde vector with a generator sufficiently close to
x.

In the multivariate case it is possible to assess the proximity for all variables

together. Let us consider the bivariate case by way of example. Let A = (51 (52)T

, T . .
demarcate a region around X = (a:l mg) . For assessing the prozimity of vy =
Vi, @ Vg, and Vxis = Vg, 45, @ Vg, 16,, Note that

<V11 Q Vs, Vo, 46, ®VI2+52> = (val ®V$2)H (V$1+51 ®VI2+52)
= (V£Vx1+51) : (vivxg—i-(sg)
= <Vw17V11+51> : <Vw27vwz+62>7

and that ||[vy, @ Ve, || = [Vay || - |Vasll- This allows the threshold (30) to be replaced
by a product of such thresholds.

7. Experimental results. This section contains the results of some numerical
experiments that illustrate the potential of our approach.

7.1. BTD-based root-finding. As an illustration of the discussion in subsec-
tion 5.1 we compare fitting of the mg-term BTD (19) and the m-term CPD (2) in the
multiple root case, and we showcase the divergence of rank-1 terms when fitting the
CPD. By way of example, we consider the system [35, Example 1.3.1]

(31)

fi(x1,22) = 2120 — 229 =0
fa(x1,29) =223 — 22 =0

shown in Figure 4a. Wehave s=n=2,dy=2,d* =24+2—-2=2,and m=2-2 =4,
but mo = 3. The system has mo = 3 < 4 = m disjoint (and affine) roots

T T
X(1>:(x§1) xg)) —(0 0)" and (x§2’3) m§2*3>) =2 £/2)"
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(31). The roots are marked
(b) Convergence of an optimization-based NLS type algorithm to fit a CPD

with multiplicity p1 = 2 and pa = p3 = 1, respectively. The confluent multivariate
Vandermonde basis V(2) for null (M(d*)) = null (M(2)) is given by

V(2) = (Vi(2) | %2(2) | ¥3(2) ) = ( 9o0[v1(2)] 010[v1(2)] | Boo[v2(2)] | Boolvs(2)] ) € C*@ >

where

Vi(2) = ( doo[v1(2)] Dro[v1(2)] ) =

1 0
xgl) 1
xél) 0
202 9,

mgl)x(;) :vgl)
xgl)z 0

1 0
0 1
0 0
0 0
0 0

e CI2)xm

The depth &, of D[xV] equals o (d19[xV)]) = 1. Take d¥) = d® = 1 such that
dM +d®? =2 >2=d* The tensor Y(1,1) € CIM*a(M)xm constructed as shown in
(18), admits the BTD
Y(1,1) =Gi(1,1) 1 Vi(1) -2 Vi(1) -3 C1(2)

+ V2(1) ® Vg(l) ® 0271(2) + Vg(l) ® V3(1) ® C371(2)

(32)

in which

(G1(1, 1) 2,3 = (

1

0

01

0 1
0 0

)

First we fit an (m = 4)-term CPD using the randomly initialized NLS algorithm
in Tensorlab [40], until the relative change in objective function drops below 10~ or
a maximum of 500 iterations is reached. Figure 4b shows the convergence: it is slow.
A collinearity criterion [31, (2.2)] identifies a group of u; = 2 diverging rank-1 terms
and two linearly independent non-diverging rank-1 terms (up = pug = 1).

SWhen the algorithm terminates, the cosine between the vector representations of the two di-
verging rank-1 terms has become 0.9998 in absolute value.
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Next we fit a BTD with mo = 3 and the identified, correct multiplicities p using
NLS with the same stopping criterion. We use the CPD results to initialize the BTD
fitting by means of the SGSD-based procedure in [31, p. 299].

1 1
A (1) = [0.0138 0.0003
0 0

which satisfies Aj(1) = Vl(l)Mgl) for some nonsingular matrix Mgl). From the

last row of A;(1) it follows that xél) = 0. The value of xgl) may be recovered from
Ja(x1,22) = 0.

Now we repeat the above experiment using Algorithm 1 with the algebraic BTD
computation to find the roots and multiplicities for the system (31).

