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SYSTEMS OF POLYNOMIAL EQUATIONS, HIGHER-ORDER1

TENSOR DECOMPOSITIONS AND MULTIDIMENSIONAL2

HARMONIC RETRIEVAL: A UNIFYING FRAMEWORK.3

PART II: THE BLOCK TERM DECOMPOSITION∗4

JEROEN VANDERSTUKKEN‡ , PATRICK KÜRSCHNER‡† , IGNAT DOMANOV‡ , AND5

LIEVEN DE LATHAUWER‡6

Abstract. In Part I we have proposed a multilinear algebra framework to solve 0-dimensional7
systems of polynomial equations with simple roots. We extend the framework to incorporate multiple8
roots: a block term decomposition (BTD) of the null space of the Macaulay matrix reveals the dual9
(sub)space of a disjoint root in each term. The BTD is the joint triangularization of multiplication10
tables and a three-way generalization of the Jordan canonical form in the matrix case, intimately11
related to the border rank of a tensor. We hint at and illustrate flexible numerical optimization-based12
algorithms.13

Key words. system of polynomial equations, multilinear algebra, block term decomposition,14
border rank, Macaulay matrix, multiplication table15

AMS subject classifications. 13P15, 15A69, 54B05, 65H0416

1. Introduction. Systems of polynomial equations arise often in science and en-17

gineering. Solving such a system means finding all the common roots of the polynomi-18

als. Many methods have become available to solve systems of polynomial equations:19

algebraic geometry-based computer algebra methods, e.g., [5], Polynomial Homotopy20

Continuation (PHC), e.g., [39, 4], (Macaulay) resultant- and linear algebra-based21

methods [21, 37, 36] including, e.g., Numerical Polynomial Algebra (NPA) [28, 34]22

and Polynomial Numerical Linear Algebra (PNLA) [1, 14], etc.23

A higher-order tensor in multilinear algebra is a multi-way generalization of a one-24

way vector and a two-way matrix in linear algebra. Tensor decompositions like the25

Canonical Polyadic Decompostion (CPD) and the Block Term Decomposition (BTD)26

are then generalizations of matrix decompositions. Despite the natural generalization,27

multilinear algebra exhibits striking differences with linear algebra. First, a tensor28

that has rank greater than R is said to have border rank R if it can be approximated29

arbitrarily well by a (sequence of) rank-R tensor(s) [13]. [32] shows that this phe-30

nomenon can be seen as a multi-way generalization of approximate diagonalization31

of a non-diagonalizable matrix and that the limit point of the approximating rank-R32

sequence can be seen as a multi-way generalization of the Jordan canonical form.33

Second, the rank of a tensor depends on the field considered for the factor entries.34
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2 J. VANDERSTUKKEN, P. KÜRSCHNER, I. DOMANOV AND L. DE LATHAUWER

For a tensor in RI1×I2×···×IN chosen at random according to continuous distribu-35

tions (e.g., i.i.d. Gaussian entries), more than one distinct value of the rank occurs36

with positive probability. These rank values are called typical.37

In [38] we presented a multilinear algebra framework to formulate and solve 0-38

dimensional polynomial root-finding problems, the solutions of which are isolated and39

finite in number. This discussion was limited to systems with only simple roots.40

For such systems we derived a connection between the null space of the Macaulay41

matrix and multidimensional harmonic retrieval (MHR). By jointly exploiting the42

multiplicative shift invariance in the different variables, we obtained a third-order43

tensor CPD that reveals the common roots.44

In this companion paper we discuss systems of polynomial equations that are45

allowed to have roots with multiplicity greater than 1. Rather than just a single integer46

for the multiplicity, the multiplicity structure (dual space) of a multiple root is an47

essential means in providing characteristics of the root [6]. The dual spaces manifest48

themselves in the null space of the Macaulay matrix. If a system has roots with49

multiplicity greater than 1, the basis of the null space of the Macaulay matrix does50

not fully exhibit multiplicative shift invariance anymore. Consequently, we cannot51

derive a third-order tensor CPD that reveals the roots. Instead, we will derive a52

third-order tensor BTD that reveals the dual (sub)spaces of the disjoint roots.53

In [38] we explained that the multiplicative shift invariance-expressing CPD can54

be seen in terms of the joint diagonalization of NPA’s multiplication tables. In this55

companion paper we will explain that the BTD generalization can be seen in terms of56

the joint block diagonalization/triangularization of the multiplication tables. Further,57

BTD offers a three-way generalization of the Jordan canonical form of the Eigenvalue58

Decomposition (EVD) in NPA. Such connections emphasize the unifying power of59

the multilinear algebra framework and its ability to help us understand the “roots”60

of polynomial systems and multilinear algebra more profoundly. Including BTD, our61

approach is able to (recursively) detect various (nested) structures in the null space of62

the Macaulay matrix. The multilinear approach opens a whole new range of numerical63

optimization techniques to solve systems of polynomial equations.64

The paper is organized as follows. Section 2 will review our notation and introduce65

some necessary definitions. Section 3 will introduce the CPD and BTD as important66

tensor decompositions for this study, present a new uniqueness result for a BTD with67

special structure, and will update the structure of the null space of the Macaulay68

matrix from the “simple root case” to the “case of roots with multiplicities”. In69

section 4 we will then establish that the formerly resulting third-order tensor CPD70

needs to be understood as a special case of a third-order tensor BTD that also covers71

the more general case of roots with multiplicities. To develop insight, the emphasis72

is on the affine case, but the results can easily be extended to the projective case.73

Section 5 will further make connections between the BTD and the border rank of the74

higher-tensor tensor and between the BTD and the possible difference between the75

tensor’s rank over the complex field and its rank over the real field. In section 6 we76

propose polynomial root-finding algorithms based on the insights from the previous77

sections. Section 7 presents the results of numerical experiments and section 8 will78

summarize our findings.79

2. Notation. We give a quick summary of our notation. For more details the80

reader is referred to [38].81

2.1. Higher-order tensors. Scalars, vectors, matrices and tensors are denoted82

by italic, boldface lowercase, boldface uppercase and calligraphic letters respectively:83
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POLYNOMIALS, TENSORS AND HARMONICS — PART II: BTD 3

a ∈ C, a ∈ CI1 , A ∈ CI1×I2 and the Nth-order tensor A ∈ CI1×...×IN . This paper84

will not surpass the third-order case. ai1 = a(i1) = (a)i1 is the i1th entry of vector85

a. ai1,i2 = A(i1, i2) = (A)i1,i2 is equal to the entry of matrix A with row index i186

and column index i2. ai2 = A(:, i2) = (A)i2 denotes the i2th column of A. Likewise87

for the entries (ai1,i2,i3) and fibers (A(i1, :, :), A(:, i2, :), A(:, :, i3)) of a tensor A; the88

vector obtained when all but the nth index of A are kept fixed, is called a mode-n89

fiber of A. The i3th matrix slice A(:, :, i3) of A is denoted as Ai3 . ·∗, ·T , ·H , ·−190

and ·† denote the complex conjugate, transpose, Hermitian transpose, inverse and91

Moore–Penrose pseudoinverse, respectively.92

D = diag(d) represents a diagonal matrix with the vector d on its diagonal and93

Di(C) = diag(C(i, :)) holds the ith row of the matrix C. II is the identity matrix94

of order I × I. span({a1, . . . ,aI}) is the span of the vectors a1 through aI . col(A),95

row(A) and null(A) are used to denote the column, row and right null space of96

A, respectively. rA denotes the rank of A. Lastly, the Kronecker and Khatri–Rao97

products are denoted by ⊗ and �, respectively, and u is used to denote the direct98

sum of subspaces.99

A third-order tensor A is vectorized to vec(A) by vertically stacking all entries100

ai1,i2,i3 such that i3 varies slowest and i1 varies fastest:101

ai1,i2,i3 = (vec(A))(i3−1)I2I1+(i2−1)I1+i1
. The matrix representation A[1;3,2] is ob-102

tained by stacking the mode-1 fibers of A as columns into a matrix, in such a way103

that i2 varies fastest along the second dimension: ai1,i2,i3 =
(
A[1;3,2]

)
i1,(i3−1)I2+i2

.104

The mode-1 product C = A ·1 B ∈ CJ×I2×I3 of a tensor A ∈ CI1×I2×I3 and a ma-105

trix B ∈ CJ×I1 then has the matrix representation C[1;3,2] = BA[1;3,2], i.e. it is106

the result of multiplying all mode-1 fibers of A from the left with B. Other matrix107

representations and according products are defined analogously.108

The mode-n rank Rn = rankn(A) is the dimension of the mode-n fiber space, i.e.109

Rn = rA[n;•] , in which • indicates that the order of the indices different from n does110

not matter. The tuple rank�(A) = (R1, R2, R3) is called the multilinear rank of A.111

The outer product T = a ⊗ b ⊗ c of nonzero vectors a, b, c yields a rank-1 tensor112

with entries ti1,i2,i3 = ai1bi2ci3 . The minimal number of rank-1 terms that sum to a113

particular tensor A is called the rank of A and denoted as rA.114

2.2. Polynomial equations. Let us consider the system of polynomial equa-115

tions116

(1)


f1(x1, . . . , xn) = 0

...
fs(x1, . . . , xn) = 0

117

in n complex variables xj , stacked in the vector x ∈ Cn. A monomial xα =
∏n
j=1 x

αj
j118

is defined by an exponent vector α. The degree of a monomial is defined as deg(xα) =119 ∑n
j=1 αj . There exist several schemes for ordering monomials by their exponent vec-120

tor. As in the companion paper [38], we will adopt the degree negative lexicographic121

order. The monomials xα < xβ are ordered by the degree negative lexicographic122

order if one of the following two conditions is satisfied: (i) deg(xα) < deg(xβ); or (ii)123

deg(xα) = deg(xβ) and the leftmost nonzero entry of β −α is negative.124

A polynomial f(x1, . . . , xn) =
∑p
l=1 flx

αl
l is characterized by a coefficient vector125

f . The degree di of a polynomial fi in (1) is the degree of the monomial with the126

highest degree in fi. The ring of all polynomials in n variables is denoted by Cn. The127

vector space Cnd is the subset of Cn that contains all polynomials up to degree d. Its128
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4 J. VANDERSTUKKEN, P. KÜRSCHNER, I. DOMANOV AND L. DE LATHAUWER

dimension is given by129

q(d) = dim Cnd =

(
n+ d

n

)
.130

A polynomial is said to be homogeneous if all its monomials have the same degree.131

A polynomial f can be homogenized to a polynomial fh by multiplying each monomial132

xαl
l in f with a power βl of x0, such that deg(xβl0 xαl

l ) = d for all l. The ring133

(vector space) of all homogeneous polynomials in n + 1 variables (up to degree d) is134

denoted by Pn (Pnd ). The projective space Pn is the set of equivalence classes on135

Cn+1 \ {0}:
(
x′0 x′1 . . . x′n

)T ∼ (x0 x1 . . . xn
)T

if there exists a λ ∈ C such136

that
(
x′0 x′1 . . . x′n

)T
= λ

(
x0 x1 . . . xn

)T
. Points with x0 = 0 cannot be137

normalized to their affine counterpart
(
1 x1

x0
. . . xn

x0

)T
: they are points at infinity.138

The degree of (1) is d0 = maxsi=1 di. The set of all roots of (1) is called the solution139

set. Under the same assumptions as in [38] that (1) is a square system (n = s) with140

a 0-dimensional solution set, the number of roots in the projective space, counting141

multiplicities, is given by the Bézout number142

m =

n∏
i=1

di.143

If (1) has multiple roots, m0 < m denotes the number of disjoint roots. The m0144

distinct roots of (1) will be denoted by
(
x

(k)
0 x

(k)
1 x

(k)
2 · · · x

(k)
n

)T
∈ Pn, k = 1 :145

m0.146

3. Tensor decompositions, Macaulay null space and harmonic struc-147

ture: from simple roots to roots with multiplicities. Similar to the way [38]148

was organized, in this section we display the ingredients from the study of tensor149

decompositions, sets of polynomial equations and harmonic retrieval that we will150

combine in our derivation. To allow roots with multiplicities, we will not only need151

CPD, as in [38], but also a particular type of BTD (Section 3.1). We also need to152

discuss the multiplicity structure of a root (Section 3.2). For handling roots with153

multiplicities, we need to take the step from the multivariate Vandermonde structure154

in [38] to a ”confluent” extension (Section 3.3).155

3.1. Tensor decompositions.156

3.1.1. CPD. An R-term polyadic decomposition (PD) expresses a tensor T ∈157

CI1×I2×I3 as a sum of R rank-1 terms158

(2) T = JA,B,CK def
=

R∑
r=1

ar ⊗ br ⊗ cr.159

The matrices A ∈ CI1×R, B ∈ CI2×R and C ∈ CI3×R are called factor matrices. If R
is minimal, then the PD is a Canonical Polyadic Decomposition (CPD) and R = rT
is the rank of T . Equation (2) can be expressed in an entry-wise manner as

ti1i2i3 =

R∑
r=1

ai1rbi2rci3r, i1 = 1 : I1, i2 = 1 : I2, i3 = 1 : I3.

In a slice-wise manner, (2) can be written as

Ti3 = ADi3(C)BT , i3 = 1 : I3.

This manuscript is for review purposes only.
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In matricized format, (2) can be written as160

T[1,2;3] =

R∑
r=1

(ar ⊗br)c
T
r = (A�B) CT .161

A CPD can only be unique up to permutation of the rank-1 terms and scaling/counter-162

scaling of the vectors within the same term (i.e. we can allow ar ← arαr, br ← brβr,163

cr ← crγr with αrβrγr = 1).164

3.1.2. BTD. Block term decomposition (BTD) generalizes PD in the sense that165

the terms do not need to be rank-1 (i.e. have multilinear rank (1, 1, 1)) but only need166

to have low multilinear rank [8, 9, 12]. Specifically, in this paper, we will deal with167

the BTD168

T =

C1

A1

B1G1

+ · · ·+

CR

AR

BRGR

Fig. 1: BTD of a tensor T is a decomposition in terms that have low multilinear
rank.

