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8.1 Introduction

The goal of matrix completion is to impute missing values of a possibly low-rank matrix
with only partial entries observed. This problem arises in online recommendation systems,
computer vision, etc. In real-world applications, the matrix to be recovered might be con-
taminated by noise or outliers, where robust techniques are needed. In this chapter, we
introduce a robust matrix completion model, where the robustness benefits from a noncon-
vex loss function. Efficient algorithms are proposed to solve the introduced robust matrix
completion model. Experiments are carried out on synthetic as well as real datasets to val-
idate the efficiency and effectiveness of the proposed models and algorithms.
The problem of matrix completion aims at recovering a matrix from a sampling of its entries,
which has arisen from a variety of real-world applications including online recommendation
systems [26, 30], image impainting [1, 20], computer vision, and video denoising [17]. The
problem itself could be an ill-posed problem without further constraints since we have fewer
samples than entries. However, in many applications including those mentioned-above, it
is common that the matrix that we are going to recover has some special structures; for
example, low-rank or approximately low-rank, which makes it possible to search within all
possible completions.

In matrix completion problems, one tries to approximate the observed entries of the
matrix as well as possible while also preserving the low-rank property of the recovered
matrix. Mathematically, the problem can be formulated as

min
L∈Rm×n

rank(L) s.t. Lij = Bij , (i, j) ∈ Ω,
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8-2 Handbook of Robust Low-Rank and Sparse Matrix Decomposition

where L, B ∈ Rm×n, and Ω are an index set. Due to the nonconvexity of the rank function
rank(·), solving this minimization problem is NP-hard in general. To obtain a tractable
convex relaxation, the nuclear norm heuristic is usually employed, which also imposes the
low-rank property. To measure the approximation ability of a candidate matrix on the
observed entries, the least-squares criterion is usually employed in the data fidelity term.
In a seminal work, [3] showed that most low-rank matrices can be recovered exactly from
partial sampled entries that may have surprisingly small cardinality by using the convex
relaxation introduced in [6], and many algorithms have been introduced to solve the convex
optimization problem.

In the noisy setting of the matrix completion problem, the corresponding observed matrix
turns out to be

BΩ = LΩ + S,

where BΩ denotes the projection of B onto Ω, and S refers to the noise.
When the observed data are corrupted by gross errors, the resulting matrix could be

far away from the ground-truth due to the utilization of the least-squares criterion, which
is non-robust. To address this problem, some efforts have been made in the literature. In a
seminal work, [2] proposed a robust matrix completion approach, in which the model takes
the following form

min
L,S∈Rm×n

‖S‖1 + λ‖L‖∗ s.t. LΩ + S = BΩ. (8.1)

The above model can be further formulated as

min
L∈Rm×n

‖LΩ −BΩ‖1 + λ‖L‖∗,

where λ > 0 is a regularization parameter. The robustness of the model (8.1) results from
using the least absolute deviation loss (LAD). This model was later applied to the column-
wise robust matrix completion problem in [4].

By further decomposing S into S = S1 + S2, where S1 refers to the noise and S2 stands
for the outliers, [10] proposed the following robust reconstruction model

min
L,S2∈Rm×n

‖LΩ − BΩ − S2‖2F + λ‖L‖∗ + γ‖S2‖1,

where λ, γ > 0 are regularization parameters. They further showed that the above estima-
tor is equivalent to the one obtained by using the Huber’s criterion when evaluating the
data-fitting risk. The Huber’s criterion was adopted in [10] to introduce robustness into
matrix completion. [25] proposed to use an Lp (0 < p ≤ 1) loss to enhance the robustness.
However, none of the above approaches can be sufficiently robust to gross errors due to the
unboundedness of these loss functions, which cannot remove the impact of the gross errors
on the output.