Setting d¥) = 1 and d? = 2 ensures that the prerequisites of Theorem 4.4 are
met and, consequently, the matrices A;(2) € C3%2, Ay 3(2) € C3*1, B4(2) € CO*2
and By 3(2) € C5*! can be readily computed algebraically via a block-diagonalization.
The block-diagonalization already reveals the correct multiplicities j1q7 = 2, pa3 = 1.
From B (2) the two-fold root x(!) = (0,0)7 is retrieved using the generalized ESPRIT
approach (step 9 of subsection 6.1, see also Appendix B.1). The simple roots x(2:3)
are retrieved from scaling the factor vectors of the rank-1 terms of the BTD as in [38,
Algorithm 1]. Let V(d) = (vi(d) va(d) vs(d)) € CUD*™m0 be the multivariate
Vandermonde matrix of degree d > 1 associated to the true solutions of the polynomial
system and V (d) the estimated counterpart computed by Algorithm 1. Note that we
do not add derivative columns corresponding to the roots with multiplicities here.

The algebraic BTD based procedure achieves a relative forward error”
IV - v
v IVl

of O(107!) and a residual norm [|M(do)V(do)| = O(10713). Not only are these re-
sults significantly more accurate compared to the ones obtained with the NLS-based
BTD computation that we executed before, the algebraic computation is carried out
without the need for iterative procedures and initial guesses (obtained, e.g., by a
preliminary CPD fit). This indicates that the algebraic BTD computation is more
reliable compared to a BTD computation using optimization based methods. Never-
theless, optimization based methods can still be used in cases where some refinement of
the algebraic results is needed, such as for noisy equations (see [38] for an illustration).

7.2. A recursive polynomial root-finding algorithm. As a numerical illus-
tration of Algorithm 2, consider again the system of s = 2 polynomial equations in
n = 2 variables [38, Example 3.2]:

(33) { fi(z1,22) = —23 + 22120 + 23 + 521 — 322 —4 =0

folw1,m0) = 22 + 2z120 + 23 — 1 =0

with dV) = d® = 2 and d* = 2+ 2 — 2 = 2. The system has m = 2 -2 = 4 simple

roots (xl xQ)T = (0 —1)T, (1 O)T, (3 —Q)T and (4 —5)T (‘o’ in Figure Ha).
From the numerical basis K(d) = K(d* + 1) = K(2 + 1) for the nullspace of

M(d) we construct the tensor Y(1,2) € C3*¢*4 which has multilinear rank-(3,4,4),

7Computed using the cpderr routine of Tensorlab [40].

This manuscript is for review purposes only.



942
943
944
945
946
947
948
949
950
951

961
962
963

POLYNOMIALS, TENSORS AND HARMONICS — PART II: BTD 29

4 102

ol L .

0 o >

g -0 __. I 10718 L
—2 o “b [N
. i VA
O

76 10—38

_4 _2 0 2 4 6 0 5 10 15
T iteration

(a) (b)

Fig. 5: (a) Convergence of the projected terms in the BTD at the top level in Figure 3
for (33) from a random initialization to subspaces () spanned by two roots ‘o’ each.
(b) Convergence of an optimization-based NLS type algorithm to fit the BTD (—)
and two CPDs in the leaves (- --) as a function of the iteration step.

a MLSVD compression yields J) € C3*4%4 We run Algorithm 2 using NLS and
convergence criterion 107° for both the CPD in step 2 and the BTD in step 7. As the
initial Y has R = m = 4, the BTD (top level in Figure 3) directly uses the minimum
sizes Ry = Ry = m/2 = 2 for the core tensors. To fit the BTD, we randomly initialized
the first factor matrices A1, Ay € C3*2 for the optimization algorithm (alternatively,
it is also possible to employ an algebraic BTD algorithm as in Section 7.1) . Figure 5a
illustrates how the R; = 2 columns of Al (first normalized so that zop = 1 and then
projected as points on the (z1, x2)-plane C?) converge from their random initialization
to the lower-dimensional subspace (plotted as a gray line () in C?) spanned by the
columns of

1 1 1 1
(V) = :L'l[lj :clin = 0 1
1,2 xgl) ng) 1 0

Likewise, the Ry = 2 columns of A, converge to the subspace (drawn as gray line
(1)) spanned by the two columns of

1 1 1 1
(\7) = x1{3i xlw = 3 4
3.4
o o -2

Note that one converged column of A, is kept outside Figure 5a for visibility. Next,
each CPD in a recursive call of Algorithm 2 (leaf nodes in Figure 3) will converge
within these subspaces to the sought for roots. Figure 5b shows the convergence.
Because there are no multiple roots, there are no diverging rank-1 terms, and conver-
gence is fast.