(3) T =

R∑
r=1

JGr; Ar,Br,CrK
def
=

R∑
r=1

Gr ·1 Ar ·2 Br ·3 Cr,169

in which Gr ∈ Cµr×µr×µr is multilinear rank-(µr, µr, µr) and the matrices Ar ∈170

CI1×µr , Br ∈ CI2×µr and Cr ∈ CI3×µr have full column rank, r = 1 : R, implying that171

(3) is a decomposition into a sum of multilinear rank-(µr, µr, µr) terms. Throughout172

the paper we will consider only those decompositions of the form (3) for which the173

matrices174

(4) B
def
=
(
B1 . . . BR

)
∈ CI2×

∑R
r=1 µr and C

def
=
(
C1 . . . CR

)
∈ CI3×

∑R
r=1 µr175

have full column rank. We say that T is indecomposable if T does not admit a176

decomposition of the form (3) with R ≥ 2 terms and such that condition (4) holds.177

We say that decomposition (3) of T into a sum of R indecomposable multilinear178

rank-(µr, µr, µr) terms is unique if any other decomposition of T into a sum of R̃179

indecomposable multilinear rank-(µ̃r, µ̃r, µ̃r) terms necessarily coincides with (3) up180

to permutation of the terms provided that
∑R̃
r=1 µ̃r =

∑R
r=1 µr. The counterpart181

of the CPD scaling/counterscaling ambiguity is that we can allow Ar ← ArM
(1)
r ,182

Br ← BrM
(2)
r , Cr ← CrM

(3)
r , in which M

(1)
r ∈ Cµr×µr , M

(2)
r ∈ Cµr×µr , M

(3)
r ∈183

Cµr×µr are invertible, if the transformation is compensated by Gr ← Gr ·1
(
M

(1)
r

)−1

·2184 (
M

(2)
r

)−1

·3
(
M

(3)
r

)−1

[9].185

The following theorem presents a sufficient condition for uniqueness of BTD (3).186

If µ1 = · · · = µR = 1, that is, in the case of the CPD, Theorem 3.1 reduces to [38,187

Theorem 3.1].188
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Theorem 3.1. Let T ∈ CI1×I2×I3 admit decomposition (3) into a sum of multi-189

linear rank-(µr, µr, µr) terms. Assume that190

the matrices B and C defined in (4) have full column rank,(5)191

the matrix [A1(:, 1) . . . AR(:, 1)] does not have proportional columns,(6)192193

and that the core tensors Gr ∈ Cµr×µr×µr have slices Gr(l + 1, :, :) = Gr(:, l + 1, :) ∈194

Cµr×µr , l = 0 : µr − 1, which are upper-triangular or, if l = 0, equal to Iµr . Then195

BTD (3) is unique.196

Proof. The proof is given in Appendix A.197

Moreover, if the assumptions of Theorem 3.1 hold, the argumentation in Appendix A198

gives a way to compute the BTD and its factor matrices algebraically by means of199

a block-diagonalization by a similarity transform. As in Appendix A we consider200

w.l.o.g. a tensor T where B, C are square, i.e., the second mode dimension of T is201

equal to the third one: I2 = I3 = m = µ1 + · · · + µR. For T with larger second202

and third mode dimensions, this can be achieved by, e.g., a compression using the203

multilinear singular value decomposition (MLSVD)1 [11]. Define two ”slice mixtures”204

T1
def
= T ·1 fT and T2

def
= T ·1 gT ∈ Cm×m, where f , g ∈ CI1 are two generic vectors.205

Because206

(7) T ·1 hT = B · Blockdiag(G1 ·1 (hTA1), . . . ,Gm0
·1 (hTAR)) ·CT

207

for any vector h ∈ CI1 , the factor matrix B is, up to the intrinsic indeterminacies208

mentioned above, given by the block-diagonal decomposition2209

T2T
−1
1 = B

D1

. . .

DR

B−1, Dr
def
= (Gr ·1 gTAr)(Gr ·1 fTAr)

−1 ∈ Cµr×µr .210

211

The factor matrix C can be obtained as C = T1B
−T (this follows easily from (7)),212

again up to the intrinsic indeterminacies. The above block-diagonalization of T2T
−1
1213

can in practice be computed, e.g., from a Schur decomposition of T2T
−1
1 , see [19,214

§7.6.3]. It also returns the partition of B into the blocks Br ∈ Cm×µr , and conse-215

quently also the partitioning of C into blocks Cr ∈ Cm×µr , with correct column sizes.216

We have217

T ·2 B−1 ·3 C−1 =

R∑
r=1

Gr ·1 Ar ·2
(
B−1Br

)
·3
(
C−1Cr

)
=

R∑
r=1

Gr ·1 Ar ·2
(

0
Iµr
0

)
·3
(

0
Iµr
0

)
,218

so we obtain the tensors G̃r
def
= Gr ·1 Ar (indeed, the horizontal slices of T ·2 B−1 ·3 C−1219

are block-diagonal matrices and the kth horizontal slice of G̃r is just the rth block220

of the kth horizontal slice of T ·2 B−1 ·3 C−1). It is clear that Gr and Ar can be221

recovered from G̃r, again up to the intrinsic indeterminacies. For example, one can222

compute the SVD UΣVH = G̃r[2,3:1], take Ar = U(:, 1 : µr) and set Gr = G̃r ·1 AH
r .223

Consequently, by doing this for all R terms we obtain the BTD (3).224

1In the following, we use the term “compression” to refer to the MLSVD-based compression.
2Step 1 in Proof of Theorem 4.4 in Appendix A ensures that a generic f will yield a nonsingular

matrix T1.
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We conclude by mentioning that, instead of working with the above block-diagonalization225

of T2T
−1
1 , one can also use a block-diagonalization of the matrix pencil (T1,T2) which226

is to be preferred numerically as it avoids the inverse of T1. The algebraic computation227

discussed here generalizes the GEVD based computation of the CPD used in [38]. Just228

as the CPD in [38] may be seen as an extension of GEVD to more than two matrices,229

the considered BTD here may be seen as an extension of block-diagonalization to more230

than two matrices. Furthermore, one can use optimization-based approaches [29] to231

compute the BTD or, if necessary, refine the results obtained from algebraic methods.232

This is, again, a similar situation as for the CPD in [38].233

3.2. The Macaulay null space. Our approach exploits the Vandermonde234

structure in the null space of a Macaulay matrix of sufficiently high degree.235

3.2.1. Simple roots.236

Definition 3.2. [15, p. 263] Let fi ∈ Cndi , i = 1 : s, be s polynomials of degree237

di in n variables x1, . . . , xn, then the Macaulay matrix M(d) of degree d contains as238

its rows the coefficients of239

M(d) =



f1

x1f1

...

xd−d
(1)

n f1

f2

x1f2

...
xd−dsn fs


∈ C

s∑
i=1

q(d−ds)×q(d)
240

where each polynomial fi, i = 1 : s, is multiplied with all possible monomials xα,241

deg(xα) = 0 : d− di ∈ N.242

If the system (1) has only simple roots, the null space of M(d) constructed at a de-243

gree d greater than or equal to the so-called degree of regularity d∗, is m-dimensional;244

it is generated by m multivariate Vandermonde vectors245

(8)

vk(d) =
(

1 x
(k)
1 x

(k)
2 . . . x

(k)2
1 x

(k)
1 x

(k)
2 . . . x

(k)
n−1x

(k)d−1
n x

(k)d
n

)T
∈ Cq(d),246

where x
(k)
j denotes the jth coordinate of the kth root, k = 1 : m, j = 1 : n. For more247

background, see [38].248

3.2.2. The multiplicity structure of a root. Let the fixed set of m points249

Z = {zk}mk=1 ⊂ Cn represent the solution set of the system (1). The system is then250

defined by a basis F for the polynomial ideal I ⊂ Cn of all polynomials that attain251

zero on the set Z. The set of residue classes [r] = {r′ ∈ Cn| r − r′ ∈ I} is a quotient252

ring Cn/I induced by the polynomial ideal I.253

If all elements of Z occur with multiplicity 1, i.e. if the system defined by F has254

only simple roots, then the characterization of the residue classes is straightforward.255

We have that a polynomial g ∈ I ⇔ g(zk) = 0 for all k. Further, g ∈ [r] ⇔ g − r ∈256

I ⇔ (g − r)(zk) = 0 for all k. Any residue class is completely characterized by the257

value evaluations of its members on the set of m points Z, and dim Cn/I = m.258

However, if one or more of the elements of Z occur with multiplicity greater than259

1, i.e. if the system defined by F has coinciding roots, things become more subtle.260
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Say there are m0 < m disjoint roots Z0 = {zk}m0

k=1 ⊂ Z, occurring with multiplicity261

µk in Z, such that
∑m0

k=1 µk = m. One can show that the dimension of Cn/I remains262

m but that g(zk) = 0 for all k = 1 : m0 is no longer sufficient for g ∈ I [35, pp.263

91–92]. For a concise characterization of the residue classes, we introduce differential264

functionals. Differential functionals act on a polynomial f ∈ Cn first by differentiation265

(·) and then by evaluation [·].266

Definition 3.3 (differential functional). [35, p. 90] Let z ∈ Cn and f ∈ Cn, then267

a differential functional monomial is defined by268

∂j[z](f) = ∂j1...jn [z](f) =
1

j1! . . . jn!

(
∂
∑n
l=1 jl

∂xj11 . . . ∂xjnn
f

)
(z)269

where j =
(
j1 . . . jn

)T ∈ Nn. Any linear combination
∑

j βj∂j[z](f) with βj ∈ C of270

differential functional monomials ∂j[z](f) is a differential functional.271

The order of the differential functional monomial ∂j is defined as o (∂j) = |j| =272 ∑n
l=1 jl [6, p. 2145]. The order of a linear combination is the order of the highest273

order differential functional monomial in that linear combination.274

Let us turn back to the characterization of the residue classes. Gröbner Duality275

formulates a sufficient condition for g ∈ I in terms of differential functionals.276

Definition 3.4 (Gröbner Duality). [20, p. 174-178] Let the system of polynomi-277

als defined by a basis F for the ideal I have m0 ≤ m disjoint roots. Then zk is a root278

of the system with multiplicity µk iff µk linearly independent differential functionals279 ∑
j βj∂j[zk](g) vanish for g ∈ I.280

Hence, given the fixed set Z, Gröbner Duality states that a sufficient condition for281

g ∈ I is that ckl(g) = 0 for all k = 1 : m0, where, for the kth root (with multiplicity282

µk), we need to consider ck0 = ∂0[zk] of order 0 and µk − 1 differential functionals283

ckl of order greater than 0. The collection D[zk](F) = {ckl | ∀ f ∈ F : ckl(f) = 0}284

containing these differential functionals is referred to as the multiplicity structure of285

the root zk. The dimension of D equals µk and the depth δk of D is defined as the286

highest order of the differential functionals in D.3 Summarizing, a residue class is287

now completely characterized by value and derivative evaluations contained in all the288

D[zk] together, k = 1 : m0.289

Several algorithms to compute the multiplicity structure have been proposed in290

the literature [26, 7, 41, 6]. One such algorithm is Macaulay’s algorithm [26]. The idea291

of Macaulay’s approach is to compute D by computing the null space of Macaulay-292

like matrices at increasing degrees. Indeed, as already mentioned in [38], the m-293

dimensional null space of M(d) at a degree d ≥ d∗ is isomorphic with the set of all294

residue classes Cnd /I.295

In the remainder of this paper, we will write ∂j[v] or, more generally, c[v] for296

a differential functional that acts on a multivariate Vandermonde vector v first by297

differentiation and then by evaluation of its entries.298

Example 3.5. [16, Example 7] Consider the system of s = 2 polynomial equations299

in n = 2 variables300 {
f1(x1, x2) = (x2 − 2)2 = 0
f2(x1, x2) = (x1 − x2 + 1)2 = 0

301

3The differential functionals constitute a basis for the so-called dual space of the ideal I and
the dimension of D is the dimension of the dual subspace spanned by the elements of D — see also
Definition B.1.
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where d(1) = d(2) = 2, d∗ = 2 + 2− 2 = 2 and m = 2 · 2 = 4, but m0 = 1. The system302

has m0 = 1 disjoint root x(1) =
(
x

(1)
1 x

(1)
2

)T
=
(
1 2

)T
with multiplicity µ1 = 4. It303

can be verified that a basis for the (m = 4)-dimensional null space of304

M(d) =

(
4 0 −4 0 0 1
1 2 −2 1 −2 1

)
305

at d = d∗ is given by the multivariate Vandermonde vector c10[v(d)] = ∂0[v(2)] =306

v(2), the “first-order derivative vectors” c11[v(2)] = ∂10[v(2)]307

and c12[v(2)] = ∂01[v(2)] and the linear combination of “second-order derivative308

vectors” c13[v(2)] = (2∂20 + ∂11) [v(2)] (In the notation of Definition 3.3, we have309

β00 = β10 = β01 = β11 = 1 and β20 = 2). This basis4 is stacked in a matrix that will310

be called confluent multivariate Vandermonde in subsection 3.3.2:311

Ṽ(2)
def
=
(
c10[v(2)] c11[v(2)] c12[v(2)] c13[v(2)]

)
(9)312

=
(
∂00[v(2)] ∂10[v(2)] ∂01[v(2)] (2∂20 + ∂11) [v(2)]

)
313

=



1 0 0 0

x
(1)
1 1 0 0

x
(1)
2 0 1 0

x
(1)2
1 2x

(1)
1 0 2

x
(1)
1 x

(1)
2 x

(1)
2 x

(1)
1 1

x
(1)2
2 0 2x

(1)
2 0


.314

The depth δ1 of D[x(1)] is equal to the order of c13[v(2)]: δ1 = 2.315

3.3. Vandermonde matrices. In what follows matrices having Vandermonde316

structure will play an important role, so we shall recall some properties here for both317

uni- and multivariate Vandermonde matrices.318

3.3.1. Vandermonde matrices with distinct generators. We consider uni-319

variate Vandermonde matrices V(j)(d) ∈ C(d+1)×m generated by the jth coordinate320

of the m roots of (1), denoted by {x(k)
j }, k = 1 : m, j = 1 : n:321

V(j)(d) =
(
v

(j)
1 (d), . . . ,v(j)

m (d)
)
, v

(j)
k (d) =

(
1, x

(k)
j , x

(k)2
j , . . . , x

(k)d
j

)T
.322

The univariate Vandermonde matrix V(j)(d) has full column rank if all generators323

x
(k)
j are distinct, k = 1 : m. We will make use of spatial smoothing [30]. This means324

that if we take the outer product of subvectors v
(j)
k (1 : L) · v(j)

k (1 : d − L + 2)T , the325

4Like the multivariate Vandermonde basis in the case of simple roots, this confluent multivariate
Vandermonde basis is only one possible basis for the Macaulay null space. In practice, it is a numerical
basis that will be computed. Both are related by an a priori unknown basis transformation — see
(17).
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result is a rank-1 Hankel matrix:326
327

(10) v
(j)
k (1 : L)⊗v

(j)
k (1 : d− L+ 2) =


1

x
(k)
j
...

x
(k)(L−1)
j

⊗


1

x
(k)
j

x
(k)2
j
...

x
(k)(d−L+1)
j

 =328

vec




1

x
(k)
j
...

x
(k)(L−1)
j





1

x
(k)
j

x
(k)2
j
...

x
(k)(d−L+1)
j



T


329

= vec


1 x

(k)
j . . . x

(k)(d−L+1)
j

x
(k)
j x

(k)2
j . . . x

(k)(d−L+2)
j

...
...

...

x
(k)(L−1)
j x

(k)L
j . . . x

(k)d
j


︸ ︷︷ ︸

=Hk

.330

331

The structure is called (multiplicative) shift-invariance, referring to the shifting of332

entries when the power of x
(k)
j is raised. In [38] we have used the variant for L = 2.333

In Part II we will use the variant for L > 2.334

For multivariate generators {(x(k)
1 , . . . , x

(k)
n )}, k = 1 : m, we define multivariate335

Vandermonde matrices of degree d as336

(11) V(d) =
(
v1(d) . . . vm(d)

)
∈ Cq(d)×m,337

where each column vk(d) is in the multivariate Vandermonde form of (8). Multi-338

variate Vandermonde matrices exhibit a multiplicative shift structure in each vari-339

able xj . More precisely, a multivariate Vandermonde matrix consists of the rows340

of the Khatri–Rao product of the n univariate Vandermonde matrices V(j)(d) that341

are associated with the monomials up to degree d. Formally, we have V(d) =342

S(d+1)n→q(d)

(
V(1)(d)� . . .�V(n)(d)

)
, where V(j)(d) ∈ C(d+1)×m, j = 1 : n, are343

univariate Vandermonde matrices of degree d constructed from the jth coordinate344

of the m roots and S(d+1)n→q(d) ∈ Rq(d)×(d+1)n eliminates all duplicate rows in the345

Khatri–Rao products, truncates the monomials of degree higher than d, and reorders346

the remaining q(d) monomials according to the chosen monomial order. The matrix347

S(d+1)n→q(d) can be constructed by n-fold composition of the “elimination matrices”348

in [27]. See [38] for more details, where the n-fold multiplicative shift structure was349

used to connect the null space of the Macaulay matrix to CPD.350

3.3.2. Confluent Vandermonde matrices. If m0 distinct univariate genera-351

tors x
(k)
j occur each with multiplicities µk ≥ 1, and m =

∑m0

k=1 µk is the total number352

of generators, the associated univariate Vandermonde matrix V(j)(d) set up in a naive353

way would have identical columns and, hence, be rank deficient. Confluent univariate354

Vandermonde matrices355

Ṽ(j)(d) =
(
Ṽ

(j)
1 (d), . . . , Ṽ(j)

m0
(d)
)

356
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capture the multiplicities by including “derivative vectors” in submatrices of the form357

Ṽ
(j)
k (d) =

(
v

(j)
k (d) d

dxj
[v

(j)
k (d)] . . . 1

(µk−1)!
dµk−1

dx
µk−1

j

[v
(j)
k (d)]

)
∈ C(d+1)×µk , k = 1 : m0358

with Vandermonde vectors v
(j)
k (d) as in subsection 3.3.1, see, e.g., [22, 10]. Only the359

first column v
(j)
k (d) of Ṽ

(j)
k (d) enjoys the multiplicative shift-invariance mentioned360

in subsection 3.3.1. The submatrices Ṽ
(j)
k (d) are for I, I − L + 1 ≥ µk related to a361

rank-µk Hankel matrix via H̃k = Ṽ
(j)
k (d)(1 : L, :) ·D(j)

k · Ṽ
(j)
k (d)(1 : I − L, :), where362

D
(j)
k =



1 x
(k)
j x

(k)2
j · · · x

(k)(µk−1)
j

x
(k)
j x

(k)2
j x

(k)3
j · · · 0

x
(k)2
j x

(k)3
j x

(k)4
j · · · 0

...
...