We also note that, to enhance the robustness, several approaches have been proposed
in low-rank matrix approximation problems, especially for PCA [2, 35, 36]. However, it
is necessary to point out the difference between the PCA and the matrix completion. As
suggested in [35], the essential difference lies in that in matrix completion problems the
support of missing entries is given, whereas in PCA, corrupted entries are never known.
From a statistical learning viewpoint, PCA is a typical unsupervised learning problem while
the matrix completion can be interpreted as a supervised learning scenario, e.g., the trace
regression problem [19, 28] mentioned above, or a transductive learning scenario [29].

In this chapter, motivated by theoretical investigations presented in [7, 33] and empirical
success reported in [11, 21], we propose a nonconvex approach by employing an exponential
squared type loss, namely, the Welsch loss, which will be introduced later. The Welsch loss
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Robust Matrix Completion through Nonconvex Approaches and Efficient Algorithms 8-3

was originally introduced in robust statistics to form robust estimators in linear models [12].
In this chapter, we will show that it can also work efficiently in matrix completion problems
and bring us robust output. Moreover, for the proposed nonconvex matrix completion prob-
lems, we propose efficient algorithms, where at each iteration, the algorithms first compute
a rank-one matrix, and then update the new trial as a linear combination of the current
trial and the newly generated rank-one matrix. The rank-one matrix is related to the left
and right singular vectors of the leading singular value of a certain matrix, which can be
found efficiently by the power method or Lanczos method. Therefore, the whole algorithms
are also efficient. We also show the sublinear convergence rate of the proposed algorithms.

We would also like to mention the differences between this chapter and our previous
works [37, 38], which are focused on robust and low-rank matrix/tensor completion prob-
lems. The models in [37] are similar to those presented in this chapter; however, the com-
putational algorithms proposed here are different from those in [37], along with different
convergence analysis. Furthermore, we present more numerical experiments than [37]. The
work in [38] is focused on robust tensor completion, while this chapter is restricted to robust
matrix completion.

This chapter is organized as follows. In Section 8.2, we formally formulate the proposed
robust matrix completion problem and introduce the Welsch loss that will be used in our
study. Section 8.3 presents the proposed algorithms. We give convergence analysis of the
proposed algorithms in Section 8.4. Numerical experiments are carried out in Section 8.5
to validate the efficiency and effectiveness of the proposed algorithms. We end this chapter
with conclusions in Section 8.6.

8.2 Problem Formulation

Formally, the matrix completion problem can be formulated as follows:

min
L∈Rm×n

rank(L) s.t. LΩ = BΩ, (8.2)

where Ω is the set of indices that indicates the observed entries. When there is noise or
outliers, a certain loss function should be introduced to penalize the noise or outliers. Pre-
vious work usually employs a least absolute deviation (LAD) loss | · |. The advantage of the
LAD loss is that its resulting problem is convex, and has a theoretical recovery result [2].
However, it is not as resistant to outliers as some nonconvex robust losses [12]. In view of
this, our problem will be formulated as follows: to measure or to penalize the difference
between L and B, we adopt the following loss function

ℓσ(t) = σ2/2
(
1− exp(−t2/σ2)

)
,

which is known as the Welsch loss in robust statistics [13]. Here σ > 0 is a parameter. In
the following, we would like to mention some properties of this loss from different aspects.

• σ controls the robustness. The smaller the parameter σ, the more robustness it gives
the problem.

• The influence function of ℓσ(t) is given by

ψσ(t) = exp(−t2/σ2)t.

In fact, the value ψσ(t)/t can be regarded as a weight of t. One can observe that as
t increases, ψσ(t)/t decreases sharply, which gives a small weight to the value t. On
the other hand, the influence function of the LAD loss is only bounded instead of
converging to zero.
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8-4 Handbook of Robust Low-Rank and Sparse Matrix Decomposition

• Another property of the Welsch loss is that its influence functions are Lipschitz con-
tinuous, with Lipschitz constant 1, i.e., for any t1, t2 ∈ R, it holds that

|ψσ(t1)− ψσ(t2)| ≤ |t1 − t2|.
This property is very important and serves as a basis for the convergence of the
algorithms presented later.