8. Conclusions. In [38] we have attempted to show that multilinear algebra
is a convincing framework to formulate and solve 0-dimensional polynomial root-
finding problems. This paper has taken the multilinear algebra framework to the
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964 mnext level. The third-order tensor BTD proposed in Theorem 4.2 is the most general
965 decomposition in our framework. It incorporates multiple roots, reducing to the CPD
966 if all roots happen to be simple, it coincides with the triangularization in NPA’s
967 Central Theorem and it is a three-way generalization of the Jordan canonical form,
968 intimately related to border rank. Furthermore, Theorem 4.4 established uniqueness
969 properties for the BTD and enables its algebraic computation by means of a block-
970 diagonalization. Future work might use our findings to formulate a three-way Jordan
971 form for groups of many diverging rank-1 terms which has so far only been done for
972 relatively simple cases [31, 32]; general expressions are still elusive. We have illustrated
973  how our BTD-based framework is able to retrieve the roots and their multiplicities
974 from the null space of the Macaulay matrix. Moreover, we proposed a recursive
975 method to detect nested structures in the nullspace. This essentially amounts to
976 splitting a tensor that captures all roots into smaller tensors that capture subsets of
977 roots, and iterating over such splittings. Future work might also investigate the use of
978 constrained optimization techniques or prior knowledge to improve the accuracy with
979 which the roots are found. It may also be interesting to see whether, e.g., clusters of
980 roots of no interest can be discarded early in the polynomial root-finding procedures.

981 Appendix A. Proof of Theorem 3.1. We will need the following lemma.
982 LEMMA A.1. Let My, ..., Mg be linear transformations on C™ and let
983 (34) C"=Vi+---+ Vg, dimV, = p,
be a direct sum decomposition of C™ into subspaces that are invariant for all My, ..., Mg 1

M\V,CV,, r=1,...,R, k=1,...,K.

984 Let also
(35)
085 My, = Blockdiag(M{", ... M), M ecrrxre p=1,... )R k=1,... K

986 be the block-diagonal forms of My, ..., My in a basis derived from decomposition (34).
987  Assume that

988 1. there exists a linear combination of My, ..., Mk with matriz representation
989 M = Blockdiag(M®), ..., MW) such that the spectra of any two blocks do

990 not intersect;
991 2. none of the subspaces V,. can be further decomposed into a direct sum of

992 subspaces that are invariant for all transformations My, ..., M.

993 Then any other decomposition of C™ into a direct sum of R > R subspaces that are

994 inwariant for all transformations My, ..., Mg,

995 (36) Ch=Vi+--+Vs  dimV, =i,

996 coincides with decomposition (34) up to permutation of terms, that is, Vi = Ve« -» Vi =I
997 Ve(r) for some permutation 7 of {1,..., R}. In particular, it necessarily holds that

998 R:Rand that ﬂlzuﬂ(l)w-wﬂR:MTr(R)-

999 Proof. Let subspace W be invariant for all transformations My, ..., M. Then

)
000 W is also invariant for the transformation M. Hence, by assumption 1 and [18,
)1 Theorem 2.1.5], W = W + --- + Wg, where the subspaces W; C Vp,...,Wg C Vg
)2 are invariant for M. Moreover, since W is invariant for all My, ..., Mk and (34) is a
)3 direct sum decomposition, it follows that the subspaces Wi, ..., Wg are also invariant
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for all transformations M, ..., M. Applying this result to the subspaces Voo, Va
in decomposition (36) we obtain that

(37) Vi=Wiy 4+ 4+ Wig,..., Vg =Wg, +--- + Wgp,
where the subspaces
(38) W117W21) s WRl g V17 e 7W1RaW2R7 R WRR g VR

are invariant for all transformations M, ..., Mk. Now from (34), (36), (37), and (38)
we obtain that

(39)
Vido d Va=Cl = Thd e b Vg = Wiy o FWig) oo b (W b W) =
Wi +War 4 FWg) + -+ (Wi + Wop + -+ + Wep) CVI+ - + Vg,

Hence V, = Wy, +Wy,+---+Wpy,,r =1,..., R. By assumption 2, this is possible only
if one of the subspaces Wy,, Wa,, ..., W, coincides with V,. and the other subspaces
are zero. This easily implies the statement of the lemma. 0

Proof of Theorem 3.1. Since the matrix B has full column rank, it is sufficient
to prove that for any decomposition of 7 into a sum of indecomposable tensors the
blocks of the matrix in the second mode can be permuted so that their column spaces
coincide with the column spaces of the blocks By, ..., Bg. To prove the uniqueness of
the column spaces col(B1), ..., col(Bg) we will use Lemma A.1. In our derivation we
assume without loss of generality that the matrix B is square, so uy + -+ ur =m
and B € C">*™,

Step 1: Reduction to Lemma A.1. For any f € C™* we have that

(40) T o f7 = B - Blockdiag(G: -1 (f'Ay),...,Gr =1 (fTAR)) - C7,

where we identify the one-slice tensors 7 -1 f1 € C*™*™ and G; -; (fTAy) €
Ctmxm  Gp e+ (FTAR) € CY¥#RXER with matrices. Since the first horizontal
slice of G, is the identity matrix and the other frontal slices are strictly upper trian-
gular, we have that
(41)

Gr 1 (fF'A,) is the sum of fTA,.(:, 1)1, and a strictly upper triangular matrix.