...
. . .

...

x
(k)(µk−1)
j 0 · · · · · · 0


∈ Cµk×µk363

is nonsingular and Hankel, see, e.g., [3, 10]. This can be seen as block generalization364

of the spatial smoothing structure in (10).365

For the multivariate case, the multiplicity structure of a multiple root defined in366

subsection 3.2.2 gives rise to a generalization of multivariate Vandermonde matrices367

of the form368

(12) Ṽ(d) =
(
Ṽ1(d) . . . Ṽm0

(d)
)
∈ Cq(d)×m,369

in which370

Ṽk(d) =
(
ṽk,0(d) ṽk,1(d) . . . ṽk,µk−1(d)

)
371

=
(
ck0[vk(d)] ck1[vk(d)] . . . ck,µk−1[vk(d)]

)
∈ Cq(d)×µk ,372

for k = 1 : m0, where ck,l are the differential functionals from the multiplicity structure373

D[zk](F). We shall refer to (12) as confluent multivariate Vandermonde matrices, see374

also [17]. Each submatrix Ṽk(d) ∈ Cq(d)×µk reflects the multiplicity structure D[zk]375

of the kth root. The depth δk of D[zk] is the highest order of the corresponding ck,·376

in Ṽk(d). Only the first column ck0[vk(d)] = ṽk,0(d) = vk(d) in each submatrix has377

the shift-invariance property. The confluent multivariate Vandermonde matrix Ṽ(d)378

is of full column rank m and constitutes a basis for the m-dimensional nullspace of379

M(d) for d ≥ d∗.380

4. From the Macaulay null space to BTD. Here we unravel the BTD struc-381

ture in the Macaulay null space K(d), d ≥ d∗. For the sake of presentation and382

simplicity, we mainly restrict ourselves to the affine case, but generalizations to the383

projective case follow by interpreting Vandermonde vectors v(d) as384

(13) vh(d) =
(
xd0 xd−1

0 x1 . . . xd−2
0 x2

1 xd−2
0 x1x2 . . . xdn

)T ∈ Cq(d),385

and consequently using j ∈ Nn+1 in the differential functionals (i.e., also include386

partial derivatives in x0), see [15]. Details on a special treatment of roots at infinity387

(x0 = 0) are given when necessary.388
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4.1. CPD and simple roots. [38] jointly exploits the multiplicative shift in-389

variance in each variable xj in the null space of the Macaulay matrix of a system390

with only simple roots. The null space admits a multivariate Vandermonde basis,391

corresponding to the columns of V(d) ∈ Cq(d)×m. This multivariate Vandermonde392

basis is not readily available. What we can find is a numerical basis, which we stack393

in K(d) ∈ Cq(d)×m. Obviously, we have K(d) = V(d)C(d)T with an invertible basis394

transformation matrix C(d) ∈ Cm×m. Exploiting the structure results in the following395

third-order tensor CPD [38]:396

Y[1,2;3]
def
=


S

(0)
(d− 1) ·K(d)

S
(1)

(d− 1) ·K(d)
...

S
(n)

(d− 1) ·K(d)

397

=




1 1 . . . 1

x
(1)
1 x

(2)
1 . . . x

(m)
1

...
...

...

x
(1)
n x

(2)
n . . . x

(m)
n

�B(d− 1)

C(d)T(14)398

= (V(1)�V(d− 1)) ·C(d)T ∈ C((n+1)·q(d−1))×m,399

or Y = JV(1),V(d− 1),C(d)K ∈ C(n+1)×q(d−1)×m,(15)400

where S
(j)

(d−1) selects all rows of K(d) onto which the rows of K(d), associated with401

monomials of degree at most d− 1 in xj , are mapped after multiplication with xj . In402

the projective case the CPD in (14) is constructed using multivariate Vandermonde403

matrices Vh(1), Vh(d − 1) of the form Vh(d) =
(
vh1 (d) . . . vhm(d)

)
∈ Cq(d)×m404

with vhk(d) as in (13) and containing the kth root
(
x

(k)
0 x

(k)
1 . . . x

(k)
n

)T
in the405

projective interpretation.406

4.2. BTD and multiple roots. Let now Ṽ(d) as in (12) denote a confluent407

multivariate Vandermonde (“multivariate Vandermonde plus derivative”) basis for the408

null space of the Macaulay matrix of a system with multiple roots:409

(16) M(d) · Ṽk(d) = M(d) ·
(
ck0[v(d)] . . . ck,µk−1[v(d)]

)
= 0, k = 1 : m0.410

The multiplicity structure in (16) is not unique [15] (unless µk = 1 for all k). Indeed,411

multiplying both sides in (16) with a nonsingular transformation matrix T ∈ Cµk×µk412

yields the equally valid relation413

(17) M(d)Ṽk(d)T = M(d)
(
Ṽk(d)T

)
= 0.414

In the following we partition the invertible transformation matrix C(d) so that it415

matches the partition in (12):416

C(d) =
(
C1(d) . . . Cm0

(d)
)
∈ Cm×m.417

We emphasize that Ṽk(d) (Ṽ(d)) is not multivariate Vandermonde and that the newly418

introduced columns in Ṽk(d) (in Ṽ(d)) do not exhibit shift invariance as discussed419

in [38, Section 3.3]. Hence, we cannot implement simple spatial smoothing to exploit420

this shift invariance and we do not obtain the CPD in (2) anymore.421
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x2

x1

1

1 x1 x2 x2
1 x1x2 x

2
2

=

c1(2)

v1(1)

v1(2) +

c2(2)

v2(1)

v2(2)

+

C3(2)

Ṽ3(1)
Ṽ3(2)G3(1, 2)

Fig. 2: Schematic of the BTD (19) for Y ∈ Cq(d(1))×q(d(2))×m for a system of s = 2
polynomial equations in n = 2 unknowns. Counting multiplicities, the number of
roots m = 4. The number of distinct roots m0 = 3. The first two roots are isolated
(µ1 = µ2 = 1). The third root has multiplicity µ3 = 2 with depth δ3 = 1. The degrees
in Theorem 4.2 are chosen as d(1) = 1 and d(2) = 2 such that d(1) +d(2) = 3 ≥ d∗ = 2.

Example 4.1. Consider again the system in Example 3.5. Since it has m0 = 1422

distinct roots, we omit the subscript indicating the numbering of the distinct roots423

in (12) and use Ṽ(2) = Ṽ1(2) as in (9). The first column of Ṽ(2) enjoys shift-424

invariance:425

Ṽ([1 2 3], 1) · x(1)
1 =

 1

x
(1)
1

x
(1)
2

 · x(1)
1 =

 x
(1)
1

x
(1)2
1

x
(1)
1 x

(1)
2

 = Ṽ([2 4 5], 1).426

Similarly, Ṽ([1 2 3], 1) · x(1)
2 = Ṽ([3 5 6], 1). However, the other columns do not ex-427

hibit this shift invariance property. For instance, for the second column
(
Ṽ(2)

)
2

=428

∂10[v(2)] we have:429

Ṽ([1 2 3], 2) · x(1)
1 =

 0
1
0

 · x(1)
1 =

 0

x
(1)
1

0

 6=
 1

2x
(1)
1

x
(1)
2

 = Ṽ([2 4 5], 2).430

431

Nonetheless, we can formulate a BTD for Y using a more general row selection432

in the confluent multivariate Vandermonde null space of the Macaulay matrix. The-433

orem 4.2 gives this decomposition and its derivation is given in Appendix B.434

Let us already give that Example 4.7 at the end of this section clarifies the up-435

coming insights on the well-known univariate playground.436

Theorem 4.2. Let the system of polynomials F in n (affine) variables x1, . . . , xn437

have m0 ≤ m disjoint roots with multiplicity µk, k = 1 : m0. Assume d = d(1) +d(2) ≥438
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d∗ with 1 ≤ d(1) < d. Consider the third-order tensor with matrix representation439

(18) Y[1,2;3](d
(1), d(2)) =


S

(0)
(d(2)) ·K(d(1) + d(2))

S
(1)

(d(2)) ·K(d(1) + d(2))
...

S
(q(d(1))−1)

(d(2)) ·K(d(1) + d(2))

 ∈ C(q(d(1))·q(d(2)))×m,440

where K(d(1) + d(2)) is a basis for the null space of M(d(1) + d(2)). Moreover,441

S
(l)

(d(2)) ∈ Rq(d(2))×q(d), l = 0 : q(d(1)) denote the row selection matrices that se-442

lect the rows of K(d(1) + d(2)) onto which the monomials of degree 0 up to d(2) are443

mapped after multiplication with the (l + 1)th monomial of degree at most d(1) in the444

degree negative lexicographic order. Then Y[1,2;3] admits the BTD445

(19)

Y(d(1), d(2)) =

m0∑
k=1

Gk(d(1), d(2)) ·1 Ak(d(1)) ·2 Bk(d(2)) ·3 Ck(d) ∈ Cq(d
(1))×q(d(2))×m

446

with factor matrices Ak(d(1)) = Ṽk(d(1)) ∈ Cq(d(1))×µk , Bk(d(2)) = Ṽk(d(2)) ∈447

Cq(d(2))×µk , and Ck(d) ∈ Cm×µk . The core tensors Gk(d(1), d(2)) ∈ Cµk×µk×µk have448

slices Gk(l+ 1, :, :) = Gk(:, l+ 1, :) ∈ Cµk×µk , l = 0 : µk− 1, which are upper-triangular449

or, if l = 0, equal to Iµk .450

In words, Theorem 4.2 states that if we choose d(1) and d(2) appropriately, then451

the third-order tensor Y admits the BTD in (19). See Figure 2 for an illustration.452

Each of the m0 terms in Figure 2 reveals in its first and second factor matrix a disjoint453

root and its multiplicity structure. The dimensions of the core tensors correspond to454

the multiplicities µk. Recall from subsection 3.1.2 that BTD is subject to basic linear455

transformation indeterminacies. This is consistent with the multiplicity structure of456

a root being determined up to an invertible basis transformation matrix, as shown in457

(17).458

If all roots are distinct, i.e. if m0 = m, the BTD simplifies to a CPD. In other459

words, the CPD in [38, Eq. (31)] is the special case of the BTD (19) for which d(1) = 1,460

d(2) = d− 1 and Ṽk = (V)k = vk = ck0[v]. Note that, if d(1) > 1, Y(d(1), d(2)) holds461

more than n+ 1 horizontal slices.462

Example 4.3. Consider again the system in Example 3.5. Take d(1) = d(2) = 2,463

such that 2 + 2 = 4 ≥ 2 = d∗ and the assumptions of Theorem 4.2 are satisfied.464

Following the reasoning in Appendix B, it can be verified that Y(2, 2) in (19) admits465

the single-term BTD466

Y(2, 2) = G(2, 2) ·1 Ṽ(2) ·2 Ṽ(2) ·3 C(4) ∈ C6×6×4
467

with Ṽ(2) given in (9), and with468

G(2, 2)[1;2,3] = G(2, 2)[2;1,3] =


1 1 1 1

1 2 1
1 1

1

469

comprising identity and upper-triangular matrix slices.470
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Theorem 4.2 gives only the BTD (19) but not its uniqueness nor a way to compute471

it algebraically. However, if it is unique, it could already be computed by means of472

optimization based algorithms [29].473

4.3. Uniqueness and algebraic computation of the BTD. The following474

Theorem 4.4 gives conditions that ensure uniqueness of (19) and, furthermore, enable475

an algebraic computation of the factor matrices using block-diagonalization of certain476

matrices. We will see that for this to work, a higher Macaulay degree d and further as-477

sumptions on d(1), d(2) might be necessary than only for constructing (19). Moreover,478

Theorem 4.4 forms the counterpart to [38, Theorem 6.1] which established the unique-479

ness of the CPD (15) and the ability to compute it via eigenvalue decompositions in480

the case of only simple roots.481

Theorem 4.4. Define A
def
=
(
A1 . . . Am0

)
∈ Cq(d(1))×m,482

B
def
=
(
B1 . . . Bm0

)
∈ Cq(d(2))×m and let C ∈ Cm×m be the invertible basis trans-483

formation from above. Let d = d(1) + d(2) where d(1), d(2) satisfy484

1. d(2) ≥ d∗,485

2. d(1) ≥ max {1,maxk δk}.486

Then the BTD (19) is unique.487

Proof. The condition d(1) ≥ max {1,maxk δk} ensures that all individual blocks488

Ar = Ṽr(d
(1)), r = 1 : m0 have full column rank, so (19) is a decomposition into489

a sum of multilinear rank-(µr, µr, µr) terms. To prove uniqueness we show that the490

assumptions in Theorem 3.1 hold for R = m0, I1 = q(d(1)), I2 = q(d(2)), and I3 = m.491

By Theorem 4.2, it is sufficient to show that assumptions (5) and (6) hold. Note that492

both conditions always imply d ≥ d∗+1. For d ≥ d∗ we have that dim null(M(d)) = m493

and that the numerical basis K(d) ∈ Cq(d)×m has full column rank rK(d) = m. Thus,494

C has also full column rank. Since B = Ṽ(d(2)) and rṼ(d(2)) = m for d(2) ≥ d∗ [15],495

the second condition ensures full column rank of B. Finally, since the first columns496

of the Ak, k = 1 : m0 are genuine multivariate Vandermonde vectors associated to497

the m0 distinct roots, (6) is always satisfied for d(1) ≥ 1.498

Example 4.5. We revisit Example 3.5 (see also Example 4.3) with n = s = 2,499

initial degree d0 = 2 so that d∗ = d0 · n − n = 2, m0 = 1 < m = d2
0 = 4, µ1 = 4,500

δ1 = 2. Taking d(2) = 2 and d(1) = 2 as we did before satisfies the conditions 1. and501

2. of Theorem 4.4.502

Under the conditions of Theorem 4.4, the BTD of Y and its factor matrices can503

be computed algebraically by following the steps outlined in subsection 3.1.2. Similar504

as in [38, Algorithm 1], we start from a compressed version Yc ∈ Cq(d(1))×m×m of Y.505

The algebraic method in subsection 3.1.2 requires a block-diagonal decomposi-506

tion of T2T
−1
1 , where T1

def
= Yc ·1 fT , T2

def
= Yc ·1 gT ∈ Cm×m are generic linear507

combinations of the horizontal slices Yc(i, :, :) with f , g ∈ CI1 . In practice, one would508

compute this block-diagonal decomposition of T2T
−1
1 from a Schur decomposition,509

see [19, §7.6.3], resulting in factor matrices A, B that are not in confluent multivari-510

ate Vandermonde form, but rather in the form A = Ṽ(d(1))R(1), B = Ṽ(d(2))R(2)511

with some unknown invertible transformations R(1), R(2) ∈ Cm×m. This does not512

immediately reveal the roots but we will see later in section 6 how the roots and their513

multiplicities can nevertheless be retrieved.514

4.4. Connection with NPA. Let the system of polynomials F have m0 ≤ m515

disjoint roots. Consider the family of multiplication tables
{
Axj

}n
j=1

where Ah ∈516
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Cm×m represents a multiplication with the residue class [h] in the m-dimensional517

quotient ring Cn/I = Cn/〈F〉 associated to an arbitrary basis, e.g., the standard518

monomials5. Then the central theorem of NPA [34, Theorem 2.27] states that a µk-519

fold root x(k) of F yields eigenvalues x
(k)
j of Axj with algebraic multiplicity µk. There520

is also an associated joint invariant subspace span (Xk), Xk ∈ Cm×µk such that521

(20) Axj

(
X1 . . . Xm0

)
=
(
X1 . . . Xm0

)Txj,1

. . .

Txj,m0

522

with Txj,k ∈ Cµk×µk upper-triangular and x
(k)
j on the diagonal. Note that only the523

first columns of Xk are joint eigenvectors. In case of only simple roots (m = m0), this524

reduces to a joint diagonalization of the multiplication tables
{
Axj

}n
j=1

. Briefly, [38,525

Corollary 6.3] showed that if a tensor H(d) ∈ Cn×m×m is constructed as in (14),(15)526

but using a column echelon echelon basis H(d) of null(M(d)) as well as n proper527

selection matrices, associated to the m standard monomials, then the n slices of H528

are equal to the n multiplication tables w.r.t. the normal set basis for Cn/〈F〉, i.e.529

Y(j, :, :) = Axj , j = 1 : n. Corollary 4.6 extends this result to roots with multiplicities530

using the BTD from Theorem 4.2. The tensors H in Corollary 4.6 and [38, Corollary531

6.3] are constructed in the same manner, but in the case of roots with multiplicities,532

the expressions are more involved.533

Corollary 4.6. Let the polynomial system F have m0 ≤ m disjoint affine roots534

with multiplicity µk, k = 1 : m0, and let H(d) hold the column echelon basis of535

null(M(d)). For d ≥ d∗ + 1 let d(1), d(2) satisfy the conditions of Theorem 4.4.536

Consider the third-order tensor H(d) with matrix representation537

H[1,2;3] =


Ŝ

(1)

(d− 1)H(d)
...

Ŝ
(n)

(d− 1)H(d)

 ∈ C(n·m)×m
538

where Ŝ
(j)

(d− 1) denotes the row selection matrix that selects the rows of H(d) onto539

which the m standard monomials are mapped after multiplication with xj. Then the n540

slices {H(j, :, :)}nj=1 of H(d) are equal to the n multiplication tables
{
Axj

}n
j=1

w.r.t.541

the normal set basis for the quotient ring Cn/〈F〉.542

Proof. The structure in (19) does not depend on the specific choice K(d) =543

Ṽ(d)C(d)T that is made for the basis of null(M(d)), so the BTD (19) holds for544

K(d) = H(d) as well. For a slice of H(d) we have545

vec (H(j, :, :))
T

= (In+1)
T
j+1

m0∑
k=1

Ak(1) · (Gk(d))[1;3,2] ·
(
Ck(d)⊗ B̂k(d− 1)

)T
,546

where B̂k ∈ Cm×µk contains the m rows of Bk(d − 1) ∈ Cq(d−1)×µk that correspond547

to the m standard monomials. At least one standard monomial has exactly degree548

5Standard monomials refer to the monomials in the normal set basis, which relate to the Macaulay
matrix as follows. If we flip the columns of M(d) from left to right, then the standard monomials
are those monomials that correspond to the linearly dependent columns of the row echelon form of
the flipped matrix [1, p. 97]. Equivalently, they correspond to the first m linearly independent rows
of a multivariate Vandermonde basis for null(M(d)) [14].
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d∗, meaning that d = d∗ + 1 is needed for Bk(d − 1) to contain all the rows that549

correspond to the standard monomials. The multiplication with (In+1)
T
j+1 reveals550

(21) vec (H(j, :, :))
T

=

m0∑
k=1

Ak(1)(j + 1, :) ·Gk[1;3,2]︸ ︷︷ ︸
= x

(k)
j ·Gk[1;3,2](1,:)+1j ·Gk[1;3,2](l+1,:)

·
(
Ck ⊗ B̂k

)T
551

where 1j = 1 if ∂0...j...0 = ckl ∈ D[x(k)] and 0 otherwise. Let Ṽ(d) = H(d)U where552

U ∈ Cm×m is an invertible transformation matrix and CT = U−1. [16, Proposition 1]553

shows that
(
B̂1 . . . B̂m0

)
= U which, together with a matricization of (21), yields554

555

H(j, :, :) =

m0∑
k=1

B̂k

(
x

(k)
j · Gk(1, :, :) + 1j · Gk(l + 1, :, :)

)
CT
k556

=

m0∑
k=1

B̂k

(
x

(k)
j · Iµk + 1j · Gk(l + 1, :, :)

)
︸ ︷︷ ︸

=Txj,k

CT
k = U

Txj,1 0
. . .

0 Txj,m0

U−1
557

558

where the right-hand side equals Axj per [34, Theorem 2.27].559

We give an example that connects the insights that have emerged for multivariate560

polynomial equations with multiple roots to the basic univariate case.561

Example 4.7. Consider the univariate polynomial equation562

f(x) = (x− α)2 = x2 − 2αx+ α2 = 0563

of degree d = 2 and with a total number of m = 2 roots. The polynomial f has only564

m0 = 1 disjoint root x(1) = α, with multiplicity µ1 = 2.565

The Frobenius companion matrix of f ,566

Ax =

(
0 1
−α2 2α

)
,567

is the matrix that describes the effect of multiplying the normal set {1, x} with h = x568

in terms of {1, x}, i.e., in terms of [34, Theorem 2.27] it is a multiplication table.569

The matrix Ax has the eigenvalue x(1) = α with algebraic multiplicity µ1 = 2 but570

with geometric multiplicity 1. Consequently, Ax cannot be diagonalized but it admits571

a Jordan canonical form, Ax = UTU−1, in which572

T =

(
x(1) 1

0 x(1)

)
=

(
α 1
0 α

)
and U =

(
−α 1
−α2 0

)
573

are an upper-triangular matrix with both diagonal elements equal to x(1) = α and a574

matrix whose columns span the invariant subspace of dimension µ1 = 2, respectively.575

In the univariate case, the multiplicity structure is of the form

D[x(1)] =
{
∂l[x

(1)]
}µ1−1

l=0
. A confluent Vandermonde basis for the (m = 2)-dimensional

null space of fT =
(
α2 −2α 1

)
is thus given by

Ṽ1 =
(
∂0[v1] ∂1[v1]

)
=

 1 0
α 1
α2 2α


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with v1(2) =
(
1 α α2

)T
. Take d(1) = d(2) = 1, such that the conditions in Theo-576

rem 4.2 are satisfied: d(1) + d(2) = 1 + 1 = 2 ≥ 2 = d∗ + 1 > d∗.577

Next, as mentioned in the proof of Corollary 4.6, Y(1, 1)[1,2;3] in (18) may be578

constructed from H(2) = Ṽ1C
T as a special case of K(2) = V(2)C(2)T :579

580

Y[1,2;3](1, 1) =

( (
I2 02×1

)
·H(2)(

02×1 I2

)
·H(2)

)
=

(
H

H

)
=


1 0
0 1
0 1
−α2 2α

 =

(
I2

Ax

)
581

=

( (
I2 02×1

)
· Ṽ1(2)(

02×1 I2

)
· Ṽ1(2)

)
C(2)T =

(
∂0[v1(2)] ∂1[v1(2)]

∂0[v1(2)] ∂1[v1(2)]

)
C(2)T =582 

1 0
α 1
α 1
α2 2α

C(2)T ,583

584

in which the basis transformation matrix

C(2)T =

(
1 0
α 1

)−1

.

It can be verified that Y(1, 1) admits the single-term BTD585

(22) Y(1, 1) = G ·1 Ṽ1(1) ·2 Ṽ1(1) ·3 C(2) ∈ C2×2×2
586

in which the core tensor, given by587

(23) G[1;2,3] = G[2;1,3] =

(
1 0 0 1
0 1 0 0

)
,588

can be seen as a three-way variant of a (2 × 2) Jordan cell. Given that ∂0[v1] = v1,589

(22) becomes590

(24) Y(1, 1) = v1(1)⊗v1(1)⊗c1,1+∂1[v1(1)] ⊗ v1(1) ⊗ c1,2 + v1(1) ⊗ ∂1[v1(1)] ⊗ c1,2︸ ︷︷ ︸
∂1[v1(1)⊗v1(1)]⊗c1,2

.591

592

5. Connection with border rank and typical rank. The concepts of border593

and typical rank belong to the striking differences between linear (matrix) algebra594

and multilinear (tensor) algebra. Subsection 5.1 and 5.2 will discuss border rank and595

typical rank of a tensor, respectively, and establish a connection with the BTD in596

Theorem 4.2. Next to novel fundamental insights, the conclusions at the end of each597

subsection will be used to design algorithms in section 6.598

5.1. Border rank. The set of tensors that have rank at most R,599

600

SR(I1, I2, I3) = {T ∈ CI1×I2×I3 | rT ≤ R}601

= {T ∈ CI1×I2×I3 | ∃A ∈ CI1×R,B ∈ CI2×R,C ∈ CI3×R : T = JA,B,CK},602603

is not closed for R ≥ 2 [13]. A consequence is that the computation of the best rank-604

R approximation of T ∈ CI1×I2×I3 may result in a sequence of rank-R estimates Tn605
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that converge to a boundary point T̂ of SR(I1, I2, I3) which itself has rank rT̂ > R.606

In such a case, the best rank-R approximation does not exist; the cost function has607

an infimum but not a minimum. If a tensor T can be approximated arbitrarily well608

by rank-R tensors, and R is minimal in this sense, then T is said to have border609

rank R. Numerically, it is observed that the convergence towards T̂ is slow and that610

some of the rank-1 terms “diverge” in the sense that they become increasingly linearly611

dependent, while their norms grow without bound [25, 24]. The columns of A, B and612

C that correspond to the diverging rank-1 terms necessarily become more and more613

linearly dependent as well.614

Example 5.1. [13, Proposition 4.6] Consider the third-order tensor615

(25) T = u ⊗ u ⊗ v + u ⊗ v ⊗ u + v ⊗ u ⊗ u616

with u and v linearly independent. The tensor T is known to have rank rT = 3 > 2617

and border rank 2 [25]. It is approximated arbitrarily well, for n→∞, by a sequence618

of two diverging rank-1 terms:619

620

(26) Tn = n

(
u +

1

n
v

)
⊗

(
u +

1

n
v

)
⊗

(
u +

1

n
v

)
− nu ⊗ u ⊗ u621

= T +
1

n

(
v ⊗ v ⊗ u + v ⊗ u ⊗ v + u ⊗ v ⊗ v +

1

n
v ⊗ v ⊗ v

)
= T +O(

1

n
).622

623

624

Theorem 5.2 shows that, if T is the limit sum of two diverging rank-1 terms, it625

has multilinear rank (2, 2, 2) and the core tensor admits a third-order variant of the626

Jordan canonical form of (2× 2) matrices.627

Theorem 5.2. [13, Lemma 4.7] For a group of R = 2 diverging rank-1 terms, T628

can be written as629

(27) T = G ·1 A ·2 B ·3 C630

where rA = rB = rC = 2 and where G ∈ C2×2×2 is given by631

(28) G[2;1,3] =

(
1 0 0 1
0 1 0 0

)
.632

Moreover, rG = rT = 3.633

More generally, divergence can happen in several groups of rank-1 terms, and634

groups can involve more than two terms [33]. Divergence can be avoided by decom-635

posing the tensor in block terms of proper multilinear rank, rather than rank-1 terms.636

The multilinear rank of a block term matches the cardinality of the group of diverging637

rank-1 terms that it represents. In [32] third-order variants of the Jordan canonical638

form are derived for groups up to four diverging rank-1 terms. In [31, Section 2]639

a procedure is proposed to estimate the multilinear rank of the block terms and to640

obtain an initialization for the BTD algorithm from a “naively fitted” CPD.641

Recall from [38] that in the case of simple roots, Y(d) has rank m. The CPD of642

Y(d) can be related to a matrix EVD in which all eigenvalues are distinct. Example 5.3643

illustrates that Y(d(1), d(2)) in Theorem 4.2 has border rank m in the case of multiple644

roots. Indeed, roots with multiplicity greater than 1 may be seen as the limit case645

of simple roots that get closer and closer. In Theorem 4.2 the m0 groups of µk646
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diverging rank-1 terms are collected in m0 block terms of multilinear rank (µk, µk, µk),647

k = 1 : m0. While the CPD is related to an EVD in the case of only distinct roots,648

the BTD in (19) may be seen as a third-order generalization of the Jordan canonical649

form when there are eigenvalues that have an algebraic multiplicity greater than the650

geometric multiplicity.651

Example 5.3. Consider again the polynomial equation in Example 4.7. Recall652

that we built Y(1, 1) from the slices I2 and Ax. The matrix (I2)
−1

Ax = Ax has a653

double eigenvalue α with geometric multiplicity 1. The matrix Ax cannot be diago-654

nalized but it does admit a Jordan canonical form. Further, Y(1, 1) itself admits the655

third-order variant of the Jordan canonical form in Theorem 5.2, i.e. (22) is an in-656

stance of (27) and (23) matches (28). One can show that rY = 3 but that Y(1, 1) has657

border rank m = 2. Trying to compute a rank-2 PD of Y(1, 1) results in a sequence658

of m = 2 diverging rank-1 terms as in Example 5.1.659

On the other hand, Example 4.3 exhibited in fact the third-order variant of a660

(4 × 4) Jordan cell in the form of the core tensor G(2, 2). The root with multiplicity661

4 led to a block term of border rank 4. Fitting a rank-4 PD results in a sequence of662

m = 4 diverging rank-1 terms.663

We can conclude that, if we proceed in the multiple root case as we have done664

for simple roots in [38], i.e. by fitting a rank-m CPD to Y(1, d − 1), this will result665

in m0 groups of diverging rank-1 terms, with µk rank-1 terms in the kth group. Such666

divergence does not occur if we fit the BTD (19) to Y(d(1), d(2)). The crucial point is667

not to split a multilinear rank-(µk, µk, µk) term into terms of lower multilinear rank,668

such as rank-1 terms. As in [31, Section 2], estimates of the multiplicities µk and an669

initialization for the BTD algorithm may nevertheless be obtained from a “naive” use670

of the algorithm for simple roots in [38] (see section 6 for an illustration).671

5.2. Rank over the real or the complex field. The rank of a tensor depends672

on the field of the entries. Consider for instance T ∈ R2×2×2 whose entries are sampled673

randomly from a continuous probability distribution. If A, B and C are constrained674

to be real, then rT = 2 and rT = 3 occur both with nonzero probability — whereas if675

A, B and C can be complex, rT = 2 occurs with probability 1 [23, 2]. When the rank676

takes more than one value with nonzero possibility, the values that occur are called677

typical. A rank value that occurs with probability 1, is called generic.678

The roots of a system of polynomial equations with real-valued coefficients are679

real-valued or appear in complex conjugated pairs. Example 5.4 shows that a simple680

pair of complex conjugated roots yields a real-valued block term of multilinear rank681

(2, 2, 2) that takes rank 2 over C but rank 3 over R. In general, the computation682

of the roots of a system of polynomial equations with real-valued coefficients can be683

done in R provided we allow block terms, where block terms that take rank 2 over684