Since, by (6), the first columns of the matrices Aq,..., A are nonzero, it easily
follows that for generic f € C”t all values fTA;(:,1),...,fTARg(:,1) are nonzero.
Hence, by (40) and (41), the m x m matrix T -; f7 is nonsingular for generic f € C”1.
Hence for £ =1,...,1; we have that

(42) T (k,::)(T -1 fT)fl = B - Blockdiag(
(Gr 1 (A1(k,)))(G1 1 BTAN)™L, ..., (Gr -1 (Ar(K,))(G1 -1 FTAR)™) - B~
Thus, the matrices T (k,:,:)(T -1 f7)~! can be simultaneously reduced to block di-

agonal form by a similarity transform. This means that the column spaces of the
blocks By,...,B,,, are invariant for all matrices 7 (1,:,:)(7 «1 £7)~ L, ... T (I4,:,:
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)(T +1 f7)~! and that the whole space C™ can be decomposed into the direct sum of
col(By),...,col(Bg): C™ = col(By) + - + col(Br).
Step 2. By Step 1, any BTD T = Ele [[ér; A, B, CT]] with nonsingular B

(Bl BR) and C & (Cl Cé) generates a decomposition of C™ into a
direct sum of col(By),...,col(Bg). To show that all such decomposition coincide up
to permutation of the terms with the decomposition C"™ = col(B;1) + - - - 4 col(Bg),
we show that the assumptions in Lemma A.1 hold for K = I, V;. = col(B,.), and
(43)

M, = Blockdiag(M\", ..., M\®) with M{" = (G, 1 (A,(k,:)))(Gr -1 (FTA,)) .

Assumption 1. Let h € CK and M def hiMi + --- + hxkMpg. Then, by

(43), the rth diagonal block of M is the sum of (h”A,.(:,1))(fTA,.(:,1))7'I,, and
a strictly upper triangular matrix. Hence, the diagonal blocks of M have one-point
spectra (hTA;(:, 1)(FTAL(5, 1)~ ., (WT AR, 1) (FTAR(;,1))7L. We show that
there exists a vector h such that the values (hTA;(:;;1))(FTA1(:,1))7L,..., (WTAR(:
,1)(ETAR(:5, 1))~ are distinet. Indeed, if (hTA,, (:;,1))(fTA,, (1))t = (WTA,,(:
JIN(ET AL, (5, 1)) 71, then easy algebraic manipulations imply that

(44) W' (fTA,, (1) A (1) = T (FT AL, (5, 1)) A, (5, 1)

Thus, (44) holds only for vectors h that are orthogonal to the vector ((fTA,,(:
DAL (1) — (FTAL (5,1))AL, (5, 1))*, which, because of the generic choice of f in
Step 1 and by assumption (6), is nonzero. Hence, the values (hTA;(:,1))(fT A (:
)7 (WTAR(L 1) (fTAR(:,1)) 7! are distinet for any vector h that is not or-
thogonal to any of the R(g_l)vectors (FTAL (DA, G 1) —(ETAL (G 1)ALL G 1)),
1<ri <rs <R.

Assumption 2. Since the matrix A, has full column rank, its row space is

equal to CHr. Hence the subspace spanned by the matrices MY), .. ,Mff) coin-

cides with the subspace spanned by the nonsingular upper triangular matrix S; def

(Gr 1 (L (1L, )))(Gr o1 (FTAL) 7 = (Gr(1,5,0))(Gr 1 (FTA,)) 71 and the p, — 1 strictly
upper triangular matrices S;11 def (Gro1 (T (14 1,0))(Gr 1 (FTA)) L = (G (14 1,1,
NGr1(FTA))" L 1 =1,..., u.—1. To prove that the subspace C* cannot be decom-
posed into a direct sum of subspaces that are invariant for all matrices MY), - ,Mffr)
we prove a stronger statement: the subspace C#” cannot be decomposed into a direct
sum of subspaces that are invariant for all matrices So,...,S,,. Since Sa,...,S,, are
nilpotent matrices, it is sufficient to prove that the common null space of Sz, ..., S,
is trivial, i.e., is spanned by the vector I, (:,1). Let u be a nonzero vector such that
Sou = --- =8S,,u=0. Since G,.(:,1,:) = I, , it follows that the first rows of the
matrices So,...,S,, are proportional, respectively, to the 2nd, 3rd,..., u,th row of
the matrix (G, -1 (T A,))~!. Hence, the identities Sou = --- =S, ,u = 0 imply that
the last g, — 1 entries of the vector (G, -1 (ffA,))"tu are zero. Since the matrix
(G- -1 (fTA,))~! is nonsingular and upper triangular, it follows that the last u, — 1
entries of the vector u are zero as well. O