C but rank 3 over R, capture simple pairs of complex conjugated roots. Block terms685

that capture a pair of real-valued simple roots have rank 2 over both C and R; such686

terms can be further decomposed in two real-valued rank-1 terms that correspond to687

the individual roots.688

Example 5.4. Consider the univariate polynomial equation689

f(x) = x2 − 2x+ 2 = 0690

of degree d = m = 2. There are m = 2 complex conjugated roots: x(1) = 1 + i and691

x(2) = 1 − i. The degree of regularity d∗ = 1. At d = d∗ + 1 = 2, Y(1, d − 1) =692
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Y(1, 1) ∈ R2×2×2 is constructed from K(2)(= V(2)C(2)T ) ∈ R3×2 as follows:693

Y[1,2;3](1, 1) =

( (
I2 02×1

)
·K(2)(

02×1 I2

)
·K(2)

)
=


1 1

1 + i 1− i
1 + i 1− i

(1 + i)2 (1− i)2

C(2)T ∈ R(2·2)×2.694

Since both roots are simple, Y admits the CPD Y(1, 1) = JV(1),V(1),C(2)K with695

V(1) =

(
1 1

1 + i 1− i

)
.696

We can rewrite the CPD as a single-term BTD:697

Y(1, 1) = G(1, 1) ·1 A(1) ·2 B(1) ·3 C(2)698

in which699

G[1;3,2](1, 1) =

(
1 0 0 0
0 0 0 1

)
700

and in which the (2× 2) factor matrices A(1) = B(1) = V(1) and C(2) are complex-701

valued. From the sparsity pattern of G it is obvious that rG = rY = m = 2.702

The tensor Y(1, 1) can equally well be decomposed as703

Y(1, 1) = G̃(1, 1) ·1 Ã(1) ·2 B̃(1) ·3 C̃(2),704

in which705

G̃(1, 1) = G(1, 1) ·1
(
M(1)

)−1

·2
(
M(2)

)−1

·3
(
M(3)

)−1

,706

and Ã(1) = A(1)M(1), B̃(1) = B(1)M(2), C̃(1) = C(1)M(3) ∈ C2×2,707

where M(1),M(2),M(3) ∈ C2×2 are invertible basis transformation matrices. If we708

take709

M(1) = M(2) = M(3) = M =

( 1
2

1
2i

1
2 − 1

2i

)
,710

then Ã(1), B̃(1), C̃(1) are real-valued and711

G̃[1;3,2](1, 1) =

(
2 0 0 −2
0 −2 −2 0

)
.712

The core tensor G̃(1, 1) ∈ R2×2×2 has rank 3 over R. (On the other hand, like Y(1, 1),713

it has rank 2 over C.)714

6. Algorithm. The goal of this section is to use the fundamental insights from715

the previous sections to design numerical methods for the multivariate rootfinding716

problem.717

6.1. A BTD based root-finding method. Theorem 4.4 hints at an algebraic718

BTD-based algorithm illustrated in Algorithm 1 for finding the roots of a polynomial719

system that can handle roots multiple roots. It generalizes the algebraic method in [38,720

Algorithm 1]. For roots with multiplicities, the algorithm first finds the column spaces721

of the BTD factor matrices B
def
=
(
B1 . . . Bm0

)
∈ Cq(d(2))×m. These correspond722

to the µk-dimensional multivariate confluent Vandermonde subspaces associated with723

the dual spaces of the m0 disjoint roots.724
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Algorithm 1 BTD for multivariate polynomial root finding

Input: A system fi ∈ Cndi , i = 1 : n, in n+ 1 projective unknowns xj ∈ C, j = 0 : n.

Output: Roots x
(k)
1 , . . . , x

(k)
n and multiplicities µk, k = 1 : m0.

1: Choose d(1), d(2) such that d = d(1) + d(2) ≥ d∗ + 1 and d(1), d(2) satisfy the
conditions of Theorem 4.4.

2: Construct Macaulay matrix M(d).
3: Compute null space basis K(d)← null (M(d)).
4: for j = 0 : q(d(1))− 1 do

5: Y(j + 1, :, :)← S
(j)

(d(2)) ·K(d).

6: Compute the SVD Y[2;1,3] = U(2) ·Σ(2) ·U(1,3)H .

7: Orthogonal compression: Yc ← Y ·2 U(2)H .
8: Compute the BTD

(29) Yc =

m0∑
k=1

Gk ·1 Ak ·2 B̃k ·3 Ck

with Gk ∈ Cµk×µk×µk , Ak ∈ Cq(d(1))×µk , and B̃k, Ck ∈ Cm×µk , k = 1 : m0.

9: Expand Bk = U(2)B̃k ∈ Cq(d(2))×µk and retrieve the roots via generalized ESPRIT
approach, k = 1 : m0.

10: return x
(k)
1 , . . . , x

(k)
n and µk, k = 1 : m0.

We comment on the main steps of Algorithm 1:725

Step 1. The degrees d(1), d(2) have to be chosen sufficiently large according to the726

conditions of Theorem 4.4 to ensure uniqueness of the BTD and to allow its algebraic727

computation. The condition d(1) ≥ max {1,maxk δk} leads to the obstacle that the728

depths δk of the roots are generally unknown beforehand. It holds δk ≤ µk − 1, but729

also the multiplicities µk are generally not known either. However, if the degree d(1) is730

chosen large enough, the number m0 of distinct roots and the individual multiplicities731

µk are directly obtained in the course of the algebraic computation of the BTD in732

Step 8, where m0 is the number of detected terms and the µk appear as the sizes733

of the individual blocks in the factor matrices. One obvious possibility is to use the734

upper bound δk ≤ maxi di and set d(1) = maxi di. However, such an increase in d735

would lead to a larger Macaulay matrix and make the computation of basis for the736

null space more expensive.737

Steps 2 – 5. These are the same calculations as in [38, Algorithm 1] for simple738

roots. The only difference is that in Step 5, more than n+ 1 selections S
(j)

(d(2)) are739

applied if d(1) > 1. These execute a generalized spatial smoothing with monomials of740

degree greater than one.741

Steps 6, 7. As in the root-finding procedure for simple roots [38, Algorithm 1]742

compression of Y is carried out. This reduces the computational load in the later743

steps.744

Step 8. Here the factor matrices and cores of the BTD (29) are obtained using the745

algebraic computation outlined in subsection 3.1.2. The main computational step is746

the block-diagonalization by similarity of an m×m matrix. This block-diagonalization747

returns B̃k, Ck ∈ Cm×µk , k = 1 : m0, where the column dimensions match the748

multiplicity µk of the kth root (provided d(1), d(2) have been chosen appropriately).749
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The blocks Bk = U(2)B̃k, Ck are the blocks of the second and third factor matrix B,750

C of the BTD (19). With Bk, Ck the blocks Ak of the first factor matrix and cores751

Gk can be obtained. In the next step 9 we will see that for obtaining the roots, only752

Ak or Bk are required.753

As an alternative one could, similar to the CPD root finding method in [38], compute754

the BTD (19) in step 8 by, e.g., NLS type methods [29]. Although this requires755

in theory less stringent conditions on d(1), d(2), in practice the performance of such756

NLS methods is highly dependent on good initial guesses. Thus, the outcome of the757

algebraic method can be used as initial guess for NLS methods which would then758

refine the quality of the result.759

Step 9. The decomposition of Y obtained in step 8 yields a splitting of contribu-760

tions of the m0 different roots. Rank-1 terms are given by vectors ak = Ak ∈ Cq(d(1)),761

bk = Bk ∈ Cq(d(2)) and belong to simple roots (µk = 1) which can be readily retrieved762

from Ak or Bk by means of a simply scaling (e.g., dividing Ak by its first entry) as763

discussed in [38]. Alternatively, the multiplicative shift structure of multivariate Van-764

dermonde vectors and matrices can be used: S
(i)

Ak = S
(0)

Ak · x(k)
i , i = 1 : n, where765

S
(0)

, S
(i)

select the rows associated to monomials of degree 0 to d(1) − 1 and, respec-766

tively, the rows associated to monomials up to degree d(1) where xi is of degree at767

least one. Using the bk vectors works in the same way.768

Retrieving the roots with multiplicities requires some additional work because,769

due to the (multi)linear transformation indeterminacies, the computed block matrices770

Ak and Bk do not directly reveal the roots. The roots can be found from Ak or771

Bk by using the generalized multiplicative shift structure of confluent multivariate772

Vandermonde matrices, see Lemma B.4. We will illustrate this using the Ak blocks773

here, but the variant using the Bk works in the same way. Note that we originally774

used this multiplicative shift structure to derive the BTD (19) in Theorem 4.2. Recall775

that Ak = Ṽk(d(1))M̃k for some invertible M̃k ∈ Cµk×µk , k = 1 : m0. For an affine776

root xk with multiplicity µk > 1 and depth δk ≤ µk−1, we have for the corresponding777

confluent multivariate Vandermonde matrix Ṽk(d(2))778

S̃(i)Ṽk(d(1)) = S̃(0)Ṽk(d(1))J
(i)
k , i = 1 : n,779

where S̃(0) selects the first Ik ≥ µk rows of Ṽk(d(1)) such that S̃(0)Ṽk(d(1)) ∈ CIk×µk780

has full column rank, S̃(i) selects the rows of Ṽk(d(1)) onto which these Ik ≥ µk781

monomials are mapped after a multiplication with the ith variable xi, and J
(i)
k ∈782

Cµk×µk is upper triangular with x
(k)
i (the value of the ith variable of the kth distinct783

root) on the diagonal, see Lemma B.4 in Appendix B.1 or [15, Section 4.4], [14,784

Section 6.1] for details. Using Ṽk(d(1)) = AkM̃
−1
k yields785 (

S̃(0)Ak

)†
S̃(i)Ak = M̃−1

k J
(i)
k M̃k

def
= J̃

(i)
k , i = 1 : n.786

In other words, J̃
(i)
k can be obtained by solving the linear system

(
S̃(0)Ak

)
J̃

(i)
k =787

S̃(i)Ak and it has a single distinct eigenvalue x
(k)
i with algebraic multiplicity µk. This788

eigenvalue can be retrieved by x
(k)
i = trace(J̃

(i)
k )/µk or from a Schur decomposition789

J̃
(i)
k = QH

k,iRk,iQk,i with Qk,i unitary and Rk,i upper-triangular with x
(k)
i on the790

diagonal.791

Step 9 is the only part of Algorithm 1 that needs to be slightly adapted in case of792

roots at infinity. If x
(k)
0 = 0, x

(k)
1 , . . . , x

(k)
n is a root in the n+1 projective coordinates,793
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S̃(0)Ak will not have full column rank because Ṽk(d(1)) will have zero columns and794

zero top rows. Thus, we use a rank test on S̃(0)Ak to decide whether the kth root is795

projective or not. If rS̃(0)Ak
< µk then the kth root is at infinity and we set x

(k)
0 = 0.796

Otherwise, we are in the affine situation and set x
(k)
0 = 1 and proceed as outlined797

above. For a root at infinity, recall that the components x
(k)
i , i = 1 : n are only798

determined up to scalar factor λ 6= 0. We continue in this case by testing if S̃(i)Ak799

has full column rank for i = 1 : n. If rS̃(i)Ak
< µk we set x

(k)
i = 0, otherwise we800

continue as in the affine case to retrieve the component x
(k)
i . Note that at least one801

component x
(k)
i , i = 1 : n has to be nonzero.802

In the form presented in Algorithm 1, the method will return the roots and the803

individual multiplicities, but not their complete multiplicity structures. One possibil-804

ity to get the multiplicity structure for a known root with known multiplicity µk > 1805

is to find the differential functionals ckl =
∑

j βj∂j, l = 0 : µk−1 from all possible dif-806

ferential functional monomials (Definition 3.3) up to order µk− 1: ∂0, ∂1,0...,0, . . . , ∂h,807

|h| = µk − 1. It holds808

Ṽk(d) =
(
ck0[vk] . . . ckµk−1[vk]

)
=
(
∂0[vk] ∂1,0...,0[vk] . . . ∂h[vk]

)︸ ︷︷ ︸
def
= Uk

Pk,809

where Pk ∈ Cq(µk−1)×µk holds the coefficients β of the functional ckl. Only Uk ∈810

Cq(d)×q(µk−1) is explicitly known in the above equality. Since M(d)Ṽk(d) = 0, the811

matrix Pk can be computed from the nullspace problem812

(M(d)Uk) Pk = 0,813

see also [1, Section 3.6.2] for similar approaches. Alternatively, one could resort to814

algorithms for computing the multiplicity structure [26, 28, 7, 41, 6].815

6.2. A recursive root-finding method. The BTD in Algorithm 1 and sec-816

tion 5 prompt the unconstrained recursive polynomial root-finding Algorithm 2. The817

algorithm allows us to (recursively) detect various (nested) structures in the null space818

of the Macaulay matrix. We give this algorithm as an illustration of the remarkable819

new possibilities in our framework.820

Some explanation is in order. In Example 5.4 we combined (a) pair(s) of rank-1821

terms, which per definition are pairs of multilinear rank-(1, 1, 1) terms, to rewrite822

the CPD of Y(1, d − 1) as a BTD. That is, we expressed Y(1, d − 1) as a BTD with823

(one) multilinear rank-(2, 2, 2) term(s). There is no reason why we should refrain to824

further combine pairs of multilinear rank-(2, 2, 2) terms to obtain a BTD in multilinear825

rank-(4, 4, 4) term(s), and so on. The converse of this bottom-up reasoning is the826

top-down schematic in Figure 3; Algorithm 2 is the implied recursive root-finding827

algorithm. It proceeds as follows. Take the initial input Ŷ = Ŷ(1, d − 1) embodying828

all R = m roots. Next, compute the BTD in step 7 with, for instance, R1 = bm/2c and829

R2 = dm/2e. Then descend to the next level of the tree in Figure 3. Recursively run830

the same procedure on Ŷ1 embodying R = R1 = bm/2c roots and on Ŷ2 embodying831

R = R2 = dm/2e roots. After having repeated this procedure O (log2m) times, each832

CPD in step 2 in Algorithm 2 (at the leave nodes in Figure 3) reveals the minimum833

possible R = 2 roots left. The columns of the obtained factor matrices Ân, B̃n and834

C̃n could thereby serve as an initialization for computing the BTD or the CPD at a835

lower level.836
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m

· · ·

1

R1 = 1

2

R2 = 2

R1 = bm/2c

· · ·

2

R1 = 2

2

R2 = 2

R2 = dm/2e

Fig. 3: Tree-like schematic of a complete run of Algorithm 2 for Ŷ = Ŷ(1, d − 1) ∈
C(n+1)×m×m. BTDs at the top levels (second and third mode dimensions R > 2) are
indicated in black and CPDs in the leaves (with R ≤ 2) are indicated in white. The
rank values rŶ = R are also depicted in each node.

Algorithm 2 Recursive multivariate polynomial root-finding

Input: A compressed Ŷ ∈ C(n+1)×R×R (R ≤ m) for the system fi ∈ Cndi , i = 1 : n, in
the n+ 1 projective unknowns xj ∈ C, j = 0 : n, with m0 = m simple roots.

Output:
{
x(k)

}R
k=1

1: if R ≤ 2 then . termination

2: Compute the R-term CPD Ŷ =
r
Â, B̂, Ĉ

z
.

3: X←∼ Â.
4: return X
5: else . divide
6: R1 ← bR/2c and R2 ← dR/2e.
7: Compute the BTD

Ŷ = Ĝ1 ·1 Â1 ·2 B̂1 ·3 Ĉ1︸ ︷︷ ︸
=Ŷ1∈Cn+1×R1×R1

+ Ĝ2 ·1 Â2 ·2 B̂2 ·3 Ĉ2︸ ︷︷ ︸
=Ŷ2∈Cn+1×R2×R2

in which Ĝ1 ∈ CR1×R1×R1 and Ĝ2 ∈ CR2×R2×R2 .
8: Compress Ŷ1 and Ŷ2 using the MLSVD.
9: return { Algorithm 2(Ŷ1), Algorithm 2(Ŷ2) } . conquer

The root node in Figure 3 embodies (a full basis for) the (R = m)-dimensional837

null space of the Macaulay matrix. The lower-level nodes embody increasingly lower-838

dimensional nested subspaces ⊆ Cn. They provide an increasingly finer-grained view839

on the roots x(k) ∈ Cn of the system. One could alternatively terminate the recursion840

over R at a multilinear rank-(2, 2, 2), rank-3 term that corresponds to a pair of complex841

conjugated roots, or at a multilinear rank-(µk, µk, µk) term. In the latter case the leaf842

node would embody the µk-dimensional dual space D[x(k)]. Owing to many NLS843

runs, the recursive procedure does in the case of simple roots not compete with [38,844

Algorithm 1] in terms of computational cost, but it is extremely flexible and interesting845

conceptually. One could for instance decide to “zoom in” on a select cluster of roots846

in one block term. Example 6.1 sketches the idea.847

Example 6.1. Consider first the univariate case. Say that we are only interested848
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in the roots of a univariate polynomial f(x) within a ∆-neighborhood of a given x,849

i.e. roots x+ δ, |δ| ≤ ∆. For850

vx =
(
1 x x2 . . . xd

)T
and vx+δ =

(
1 x+ δ (x+ δ)2 . . . (x+ δ)d

)T
851

we have852

(30) cos (vx^vx+δ) =
〈vx,vx+δ〉
‖vx‖‖vx+δ‖

=

1−[x(x+δ)]d+1

1−x(x+δ)√
1−[x2]d+1

1−x2

√
1−[(x+δ)2]d+1

1−(x+δ)2

.853

Evidently, lim|δ|≤∆→0 cos (vx^vx+δ) = 1. To assess whether a candidate root y is854

sufficiently close to x to be of further interest, we will consider |x− y|, if both values855

are available. If the Vandermonde vectors vx and vy are available, we may obviously856

also compare the latter, as is clear from (30). However, the block terms in step 7857

of Algorithm 2 are characterized by confluent Vandermonde subspaces rather than858

individual Vandermonde vectors. The subspaces may be generated by several roots,859

which can themselves be simple or have multiplicity greater than 1. Here, we can860

assess the angle between a subspace (say S) and Vandermonde vector vx of matching861

size. For a block term that captures (possibly among other roots) a root y that is close862

to x, cos (vx^S) is bounded from below by (30) for a given tolerance ∆. Conversely,863

we can discard the block terms for which cos (vx^S) is not large enough, since their864

subspaces cannot contain a Vandermonde vector with a generator sufficiently close to865

x.866

In the multivariate case it is possible to assess the proximity for all variables867

together. Let us consider the bivariate case by way of example. Let ∆ =
(
δ1 δ2

)T
868

demarcate a region around x =
(
x1 x2

)T
. For assessing the proximity of vx =869

vx1 ⊗vx2 and vx+δ = vx1+δ1 ⊗vx2+δ2 , note that870

〈vx1 ⊗vx2 ,vx1+δ1 ⊗vx2+δ2〉 = (vx1 ⊗vx2)
H

(vx1+δ1 ⊗vx2+δ2)871

=
(
vHx1

vx1+δ1

)
·
(
vHx2

vx2+δ2

)
872

= 〈vx1
,vx1+δ1〉 · 〈vx2

,vx2+δ2〉,873874

and that ‖vx1
⊗vx2

‖ = ‖vx1
‖ · ‖vx2

‖. This allows the threshold (30) to be replaced875

by a product of such thresholds.876

7. Experimental results. This section contains the results of some numerical877

experiments that illustrate the potential of our approach.878

7.1. BTD-based root-finding. As an illustration of the discussion in subsec-879

tion 5.1 we compare fitting of the m0-term BTD (19) and the m-term CPD (2) in the880

multiple root case, and we showcase the divergence of rank-1 terms when fitting the881

CPD. By way of example, we consider the system [35, Example 1.3.1]882

(31)

{
f1(x1, x2) = x1x2 − 2x2 = 0
f2(x1, x2) = 2x2

2 − x2
1 = 0

883

shown in Figure 4a. We have s = n = 2, d0 = 2, d∗ = 2+2−2 = 2, and m = 2 ·2 = 4,884

but m0 = 3. The system has m0 = 3 < 4 = m disjoint (and affine) roots885

x(1) =
(
x

(1)
1 x

(1)
2

)T
=
(
0 0

)T
and

(
x

(2,3)
1 x

(2,3)
2

)T
=
(
2 ±

√
2
)T

886
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Fig. 4: (a) Zero level curves of f1 ( ) and f2 ( ) in (31). The roots are marked
with ‘o’. (b) Convergence of an optimization-based NLS type algorithm to fit a CPD
( ) and a BTD ( ) to Y(1, 1) in (32) as a function of the iteration step.

with multiplicity µ1 = 2 and µ2 = µ3 = 1, respectively. The confluent multivariate887

Vandermonde basis Ṽ(2) for null (M(d∗)) = null (M(2)) is given by888

Ṽ(2) =
(

Ṽ1(2) ṽ2(2) ṽ3(2)
)

=
(
∂00[v1(2)] ∂10[v1(2)] ∂00[v2(2)] ∂00[v3(2)]

)
∈ Cq(2)×m

889

where890

Ṽ1(2) =
(
∂00[v1(2)] ∂10[v1(2)]

)
=



1 0

x
(1)
1 1

x
(1)
2 0

x
(1)2
1 2x

(1)
1

x
(1)
1 x

(1)
2 x

(1)
2

x
(1)2
2 0


=


1 0
0 1
0 0
0 0
0 0
0 0

 ∈ Cq(2)×µ1891

The depth δ1 of D[x(1)] equals o
(
∂10[x(1)]

)
= 1. Take d(1) = d(2) = 1 such that892

d(1) + d(2) = 2 ≥ 2 = d∗. The tensor Y(1, 1) ∈ Cq(1)×q(1)×m, constructed as shown in893

(18), admits the BTD894

Y(1, 1) =G1(1, 1) ·1 Ṽ1(1) ·2 Ṽ1(1) ·3 C1(2)

+ v2(1) ⊗ v2(1) ⊗ c2,1(2) + v3(1) ⊗ v3(1) ⊗ c3,1(2)
(32)895

in which896

(G1(1, 1))[2;1,3] =

(
1 0 0 1
0 1 0 0

)
.897

First we fit an (m = 4)-term CPD using the randomly initialized NLS algorithm898

in Tensorlab [40], until the relative change in objective function drops below 10−9 or899

a maximum of 500 iterations is reached. Figure 4b shows the convergence: it is slow.900

A collinearity criterion [31, (2.2)] identifies a group of µ1 = 2 diverging rank-1 terms901

and two linearly independent non-diverging rank-1 terms (µ2 = µ3 = 1).6902

6When the algorithm terminates, the cosine between the vector representations of the two di-
verging rank-1 terms has become 0.9998 in absolute value.
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Next we fit a BTD with m0 = 3 and the identified, correct multiplicities µk using903

NLS with the same stopping criterion. We use the CPD results to initialize the BTD904

fitting by means of the SGSD-based procedure in [31, p. 299].905

Ã1(1) =

 1 1
0.0138 0.0003

0 0

906

which satisfies Ã1(1) = Ṽ1(1)M
(1)
1 for some nonsingular matrix M

(1)
1 . From the907

last row of Ã1(1) it follows that x
(1)
2 = 0. The value of x

(1)
1 may be recovered from908

f2(x1, x2) = 0.909

Now we repeat the above experiment using Algorithm 1 with the algebraic BTD910

computation to find the roots and multiplicities for the system (31).911

Setting d(1) = 1 and d(2) = 2 ensures that the prerequisites of Theorem 4.4 are912

met and, consequently, the matrices A1(2) ∈ C3×2, A2,3(2) ∈ C3×1, B1(2) ∈ C6×2,913

and B2,3(2) ∈ C6×1 can be readily computed algebraically via a block-diagonalization.914

The block-diagonalization already reveals the correct multiplicities µ1 = 2, µ2,3 = 1.915

From B1(2) the two-fold root x(1) = (0, 0)T is retrieved using the generalized ESPRIT916

approach (step 9 of subsection 6.1, see also Appendix B.1). The simple roots x(2,3)917

are retrieved from scaling the factor vectors of the rank-1 terms of the BTD as in [38,918

Algorithm 1]. Let V(d) =
(
v1(d) v2(d) v3(d)

)
∈ Cq(d)×m0 be the multivariate919

Vandermonde matrix of degree d ≥ 1 associated to the true solutions of the polynomial920

system and V̂(d) the estimated counterpart computed by Algorithm 1. Note that we921

do not add derivative columns corresponding to the roots with multiplicities here.922

The algebraic BTD based procedure achieves a relative forward error7923

εV̂(1) =
‖V̂(1)−V(1)‖
‖V(1)‖

924

of O(10−14) and a residual norm ‖M(d0)V(d0)‖ = O(10−13). Not only are these re-925

sults significantly more accurate compared to the ones obtained with the NLS-based926

BTD computation that we executed before, the algebraic computation is carried out927

without the need for iterative procedures and initial guesses (obtained, e.g., by a928

preliminary CPD fit). This indicates that the algebraic BTD computation is more929

reliable compared to a BTD computation using optimization based methods. Never-930

theless, optimization based methods can still be used in cases where some refinement of931

the algebraic results is needed, such as for noisy equations (see [38] for an illustration).932

933

7.2. A recursive polynomial root-finding algorithm. As a numerical illus-934

tration of Algorithm 2, consider again the system of s = 2 polynomial equations in935

n = 2 variables [38, Example 3.2]:936

(33)

{
f1(x1, x2) = −x2

1 + 2x1x2 + x2
2 + 5x1 − 3x2 − 4 = 0

f2(x1, x2) = x2
1 + 2x1x2 + x2

2 − 1 = 0
937

with d(1) = d(2) = 2 and d∗ = 2 + 2 − 2 = 2. The system has m = 2 · 2 = 4 simple938

roots
(
x1 x2

)T
=
(
0 −1

)T
,
(
1 0

)T
,
(
3 −2

)T
and

(
4 −5

)T
(‘o’ in Figure 5a).939

From the numerical basis K(d) = K(d∗ + 1) = K(2 + 1) for the nullspace of940

M(d) we construct the tensor Y(1, 2) ∈ C3×6×4 which has multilinear rank-(3, 4, 4),941

7Computed using the cpderr routine of Tensorlab [40].
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Fig. 5: (a) Convergence of the projected terms in the BTD at the top level in Figure 3
for (33) from a random initialization to subspaces ( ) spanned by two roots ‘o’ each.
(b) Convergence of an optimization-based NLS type algorithm to fit the BTD ( )
and two CPDs in the leaves ( ) as a function of the iteration step.

a MLSVD compression yields Ŷ ∈ C3×4×4. We run Algorithm 2 using NLS and942

convergence criterion 10−6 for both the CPD in step 2 and the BTD in step 7. As the943

initial Ŷ has R = m = 4, the BTD (top level in Figure 3) directly uses the minimum944

sizes R1 = R2 = m/2 = 2 for the core tensors. To fit the BTD, we randomly initialized945

the first factor matrices Â1, Â2 ∈ C3×2 for the optimization algorithm (alternatively,946

it is also possible to employ an algebraic BTD algorithm as in Section 7.1) . Figure 5a947

illustrates how the R1 = 2 columns of Â1 (first normalized so that x0 = 1 and then948

projected as points on the (x1, x2)-plane C2) converge from their random initialization949

to the lower-dimensional subspace (plotted as a gray line ( ) in C2) spanned by the950

columns of951 (
V̂
)

1,2
=

 1 1

x
(1)
1 x

(2)
1

x
(1)
2 x

(2)
2

 =

 1 1
0 1
−1 0

 .952

Likewise, the R2 = 2 columns of Â2 converge to the subspace (drawn as gray line953

( )) spanned by the two columns of954

(
V̂
)

3,4
=

 1 1

x
(3)
1 x

(4)
1

x
(3)
2 x

(4)
2

 =

 1 1
3 4
−2 −5

 .955

Note that one converged column of Â2 is kept outside Figure 5a for visibility. Next,956

each CPD in a recursive call of Algorithm 2 (leaf nodes in Figure 3) will converge957

within these subspaces to the sought for roots. Figure 5b shows the convergence.958

Because there are no multiple roots, there are no diverging rank-1 terms, and conver-959

gence is fast.960

8. Conclusions. In [38] we have attempted to show that multilinear algebra961

is a convincing framework to formulate and solve 0-dimensional polynomial root-962

finding problems. This paper has taken the multilinear algebra framework to the963

This manuscript is for review purposes only.
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next level. The third-order tensor BTD proposed in Theorem 4.2 is the most general964

decomposition in our framework. It incorporates multiple roots, reducing to the CPD965

if all roots happen to be simple, it coincides with the triangularization in NPA’s966

Central Theorem and it is a three-way generalization of the Jordan canonical form,967

intimately related to border rank. Furthermore, Theorem 4.4 established uniqueness968

properties for the BTD and enables its algebraic computation by means of a block-969

diagonalization. Future work might use our findings to formulate a three-way Jordan970

form for groups of many diverging rank-1 terms which has so far only been done for971

relatively simple cases [31, 32]; general expressions are still elusive. We have illustrated972

how our BTD-based framework is able to retrieve the roots and their multiplicities973

from the null space of the Macaulay matrix. Moreover, we proposed a recursive974

method to detect nested structures in the nullspace. This essentially amounts to975

splitting a tensor that captures all roots into smaller tensors that capture subsets of976

roots, and iterating over such splittings. Future work might also investigate the use of977

constrained optimization techniques or prior knowledge to improve the accuracy with978

which the roots are found. It may also be interesting to see whether, e.g., clusters of979

roots of no interest can be discarded early in the polynomial root-finding procedures.980

Appendix A. Proof of Theorem 3.1. We will need the following lemma.981

Lemma A.1. Let M1, . . . ,MK be linear transformations on Cm and let982

(34) Cm = V1 u · · ·u VR, dimVr = µr983

be a direct sum decomposition of Cm into subspaces that are invariant for all M1, . . . ,MK ,

MkVr ⊆ Vr, r = 1, . . . , R, k = 1, . . . ,K.