Appendix B. Derivation of Theorem 4.2. In this section we derive the
BTD structure in Theorem 4.2. Throughout this derivation we will make frequent
use of the following Definition B.1 and Lemma B.3.
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DEFINITION B.1. [6, Definition 1] Let the linear transformation ¢; be defined by

) @33, (1) = {a A

0-functional, Jjj =0.

Given a system of polynomial equations F and a pg-fold root z, the dual subspaces
D [z)(F) are the strictly enlarging sets Dolz](F) = span(dp[z]) and

Dy2)(F) =span | { c= > Bids[z](f) | e(F) = {0} &V : ¢;(c) € Dy_1[2](F)

i<t

If Dsy1(z] = Dslz], then the vector space Dsl|z] = Dlz] is called the dual space of
the system F at z and & is called its depth. The dual space reveals the multiplicity
structure of the root z; its dimension equals the multiplicity uy.

EXAMPLE B.2. Consider again example 3.5 with f € C?, a four-fold root z €
C? with § = 2, and the differential functionals cig = Ogo, c11 = O, c12 = Oo1,
c13 = (2090 + O11). Obviously, cio € Dolz] C Da[z]. Since ¢1(c11) = ¢1(d10) = oo,
¢2(c11) = 0 we have ¢11 € Di[z] C Dolz] and likewise for cio. For ci3 we have
that qj)l(clg) = 2010 + Op1 € Dl[Z] and gbg(clg) = 010 € Dl[Z] so that c13 € DQ[Z].
Due to the nested structure of D, it also holds ¢;(¢;(cki)) € D, i,j = 1,2. Indeed,
we have, e.g., ¢1(d1(c13)) = 2000 € D2lz] as well as Pa(d1(c13)) = Ooo € D2lz],
P2(2(c13)) = 0 € Da[z].

We use the Leibniz formula (generalization of the product rule).
LEMMA B.3. Let p,q € C™*. Then for k € N*

olp-al= > - O jlal-

0<j<k

With these prerequisites we are now ready to establish the BTD (19) in Theorem 4.2.
We will do so in two steps: at first we generalize the multiplicative shift structure
for multivariate Vandermonde matrices, that was used in [38] for the case of only
simple roots, to confluent multivariate Vandermonde matrices and roots with multi-
plicities greater than one (Section B.1). This result is afterwards used to establish
the BTD (19) starting from the nullspace of the Macaulay matrix (Section B.2).
Throughout the whole derivation, examples will illustrate main intermediate steps.

B.1. First step: Generalization of the multiplicative shift structure.
We consider the confluent multivariate Vandermonde matrix

(45a) V(d) = (Vi(d) ... Vp(d)) € CUDxm

associated to a 0-dimensional polynomial system F with mg < m distinct roots. Each
block Vi(d), k = 1: myg is of the form

order 0 order 1 order dg
- —_— d
(45b) Vi(d) = ( cwo[V(@)] | ca[V(@)] .. | ..o | oo erper[V(d)] ) € CAUDxmx

and contains the pj unique differential functional columns cy[v] € D[zx] which we
assume w.l.o.g. to be ordered increasingly regarding the differentiation order of the
differential functionals.
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LEMMA B.4. Let V(d) be as in (45) with d = dD4d® > d*, dV) > 1. Let further
S ¢ cad®)xa@d gelect the rows of V(d) associated to the monomials of degree 0 to

d® and let §(j) € CHA®)xa(d) gelect the rows onto which these monomials are mapped
after a multiplication with the (j + 1)th monomial x* = x{"* --- 2", a; € N with
o] < .