Let also984

(35)

Mk = Blockdiag(M
(1)
k , . . . ,M

(R)
k ), M

(r)
k ∈ Cµr×µr , r = 1, . . . , R, k = 1, . . . ,K985

be the block-diagonal forms of M1, . . . ,MK in a basis derived from decomposition (34).986

Assume that987

1. there exists a linear combination of M1, . . . ,MK with matrix representation988

M = Blockdiag(M(1), . . . ,M(R)) such that the spectra of any two blocks do989

not intersect;990

2. none of the subspaces Vr can be further decomposed into a direct sum of991

subspaces that are invariant for all transformations M1, . . . ,MK .992

Then any other decomposition of Cm into a direct sum of R̃ ≥ R subspaces that are993

invariant for all transformations M1, . . . ,MK ,994

(36) Cm = Ṽ1 u · · ·u ṼR̃, dim Ṽr = µ̃r,995

coincides with decomposition (34) up to permutation of terms, that is, Ṽ1 = Vπ(1), . . . , ṼR =996

Vπ(R) for some permutation π of {1, . . . , R}. In particular, it necessarily holds that997

R̃ = R and that µ̃1 = µπ(1), . . . , µ̃R = µπ(R).998

Proof. Let subspace W be invariant for all transformations M1, . . . ,MK . Then999

W is also invariant for the transformation M . Hence, by assumption 1 and [18,1000

Theorem 2.1.5], W = W1 u · · · uWR, where the subspaces W1 ⊆ V1, . . . ,WR ⊆ VR1001

are invariant for M . Moreover, since W is invariant for all M1, . . . ,MK and (34) is a1002

direct sum decomposition, it follows that the subspaces W1, . . . ,WR are also invariant1003
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for all transformations M1, . . . ,MK . Applying this result to the subspaces Ṽ1, . . . , ṼR̃1004

in decomposition (36) we obtain that1005

(37) Ṽ1 = W11 u · · ·uW1R, . . . , ṼR̃ = WR̃1 u · · ·uWR̃R,1006

where the subspaces1007

(38) W11,W21, . . . ,WR̃1 ⊆ V1, . . . ,W1R,W2R, . . . ,WR̃R ⊆ VR1008

are invariant for all transformations M1, . . . ,MK . Now from (34), (36), (37), and (38)1009

we obtain that1010

1011

(39)

V1u · · ·uVR = CI = Ṽ1u · · ·u ṼR̃ = (W11u · · ·uW1R)u · · ·u(WR̃1u · · ·uWR̃R) =1012

(W11 uW21 u · · ·uWR̃1) u · · ·u (W1R uW2R u · · ·uWR̃R) ⊆ V1 u · · ·u VR.1013

1014

Hence Vr = W1ruW2ru· · ·uWR̃r, r = 1, . . . , R. By assumption 2, this is possible only1015

if one of the subspaces W1r,W2r, . . . ,WR̃r coincides with Vr and the other subspaces1016

are zero. This easily implies the statement of the lemma.1017

Proof of Theorem 3.1. Since the matrix B has full column rank, it is sufficient1018

to prove that for any decomposition of T into a sum of indecomposable tensors the1019

blocks of the matrix in the second mode can be permuted so that their column spaces1020

coincide with the column spaces of the blocks B1, . . . ,BR. To prove the uniqueness of1021

the column spaces col(B1), . . . , col(BR) we will use Lemma A.1. In our derivation we1022

assume without loss of generality that the matrix B is square, so µ1 + · · ·+ µR = m1023

and B ∈ Cm×m.1024

Step 1: Reduction to Lemma A.1. For any f ∈ CI1 we have that1025

1026

(40) T ·1 fT = B · Blockdiag(G1 ·1 (fTA1), . . . ,GR ·1 (fTAR)) · CT ,10271028

where we identify the one-slice tensors T ·1 fT ∈ C1×m×m and G1 ·1 (fTA1) ∈1029

C1×µ1×µ1 , . . . ,GR ·1 (fTAR) ∈ C1×µR×µR with matrices. Since the first horizontal1030

slice of Gr is the identity matrix and the other frontal slices are strictly upper trian-1031

gular, we have that1032

(41)
Gr ·1 (fTAr) is the sum of fTAr(:, 1)Iµr and a strictly upper triangular matrix.1033

Since, by (6), the first columns of the matrices A1, . . . ,AR are nonzero, it easily1034

follows that for generic f ∈ CI1 all values fTA1(:, 1), . . . , fTAR(:, 1) are nonzero.1035

Hence, by (40) and (41), the m×m matrix T ·1 fT is nonsingular for generic f ∈ CI1 .1036

Hence for k = 1, . . . , I1 we have that1037

1038

(42) T (k, :, :)(T ·1 fT )−1 = B · Blockdiag(1039

(G1 ·1 (A1(k, :)))(G1 ·1 (fTA1))−1, . . . , (G1 ·1 (AR(k, :)))(G1 ·1 (fTAR))−1) ·B−1.10401041

Thus, the matrices T (k, :, :)(T ·1 fT )−1 can be simultaneously reduced to block di-1042

agonal form by a similarity transform. This means that the column spaces of the1043

blocks B1, . . . ,Bm0
are invariant for all matrices T (1, :, :)(T ·1 fT )−1, . . . , T (I1, :, :1044
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)(T ·1 fT )−1 and that the whole space Cm can be decomposed into the direct sum of1045

col(B1), . . . , col(BR): Cm = col(B1) u · · ·u col(BR).1046

Step 2. By Step 1, any BTD T =
∑R̃
r=1

r
G̃r; Ãr, B̃r, C̃r

z
with nonsingular B̃

def
=1047 (

B̃1 . . . B̃R̃

)
and C̃

def
=
(
C̃1 . . . C̃R̃

)
generates a decomposition of Cm into a1048

direct sum of col(B̃1), . . . , col(B̃R̃). To show that all such decomposition coincide up1049

to permutation of the terms with the decomposition Cm = col(B1) u · · · u col(BR),1050

we show that the assumptions in Lemma A.1 hold for K = I1, Vr = col(Br), and1051

(43)

Mk = Blockdiag(M
(1)
k , . . . ,M

(R)
k ) with M

(r)
k = (Gr ·1 (Ar(k, :)))(Gr ·1 (fTAr))

−1.1052

Assumption 1. Let h ∈ CK and M
def
= h1M1 + · · · + hKMK . Then, by1053

(43), the rth diagonal block of M is the sum of (hTAr(:, 1))(fTAr(:, 1))−1Iµr and1054

a strictly upper triangular matrix. Hence, the diagonal blocks of M have one-point1055

spectra (hTA1(:, 1))(fTA1(:, 1))−1, . . . , (hTAR(:, 1))(fTAR(:, 1))−1. We show that1056

there exists a vector h such that the values (hTA1(:, 1))(fTA1(:, 1))−1, . . . , (hTAR(:1057

, 1))(fTAR(:, 1))−1 are distinct. Indeed, if (hTAr1(:, 1))(fTAr1(:, 1))−1 = (hTAr2(:1058

, 1))(fTAr2(:, 1))−1, then easy algebraic manipulations imply that1059

(44) hT (fTAr2(:, 1))Ar1(:, 1) = hT (fTAr1(:, 1))Ar2(:, 1).1060

Thus, (44) holds only for vectors h that are orthogonal to the vector ((fTAr2(:1061

, 1)Ar1(:, 1) − (fTAr1(:, 1))Ar2(:, 1))∗, which, because of the generic choice of f in1062

Step 1 and by assumption (6), is nonzero. Hence, the values (hTA1(:, 1))(fTA1(:1063

, 1))−1, . . . , (hTAR(:, 1))(fTAR(:, 1))−1 are distinct for any vector h that is not or-1064

thogonal to any of the R(R−1)
2 vectors ((fTAr2(:, 1)Ar1(:, 1)− (fTAr1(:, 1))Ar2(:, 1))∗,1065

1 ≤ r1 < r2 ≤ R.1066

Assumption 2. Since the matrix Ar has full column rank, its row space is1067

equal to Cµr . Hence the subspace spanned by the matrices M
(r)
1 , . . . ,M

(r)
µr coin-1068

cides with the subspace spanned by the nonsingular upper triangular matrix S1
def
=1069

(Gr ·1 (Iµr (1, :)))(Gr ·1 (fTAr))
−1 = (Gr(1, :, :))(Gr ·1 (fTAr))

−1 and the µr−1 strictly1070

upper triangular matrices Sl+1
def
= (Gr ·1 (Iµr (l+ 1, :)))(Gr ·1 (fTAr))

−1 = (Gr(l+ 1, :, :1071

))(Gr ·1(fTAr))
−1, l = 1, . . . , µr−1. To prove that the subspace Cµr cannot be decom-1072

posed into a direct sum of subspaces that are invariant for all matrices M
(r)
1 , . . . ,M

(r)
µr1073

we prove a stronger statement: the subspace Cµr cannot be decomposed into a direct1074

sum of subspaces that are invariant for all matrices S2, . . . ,SµR . Since S2, . . . ,SµR are1075

nilpotent matrices, it is sufficient to prove that the common null space of S2, . . . ,SµR1076

is trivial, i.e., is spanned by the vector Iµr (:, 1). Let u be a nonzero vector such that1077

S2u = · · · = SµRu = 0. Since Gr(:, 1, :) = Iµr , it follows that the first rows of the1078

matrices S2, . . . ,Sµr are proportional, respectively, to the 2nd, 3rd,. . . , µrth row of1079

the matrix (Gr ·1 (fTAr))
−1. Hence, the identities S2u = · · · = SµRu = 0 imply that1080

the last µr − 1 entries of the vector (Gr ·1 (fTAr))
−1u are zero. Since the matrix1081

(Gr ·1 (fTAr))
−1 is nonsingular and upper triangular, it follows that the last µr − 11082

entries of the vector u are zero as well.1083

Appendix B. Derivation of Theorem 4.2. In this section we derive the1084

BTD structure in Theorem 4.2. Throughout this derivation we will make frequent1085

use of the following Definition B.1 and Lemma B.3.1086
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Definition B.1. [6, Definition 1] Let the linear transformation φj be defined by1087

φj (∂j1...jn [z](f)) =

{
∂j1...jj−1,jj−1,jj+1...jn [z](f), jj 6= 0

0-functional, jj = 0.
1088

Given a system of polynomial equations F and a µk-fold root z, the dual subspaces1089

Dt[z](F) are the strictly enlarging sets D0[z](F) = span(∂0[z]) and1090

Dt[z](F) = span

c =
∑
|j|≤t

βj∂j[z](f) | c(F) = {0}&∀ j : φj(c) ∈ Dt−1[z](F)


 .1091

If Dδ+1[z] = Dδ[z], then the vector space Dδ[z] = D[z] is called the dual space of1092

the system F at z and δ is called its depth. The dual space reveals the multiplicity1093

structure of the root z; its dimension equals the multiplicity µk.1094

Example B.2. Consider again example 3.5 with f ∈ C2, a four-fold root z ∈1095

C2 with δ = 2, and the differential functionals c10 = ∂00, c11 = ∂10, c12 = ∂01,1096

c13 = (2∂20 + ∂11). Obviously, c10 ∈ D0[z] ⊂ D2[z]. Since φ1(c11) = φ1(∂10) = ∂00,1097

φ2(c11) = 0 we have c11 ∈ D1[z] ⊂ D2[z] and likewise for c12. For c13 we have1098

that φ1(c13) = 2∂10 + ∂01 ∈ D1[z] and φ2(c13) = ∂10 ∈ D1[z] so that c13 ∈ D2[z].1099

Due to the nested structure of D, it also holds φi(φj(ckl)) ∈ D, i, j = 1, 2. Indeed,1100

we have, e.g., φ1(φ1(c13)) = 2∂00 ∈ D2[z] as well as φ2(φ1(c13)) = ∂00 ∈ D2[z],1101

φ2(φ2(c13)) = 0 ∈ D2[z].1102

We use the Leibniz formula (generalization of the product rule).1103

Lemma B.3. Let p, q ∈ Cn. Then for k ∈ Nn1104

∂k[p · q] =
∑

0≤j≤k

∂j[p] · ∂k−j[q].1105

1106

With these prerequisites we are now ready to establish the BTD (19) in Theorem 4.2.1107

We will do so in two steps: at first we generalize the multiplicative shift structure1108

for multivariate Vandermonde matrices, that was used in [38] for the case of only1109

simple roots, to confluent multivariate Vandermonde matrices and roots with multi-1110

plicities greater than one (Section B.1). This result is afterwards used to establish1111

the BTD (19) starting from the nullspace of the Macaulay matrix (Section B.2).1112

Throughout the whole derivation, examples will illustrate main intermediate steps.1113

B.1. First step: Generalization of the multiplicative shift structure.1114

We consider the confluent multivariate Vandermonde matrix1115

(45a) Ṽ(d) =
(
Ṽ1(d) . . . Ṽm0(d)

)
∈ Cq(d)×m

1116

associated to a 0-dimensional polynomial system F with m0 ≤ m distinct roots. Each1117

block Ṽk(d), k = 1 : m0 is of the form1118

(45b) Ṽk(d) =
( order 0︷ ︸︸ ︷
ck0[v(d)]

order 1︷ ︸︸ ︷
ck1[v(d)] . . . . . .

order δk︷ ︸︸ ︷
. . . ck,µk−1[v(d)]

)
∈ Cq(d)×µk1119

and contains the µk unique differential functional columns ckl[v] ∈ D[zk] which we1120

assume w.l.o.g. to be ordered increasingly regarding the differentiation order of the1121

differential functionals.1122
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Lemma B.4. Let Ṽ(d) be as in (45) with d = d(1)+d(2) ≥ d∗, d(1) ≥ 1. Let further1123

S
(0) ∈ Cq(d(2))×q(d) select the rows of Ṽ(d) associated to the monomials of degree 0 to1124

d(2) and let S
(j) ∈ Cq(d(2))×q(d) select the rows onto which these monomials are mapped1125

after a multiplication with the (j + 1)th monomial xαj = xα1
1 · · ·xαnn , αj ∈ Nn with1126

|αj | ≤ d(1).1127

Then the generalized multiplicative shift structure / ESPRIT-type relation1128

S
(j)

(d(2))Ṽk(d) = S
(0)

(d(2))Ṽk(d)J
(j)
k , 0 ≤ j ≤ q(d(1))− 1, k = 1 : m0(46)11291130

holds, where J
(j)
k = xαjIµk + N

(j)
k ∈ Cµk×µk with N

(j)
k strictly upper triangular. For1131

all 0 ≤ i, j the upper triangular matrices J
(i)
k ,J

(j)
k commute. Moreover, for the (j+1)th1132

monomial xα = xα1
1 · · ·xαnn the associated upper triangular matrix J

(j)
k in (46) is given1133

by1134

J
(j)
k = (J

(1)
k )α1 · · · (J(n)

k )αn(47)11351136

so that all J
(j)
k are defined by the n upper triangular matrices J

(1)
k , . . . ,J

(n)
k associated1137

to the monomials x1, . . . , xn of degree one.1138

Proof. (46) holds trivially for j = 0 with J
(0)
k = Iµk . We begin the derivation1139

with shifts by the degree one monomials xj , j = 1 : n (i.e., αj = ej , |αj | = 1).1140

Only the first columns ck0[vk(d)] = ∂00[vk(d)] = vk(d) = vk are genuine multivariate1141

Vandermonde vectors for which the simple multiplicative shift invariance holds:1142

(48a) S
(j)

(d(2))vk = xj · S
(0)

(d(2))vk, j = 1 : n,1143

whereas by linearity of ckl and the multiplication by S
(j)

(d(2)), we have for the re-1144

maining columns1145

(48b) S
(j)

(d(2))ckl[vk] = S
(0)

(d(2))ckl[xjvk], j = 1 : n.1146

With the help of Definition B.1, Lemma B.3 it holds for the application of ckl =1147 ∑
r βr∂r to xjvk for l = 1 : µk − 1:1148

ckl[xjvk] =
∑
r

βr∂r[xjvk] =
∑
r

βr
∑

0≤i≤r

∂i[xj ]∂r−i[vk] =
∑
r

βr

1∑
|i|=0

∂i[xj ]∂r−i[vk]1149

=
∑
r

βr
(
xj∂r[vk] + ∂r−ej [vk]

)
= xjckl[vk] + φj(ckl)[vk].1150

1151

Now let 1 ≤ t ≤ δk be the differential order of ckl. Since ckl ∈ Dt[zk] ⊆ D[zk],1152

it holds by Definition B.1 that φj(ckl) ∈ Dt−1 ⊂ D[zk] which means φj(ckl) can be1153

expressed as linear combination of differential functionals from D[zk] of order less than1154

t. In other words, φj(ckl)[vk] can be expressed as linear combinations of columns of1155

Ṽk(:, 1 : l′), l′ < l and whose differential order is strictly smaller than t. Hence,1156

ckl[xjvk] = xjckl[vk] +
∑
l′<l

γl′lckl′ [vk] for some γl′l ∈ C1157

= ṼkJ
(j)
k (:, l + 1), J

(j)
k (:, l + 1) =


γ0l

...
γl−1,l
xj
0
...
0

 , l = 1 : µk − 1.(49)1158

1159
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Together with (48a), deploying the relations (49) in all µk columns in (48b) yields1160