Then the generalized multiplicative shift structure / ESPRIT-type relation

(46) SV @M Vi(d) =SV @)V @IP, 0<j<qdD) 1, k=1:m

holds, where J,ij) =x%1,, + N;Cj) € CHrXHE qpith Ng) strictly upper triangular. For
all 0 < 4,7 the upper triangular matrices Jg), Jg) commute. Moreove?", forthe (j+1)th
monomial X* = x7* - - - a8 the associated upper triangular matric J,(CJ) in (46) is given
by

j Dy M)\ opn
(47) I =@ @)
so that all J,(Cj) are defined by the n upper triangular matrices Jg), e ,J,(Cn) associated
to the monomials 1, ...,x, of degree one.
Proof. (46) holds trivially for j = 0 with J;O) = I,,. We begin the derivation
with shifts by the degree one monomials z;, j = 1 : n (ie, a; = ej, |aj| = 1).

Only the first columns cyo[vi(d)] = Ooo[vi(d)] = vi(d) = vy are genuine multivariate
Vandermonde vectors for which the simple multiplicative shift invariance holds:

(48a) Sy =2, - SV WdP)vi, j=1:n,

whereas by linearity of cg; and the multiplication by §(j)(d(2)), we have for the re-
maining columns

(48D) SV A epvi] = 8V (d@)emfazjvil, j=1:n.

With the help of Definition B.1, Lemma B.3 it holds for the application of ¢y =
Zr ﬂrar to TV forl=1: W — 1:

crilrivi] = Zﬁrar[xjvk] = Zﬂr Z Oi[x;]0c—i[vi] = Zﬁr Z Oi[5]0¢ —i[Vi]

r  O<i<r rJij=0

= Be (2;0e[VE] + Oc—o, [Vh]) = zjcra[Ve] + &5(cr)[Vi]-
Now let 1 < ¢t < J; be the differential order of cy;. Since c¢xy € Di[zg] C Dlzg],
it holds by Definition B.1 that ¢;(cr) € Dy—1 C D[zx] which means ¢;(cy) can be
expressed as linear combination of differential functionals from D[z] of order less than
t. In other words, ¢;(cr)[vi] can be expressed as linear combinations of columns of
Vi(;,1:1), ' < 1 and whose differential order is strictly smaller than ¢. Hence,

ckixjvi] = zick[ve] + Z’yl/lckl/[vk] for some ;€ C

U<t
Yol
(49) =V e, T = | T I T -,
b
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Together with (48a), deploying the relations (49) in all pj columuns in (48b) yields
§V @) Vi(d) = 8 (@) V()3

with J(j) = x,;L,, N(]) € CHr>*Hr with the ~’s in the strictly upper triangular part
N(J)

P

This relation can be extended towards shifts with higher degree monomials, i.e.,
x% - v, with |a| > 1. It similarly holds §(J)(d(2))v;C =x% ~§(0)(d(2))vk for the first
columns. The application of the functionals yields
min(t,]e; ) _
(50) ckl Jvk Zﬂr Z 1 r i Vk Zﬂr Z ai[xaj](bl(al‘)[vk]’
r 0<i<r i=0

where we again used Definition B.1, Lemma B.3 and introduced the notation ¢! def

“(pR(...¢")) and (b” def i(0;(...¢;)) (i;-fold application of ¢;). Because of the
nested structure of the dual space D[zy] it still holds that ¢ (cki) € Dmax(0,t—i) [2k] C
D[zk]. Hence, (50) can be written as

cr[x¥vi] = X% e [vi] + Z'Yl’l(x)ckl’[vk]a for some  yp(x) € €171
r<i
Yo (x)

o
so that (46) also holds for all j < ¢(d")) — 1, where j > n indicates a multiplicative
shift with the (j 4+ 1)th monomial in the chosen monomial ordering. The associated
upper triangular matrices J ,(CJ ) will have strict upper triangular parts that may depend

on the values of xgk), e q:%k).

We now establish (47) for the sake of presentation for the shift z7, i.e., a = 2e;.
We proceed through the steps in (50) in a slightly different way (but again making
use of Definition B.1, Lemma B.3):

Ckl[$2vk] = Cp I'j l’jvk Zﬂr Z ] r— i[xjvk]

r 0<i<r

= Zﬁr J,'j QTJVk] + Op— e; [l‘JVk]) = LL’jCkl[l‘jV}C} + ¢jckl[xjvk]

=T; (xjckl [vi] + Z%/l%u[%]) + ¢; <a:jckl[vk] +) nerr [Vk]>

r<i U<l
(51) =, Vild P (04 1) + 2 Vi 1 DIP (L L1+ 1)+ iy () [Vl
<l
where we used (49). For the rightmost term in (51), recall that cgp € Dy_q[zs] if
1 <t < 6 is the differentiation order of ¢g;. Thus, by the nested structure of D[zg],
®5(crir) € Dimax(0,t—2)[zk] so that ¢; (crir) = D1 oy Y cgrrr. Consequently,

> e (ewr) [vid =Y Y wwcrr[vil Zﬁ’l'leJ(J)( I'+1)

r<i < < r<i
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and, by recalling that J,(gj)(l +1,l14+1) =y ==x; for [ =0: puy — 1, we can write (51)
as

(52)

crilzdvi] = Vi (ka (041 + 73 (U L+ 1) + 3P+ 1)IP(1+1))

(53) =V, I3,

We identify J ( ( I+ 1) as the (I + 1)th column of J % and using (52) for | =
0:pp—1 y1elds (47) for quadratic shifting monomials :cj The above reasoning can
be extended first towards higher degree pure monomials x] , a; > 2 and finally to
general monomials z{* - - - % which establishes (47). 0

ExampLE B.5. Consider again example 5.5 with the differential functionals c10 =
800, C11 = 810, Ci2 = 801, C13 = (2(920 + 811) and thus V1 (d) = (Vl (d) Cu[Vl (d)] C12[V1 (d)]
CUD*4 We omit the degree indications (d d®)) for the rest of the example for better
readability. For j = 1,2 it clearly holds S V1 T S(O)vl. For the second differential
functional c11 = 019, i.e. the 2nd column of Vl, we have

ci[zjvi] = Orolzjvi] = 2;010[v1] + ¢;(010[v1])

0 = =1
:xjalo[v1]+ {OOO[V1] Vi . j

N

~ 1 —(9) ~ 0~ 0

Thus, SV envi] = SYV1(,2) = SOV, (ﬂg) and SPV,(;,2) = 5OV, (IO )
0 0

i3 = 5% )

Likewise, we find §(1)612[v1] =S and §(2)\~/1(:,3

o8 oo

i 1
S(O)Vl (392 > For the fourth functional c13 we have
0

clg[xjvl] = (2820 + 611)[IjV1] =x; (2820 + 611)[V1] + ¢j (2(920 + 811)[V1]

R (2010 + 001)[V1] = (2c11 + c12)[v1] : j=1.
= xjci3[vi] + {810[V1] = c11[v1] L j=2.

_ - v~ /0 oy - o~ 0
Consequently, S(l)clg[vﬂ = S(I)Vl(:,él) = S(O)Vl ( 2 ) and S(2)V1(:,4) = S(O)V1 ( S >I

x1
Collecting all these relations yields (46) with the upper triangular matrices

3 _ (”” 52 ) ol ( ! 2> 3@ _ (‘”’” n )
1 - x1 1 =z1ls+ 1 /> 1 - zo 0 .
T xr2

Finally let’s consider as one shift with a higher degree monomial the shift with the
(j = 3)rd monomial x2. It clearly holds §(3)v1 = 22 -§(0)V1. For the remaining
columns we get
ci[r3vi] = Oo[dvi] = 21010[v1] + 221v1 = 25crr[vi] + 221 v,
ciz[zivi] = O [elvi] = 21001 [v1] = afcrn[val,
ciz[zivi] = (2020 + 011 [ v4]
= 2(22000[v1] 4 221010[v1] + V1) + 23011 [V1] + 221001 [v1]

= 2V1 —+ 4I1611[V1] —+ 2$1612[V1] —+ xfclg[vl].
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Hence,
rf 2x1 2
(3) z? 4z
J7V = 2
Ty 221
o

2I1

21’1 2
= 231, + < 4961) = g2

B.2. Step 2. Establishing the BTD structure.

Proof of Theorem 4.2. Recall that for d > d* the numerical basis K(d) of the
Macaulay null space and the confluent multivariate Vandermonde matrix V(d) are

linked by

K(d) = V(d)C" = (V(d)

ct
CT

37

and consider the matrix representation (18) of the third-order tensor Y(d"), d?)):

5”(a®) - K(a)
<)
S (d®) - K(d)
Y129 (dM, d®)) = .
<(a@V)-1), 2)
S (d?)) - K(d)
Vk(d(Q))
Vi (d®)J)

mo

k=1 :
vk(du))J;q(d(”)—l)

§9a@) . vy (d)

mo | W @) Vi)

k=1 .
— Wy ~
ST @®) V()

mo

Cl = (Iyumy ® Vi(d®))
k=1

Cik

I,
I

Jliqw(l))—l)

with the upper triangular matrices J,(j)7j =1:q(d™)=1,k=1:mg from Lemma B.4
associated to the ¢(d(!)) shifting monomials of degree 0 to d*) which are assumed to
be ordered consistently in the chosen monomial order. Consider the kth term in the
above sum, which is associated to the kth root z; with multiplicity px > 1 and depth

0 < 6 < up — 1. For the strictly upper triangular parts of Jg) = z;1,, + N7,

i =1:n, we have the nilpotency properties

(54a)

which include the individual properties
(54b)
as special case. Furthermore,

(54c) (Nt (N = negel

Trivially, (NY)) = 0,,, since pg > 6 + 1.