S
(j)

(d(2))Ṽk(d) = S
(0)

(d(2))Ṽk(d)J
(j)
k11611162

with J
(j)
k = xjIµk + N

(j)
k ∈ Cµk×µk with the γ’s in the strictly upper triangular part1163

N
(j)
k .1164

This relation can be extended towards shifts with higher degree monomials, i.e.,1165

xαj ·vk with |αj | > 1. It similarly holds S
(j)

(d(2))vk = xαj ·S(0)
(d(2))vk for the first1166

columns. The application of the functionals yields1167

ckl[x
αjvk] =

∑
r

βr
∑

0≤i≤r

∂i[x
αj ]∂r−i[vk] =

∑
r

βr

min(t,|αj |)∑
i=0

∂i[x
αj ]φi(∂r)[vk],(50)1168

1169

where we again used Definition B.1, Lemma B.3 and introduced the notation φi
def
=1170

φi11 (φi22 (. . . φinn )) and φ
ij
j

def
= φj(φj(. . . φj)) (ij-fold application of φj). Because of the1171

nested structure of the dual space D[zk] it still holds that φi(ckl) ∈ Dmax(0,t−|i|)[zk] ⊂1172

D[zk]. Hence, (50) can be written as1173

ckl[x
αjvk] = xαjckl[vk] +

∑
l′<l

γl′l(x)ckl′ [vk], for some γl′l(x) ∈ C|αj |−1
1174

= Ṽk


γ0l(x)

...
γl−1,l(x)

xαj

0
...
0

 , l = 1 : µk − 1,1175

1176

so that (46) also holds for all j ≤ q(d(1)) − 1, where j > n indicates a multiplicative1177

shift with the (j + 1)th monomial in the chosen monomial ordering. The associated1178

upper triangular matrices J
(j)
k will have strict upper triangular parts that may depend1179

on the values of x
(k)
1 , . . . , x

(k)
n .1180

We now establish (47) for the sake of presentation for the shift x2
j , i.e., α = 2ej .1181

We proceed through the steps in (50) in a slightly different way (but again making1182

use of Definition B.1, Lemma B.3):1183

ckl[x
2
jvk] = ckl[xj(xjvk)] =

∑
r

βr
∑

0≤i≤r

∂i[xj ]∂r−i[xjvk]1184

=
∑
r

βr
(
xj∂r[xjvk] + ∂r−ej [xjvk]

)
= xjckl[xjvk] + φjckl[xjvk]1185

= xj

(
xjckl[vk] +

∑
l′<l

γl′lckl′ [vk]

)
+ φj

(
xjckl[vk] +

∑
l′<l

γl′lckl′ [vk]

)
1186

= xjṼkJ
(j)
k (:, l + 1) + xjṼk(:, 1 : l)J

(j)
k (1 : l, l + 1) +

∑
l′<l

γl′lφj (ckl′) [vk],(51)1187

1188

where we used (49). For the rightmost term in (51), recall that ckl′ ∈ Dt−1[zk] if1189

1 ≤ t ≤ δk is the differentiation order of ckl. Thus, by the nested structure of D[zk],1190

φj(ckl′) ∈ Dmax(0,t−2)[zk] so that φj (ckl′) =
∑
l′′<l′ γl′′l′ckl′′ . Consequently,1191 ∑

l′<l

γl′lφj (ckl′) [vk] =
∑
l′<l

γl′l
∑
l′′<l′

γl′′l′ckl′′ [vk] =
∑
l′<l

γl′lṼkJ
(j)
k (:, l′ + 1)1192

1193
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and, by recalling that J
(j)
k (l+ 1, l+ 1) = γll = xj for l = 0 : µk − 1, we can write (51)1194

as1195

ckl[x
2
jvk] = Ṽk

(
γllJ

(j)
k (:, l + 1) + γllJ

(j)
k (1 : l, l + 1) + J

(j)
k (:, 1 : l′ + 1)J

(j)
k (:, l + 1)

)(52)

1196

= ṼkJ
(j)
k J

(j)
k (:, l + 1).(53)11971198

We identify J
(j)
k J

(j)
k (:, l + 1) as the (l + 1)th column of J

(j)2
k and using (52) for l =1199

0 : µk − 1 yields (47) for quadratic shifting monomials x2
j . The above reasoning can1200

be extended first towards higher degree pure monomials x
αj
j , αj > 2 and finally to1201

general monomials xα1
1 · · ·xαnn which establishes (47).1202

Example B.5. Consider again example 3.5 with the differential functionals c10 =1203

∂00, c11 = ∂10, c12 = ∂01, c13 = (2∂20 + ∂11) and, thus, Ṽ1(d) =
(
v1(d) c11[v1(d)] c12[v1(d)] c13[v1(d)]

)
∈1204

Cq(d)×4. We omit the degree indications (d, d(2)) for the rest of the example for better1205

readability. For j = 1, 2 it clearly holds S
(j)

v1 = xj ·S
(0)

v1. For the second differential1206

functional c11 = ∂10, i.e. the 2nd column of Ṽ1, we have1207

c11[xjv1] = ∂10[xjv1] = xj∂10[v1] + φj(∂10[v1])1208

= xj∂10[v1] +

{
∂00[v1] = v1 : j = 1.

0 : j = 2.
1209

1210

Thus, S
(1)
c11[v1] = S

(1)
Ṽ1(:, 2) = S

(0)
Ṽ1

(
1
x1
0
0

)
and S

(2)
Ṽ1(:, 2) = S

(0)
Ṽ2

(
0
x2
0
0

)
.1211

Likewise, we find S
(1)
c12[v1] = S

(1)
Ṽ1(:, 3) = S

(0)
Ṽ1

(
0
0
x1
0

)
and S

(2)
Ṽ1(:, 3) =1212

S
(0)

Ṽ1

(
1
0
x2
0

)
. For the fourth functional c13 we have1213

c13[xjv1] = (2∂20 + ∂11)[xjv1] = xj(2∂20 + ∂11)[v1] + φj(2∂20 + ∂11)[v1]1214

= xjc13[v1] +

{
(2∂10 + ∂01)[v1] = (2c11 + c12)[v1] : j = 1.

∂10[v1] = c11[v1] : j = 2.
1215

1216

Consequently, S
(1)
c13[v1] = S

(1)
Ṽ1(:, 4) = S

(0)
Ṽ1

(
0
2
1
x1

)
and S

(2)
Ṽ1(:, 4) = S

(0)
Ṽ1

(
0
1
0
x2

)
.1217

Collecting all these relations yields (46) with the upper triangular matrices1218

J
(1)
1 =

( x1 1
x1 2

x1 1
x1

)
= x1I4 +

(
1

2
1

)
, J

(2)
1 =

( x2 0 1
x2 1

x2 0
x2

)
.1219

Finally let’s consider as one shift with a higher degree monomial the shift with the1220

(j = 3)rd monomial x2
1. It clearly holds S

(3)
v1 = x2

1 · S
(0)

v1. For the remaining1221

columns we get1222

c11[x2
1v1] = ∂10[x2

1v1] = x2
1∂10[v1] + 2x1v1 = x2

1c11[v1] + 2x1v1,1223

c12[x2
1v1] = ∂01[x2

1v1] = x2
1∂01[v1] = x2

1c12[v1],1224

c13[x2
1v1] = (2∂20 + ∂11)[x2

1v1]1225

= 2(x2
1∂20[v1] + 2x1∂10[v1] + v1) + x2

1∂11[v1] + 2x1∂01[v1]1226

= 2v1 + 4x1c11[v1] + 2x1c12[v1] + x2
1c13[v1].12271228
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Hence,1229

J
(3)
1 =

 x2
1 2x1 2

x2
1 4x1

x2
1 2x1

x2
1

 = x2
1I4 +

(
2x1 2

4x1
2x1

)
= J

(1)2
1 .1230

1231

B.2. Step 2. Establishing the BTD structure.1232

Proof of Theorem 4.2. Recall that for d ≥ d∗ the numerical basis K(d) of the1233

Macaulay null space and the confluent multivariate Vandermonde matrix Ṽ(d) are1234

linked by1235

K(d) = Ṽ(d)CT =
(
Ṽ1(d) . . . Ṽm0

(d)
) CT

1
...

CT
m0

1236

and consider the matrix representation (18) of the third-order tensor Y(d(1), d(2)):1237

Y[1,2;3](d
(1), d(2)) =


S

(0)
(d(2)) ·K(d)

S
(1)

(d(2)) ·K(d)
...

S
(q(d(1))−1)

(d(2)) ·K(d)

 =

m0∑
k=1


S

(0)
(d(2)) · Ṽk(d)

S
(1)

(d(2)) · Ṽk(d)
...

S
(q(d(1))−1)

(d(2)) · Ṽk(d)

CT
k1238

=

m0∑
k=1


Ṽk(d(2))

Ṽk(d(2))J
(1)
k

...

Ṽk(d(2))J
(q(d(1))−1)
k

CT
k =

m0∑
k=1

(Iq(d(1)) ⊗ Ṽk(d(2)))


Iµk

J
(1)
k

...
J
(q(d(1))−1)
k

CT
k1239

1240

with the upper triangular matrices J
(j)
k , j = 1 : q(d(1))−1, k = 1 : m0 from Lemma B.41241

associated to the q(d(1)) shifting monomials of degree 0 to d(1) which are assumed to1242

be ordered consistently in the chosen monomial order. Consider the kth term in the1243

above sum, which is associated to the kth root zk with multiplicity µk ≥ 1 and depth1244

0 ≤ δk ≤ µk − 1. For the strictly upper triangular parts of J
(i)
k = xiIµk + N

(i)
k ,1245

i = 1 : n, we have the nilpotency properties1246

(N
(1)
k )α1 · · · (N(n)

k )αn = 0µk ∀{αj}nj=1 with
∑
j

αj > δk(54a)1247

1248

which include the individual properties1249

(N
(j)
k )α = 0µk , α > δk(54b)12501251

as special case. Furthermore,1252

(N
(1)
k )α1 · · · (N(n)

k )αn = ηe1e
T
µk
, η ∈ C if

∑
j

αj = δk.(54c)1253

1254

Trivially, (N
(j)
k )µk = 0µk since µk ≥ δk + 1.1255

Let J
(j)
k be associated to the monomial xαj and express it in terms of the upper1256

triangular matrices N
(i)
k , i = 1 : n by using the multi-binomial formula:1257

J
(j)
k =

∑
h≤αj

xh
n∏
i=1

(
αi
hi

)
(N

(i)
k )αi−hi = xαjIµk +

∑
h≤αj
h6=αj

xh
n∏
i=1

(
αi
hi

)
(N

(i)
k )αi−hi .(55)1258

1259
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Using above nilpotency properties (54) and also the property that all N
(i)
k commute1260

indicates that at most q(δk)−1 different products of strictly upper triangular matrices1261

appear in (55) (all products of powers of the N
(i)
k with

∑
i(αi−hi) > δk) cancel out).1262

The factors in front of the upper triangular matrices can be collected to match the1263

functional evaluations ckl[x
αj ], l = 1 : µk − 1 so that every J

(j)
k can be written as1264

J
(j)
k = xαjIµk + ck1[xαj ]N̂

(1)
k + · · ·+ ck,µk−1[xαj ]N̂

(µk−1)
k .(56)12651266

Here, the N̂
(i)
k are linear combinations of those N

(h)
k = J

(h)
k − xαhIµk that are asso-1267

ciated to shifting monomials xαh with degrees equal to the differential order of cki,1268

that is1269

N̂
(i)
k =

∑
{h : |αh|=o(cki)}

ωhN
(h)
k , ωh ∈ C.1270

Consequently, since the selection matrices S
(i)

are applied in the chosen monomial1271

order, we find1272 
Iµk

J
(1)
k

...
J
(q(d(1))−1)
k

 = vk(d(1))⊗ Iµk + ck1[vk(d(1))]⊗ N̂
(1)
k + · · ·+ ck,µk−1[vk(d(1))]⊗ N̂

(µk−1)
k1273

=
(
Ṽk(d(1))⊗ Iµk

)
Gk[1,2;3], Gk[1,2;3]

def
=


Iµk

N̂
(1)
k

...
N̂

(µk−1)

k

 .1274

1275

Hence, one term of Y[1,2;3](d
(1), d(2)) can be written as1276

(Iq(d(1)) ⊗ Ṽk(d(2)))


Iµk

J
(1)
k

...
J
(q(d(1))−1)
k

CT
k = (Ṽk(d(1))⊗ Ṽk(d(2)))Gk[1,2;3]C

T
k = Yk[1,2;3]1277

which is a matrix unfolding of one term of a BTD Yk(d(1), d(2)) =
r
Gk; Ṽk(d(1)), Ṽk(d(2)),Ck(d)

z
1278

of a third-order tensor Yk(d(1), d(2)) ∈ Cq(d(1)×q(d(2)×µk . Since this holds for all1279

k = 1 : m0, we established the BTD (19). The equality Gk(l1 + 1, :, :) = Gk(:, l1 + 1, :)1280

follows by symmetry.1281

We illustrate this BTD construction in an example.1282

Example B.6. Continuing the previous example Example B.5 with d(1) = d(2) =1283

2,1284

Ṽ1(2) =
(
c10[v1] c11[v1] c12[v1] c13[v1]

)
=


1 0 0 0
x1 1 0 0
x2 0 1 0
x2
1 2x1 0 2

x1x2 x2 x1 1
x2
2 0 2x2 0

1285

with differential functions given in Example B.2, and upper triangular matrices J
(j)
k1286
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from the previous subsection. Now note that1287 
Iµ1

J
(1)
1

J
(2)
1

J
(3)
1

...
J
(5)
1

 =


Iµ1

x1·Iµ1+N
(1)
1

x2·Iµ1+N
(2)
1

x2
1·Iµ1+2x1·N(1)

1 +N
(1)2
1

...
x2
2·Iµ1+2x2·N(2)

1 +N
(2)2
1

 =


Iµ1

x1·Iµk+c11[x1]N̂
(1)
1 +c12[x1]N̂

(2)
1 +c13[x1]N̂

(3)
1

x2·Iµ1+c11[x2]N̂
(1)
1 +c12[x2]N̂

(2)
1 +c13[x2]N̂

(3)
1

x2
1·Iµ1+c11[x2

1]N̂
(1)
1 +c12[x2

1]N̂
(2)
1 +c13[x2

1]N̂
(3)
1

...
x2
2·Iµ1+c11[x2

2]N̂
(1)
1 +c12[x2

2]N̂
(2)
1 +c13[x2

2]N̂
(3)
1

1288

= c10[v1]⊗ I4 + c11[v1]⊗ N̂
(1)
1 + c12[v1]⊗ N̂

(2)
1 + c13[v1]⊗ N̂

(3)
1 ,12891290

which corresponds to (56) with1291

N̂
(1)
1

def
= N

(1)
1 , N̂

(2)
1

def
= N

(2)
1 , N̂

(3)
1

def
= 1

2N
(1)2
1 = N

(1)
1 N

(2)
1 .12921293

Consequently,1294

(Iq(d(1)) ⊗ Ṽ1(d(2)))


Iµ1

J
(1)
1

...
J
(q(d(1))−1)
1

 = (Iq(d(1)) ⊗ Ṽ1(d(2)))

(
c10[v1]⊗ I4 + c11[v1]⊗

(
0 1

0 2
0 1

0

)
1295

+c12[v1]⊗
(

0 0 1
0 1

0
0

)
+ c13[v1]⊗

(
0 0 0 1

0 0
0

0

))
1296

= (Ṽ1(d(1))⊗ Ṽ1(d(2)))



I4
0 1

0 2
0 1

0
0 0 1

0 1
0 0

0
0 0 1

0 0
0 0

0


︸ ︷︷ ︸

=G1[1,2;3]

.1297

1298
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