(N () = 0 Vgl with 37 > 6y

J

(N =0, a>6

neC if Y a; =0

J

(@)

Let J Ecj ) be associated to the monomial x% and express it in terms of the upper

triangular matrices N,(f), i =1 :n by using the multi-binomial formula:

(55) I =

h<a; i=1

h<a; i=1

h;éaj
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1260 Using above nilpotency properties (54) and also the property that all N,(;) commute
1261 indicates that at most q(dx)—1 different products of strictly upper triangular matrices
1262 appear in (55) (all products of powers of the N,(;) with Y. (a; — h;) > 0y) cancel out).
1263 The factors in front of the upper triangular matrices can be( c)ollected to match the
J
k

1264 functional evaluations cg[x*], I =1 : up — 1 so that every J,’/ can be written as

1267 (56) ID = x4 e x9N 4o, xR,

1267 Here, the N,(f) are linear combinations of those Néh) =J ,(ch) —x% 1, that are asso-
1268 ciated to shifting monomials x** with degrees equal to the differential order of cy;,
1269 that is
1270 Ng) = Z whN,(ch), wp € C.

{h : |an|=o(cki)}

1271 Consequently, since the selection matrices §(Z) are applied in the chosen monomial
1272 order, we find

ke
2 | =AM @ Ty e lvi @] @R e i (@) @ R
J;M('l))_l)
L.,
]
o - (V’“(d(l)) ® I“k) Ginzay Gipaa & :
1275 N;gu;ﬁfl) I
1276 Hence, one term of Y[j 2.3(d),d®) can be written as
I,
O
1277 Ty ® Vi(d®)) . CT = (Vi (dD) ® Vi(d®) G125 CF = Yip 23

(a(@()-1)
Jl

1278 which is a matrix unfolding of one term of a BTD Y, (), d(®)) = ﬂgk; Vi(dD), Viu(d@), Ck(d)]]l

1279 of a third-order tensor yk(d(l), d(2)) e CudWxadPxps  GSince this holds for all
1280 k=1 :mg, we established the BTD (19). The equality Gy (I3 +1,:,:) = G (:,11 + 1,:)
1281 follows by symmetry. a

1282 We illustrate this BTD construction in an example.

1283 EXAMPLE B.6. Continuing the previous example Example B.5 with dV) = d?) =
1284 2,
1648
~ T 0 1 0
1285 V1(2) = (CIO[VI] Cu[Vl] Clg[Vl] Clg[Vl]) = z7 2x; 0 2

r1xo2 T2 X1 1
’Eg 0 2220

1286 with differential functions given in Example B.2, and upper triangular matrices J ,(Cj )
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1287  from the previous subsection. Now note that

I, I, Ty
J(l1> z1-1, +N<11) Zl'Iuk+Cll[l’l]Ngl)‘i’Clz[II]N§2>+513[w1]N§3)
J(12> x2-1pg +N<12) f62~IM+C11[Iz]N§1)+C12[EQ]N§2)+013[I2]N§3)
1288 I = | elng 420 NPAND? | = e, fen 0N dens (27N dera o NTY
Jgs) $§-I}‘,1+212-N§2)+N§2)2 aZg'IulJrCll[IEg]Ngl)JrClz[$§]N52)+013[$§]N§3)
oo (D) 7(2) 7(3)
1388 =cio[vi] @Iy +en[vi] @ N7 + cio[vi] @ Ny + epz[vi] @ Ny,

1291 which corresponds to (56) with
(1) def 1 $r(2) def 2 r(3) def 1)2 1 2
5 NN, R ENG,  INR - N N

1294 Consequently,
I

n1
. 3y .
1205 (Lgam) ® V1i(d®)) : = (Lygam) @ V1(d®)) <010[V1] ® Ly + cnn[vi] ® (
ngw(l))—l)
001 000
1296 +612[V1] X < 0 0 1> + Clg[Vl] ® < 0 0
0
e
0o 2
01
1207 = (Vi(dV)@ Vi(d®) | "o !
0 0
00
0
—_——
1298 —Gi1,2:3)
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