• As t→ 0, ℓσ approximates the least-squares loss, which can be seen from their Taylor
series. Given a fixed σ > 0, it holds that ℓσ(t) = t2/2 + o(t2/σ2). Therefore, ℓσ(t) ≈
t2/2 provided that t/σ → 0. This also reminds us that a large σ can lead to the
closeness between ℓσ and the least-squares loss. Such a property gives more flexibility
to the Welsch loss than the LAD loss.

By letting tij = Lij − Bij where (i, j) ∈ Ω, and by summing ℓσ over all the indices in
Ω, we arrive at the following cost function

Fσ(L) =
∑

(i,j)∈Ω

σ2

2

(
1− exp

(
−(Lij −Bij)2/σ2

))
.

Therefore, if the rank information is known a priori, then we can model the problem as

min
L∈Rm×n

Fσ(L) s.t. rank(L) ≤ R. (8.3)

Otherwise, we can constrain Fσ(·) by nuclear norm constraint, i.e.,

min
L∈Rm×n

Fσ(L) s.t. ‖L‖∗ ≤ β, (8.4)

where β > 0 is a parameter to control the complexity of the model.

8.2.1 Extending to the Affine Rank Minimization Problem

It is known that matrix completion is a special case of the following affine rank minimization
problem [9, 16, 18, 22, 24, 27]

min
L∈Rm×n

rank(L) s.t. A(L) = b, (8.5)

where b ∈ Rp is given, and A : Rm×n → Rp is a linear operator defined by

A(·) :=
[
〈A1, ·〉, 〈A2, ·〉, . . . , 〈Ap, ·〉

]T
,

where Ai ∈ Rm×n for each i. (8.5) can be reduced to matrix completion if we set p =
card(Ω), the cardinality of Ω, and let A(i−1)n+j = ei(m)ej(n)

T for each (i, j) ∈ Ω, where
ei(m), i = 1, . . . ,m and ej(n), j = 1, . . . , n are the canonical basis vector of Rm and Rn,
respectively.

(8.3) and (8.4) can be naturally extended to handle cases with noise and outliers of
(8.5). Denote the cost function as as follows

Fσ(L) =
σ2

2

p∑

i=1

(
1− exp

(
−
(〈
Ai, L

〉
− bi

)2
/σ2
))

. (8.6)

The rank constrained problem can be formulated as

min
L∈Rm×n

Fσ(L) s.t. rank(L) ≤ R, (8.7)

and the nuclear norm constrained problem takes the form

min
L∈Rm×n

Fσ(L) s.t. λ‖L‖∗ ≤ β. (8.8)
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Robust Matrix Completion through Nonconvex Approaches and Efficient Algorithms 8-5

8.3 Computational Algorithms

In robust regression, problems associated with a robust loss are usually solved by iterative
reweighted least squares approaches [13]. Here, since we want to find low-rank solutions
to (8.3) and (8.4), it would be proper to explore the structures of these two problems,
and consider different algorithms. The algorithms proposed here are called rank-one matrix
updating algorithms. The main idea is that, at each iteration, the algorithms compute a
rank-one matrix, which is formed by the left and right singular vectors corresponding to
the leading singular value of the matrix ∇Fσ(L(k)), by using power method or the Lanczos
method. Then the algorithms update the new trial via certain linear combinations of the
current trial and the newly generated rank-one matrix. In general, the algorithm framework
is presented in Algorithm 8.1.

Algorithm 8.1 - Rank-one matrix updating algorithms for solving (8.3) and (8.4)

Input: Zero matrix L(0) = 0.
Output: L(k+1).
for k = 1 to . . . do
• Compute a normalized rank-one matrix W (k) = u(k)(v(k))⊤:

(u(k),v(k)) = arg max
‖u‖F=1,‖v‖F=1

u⊤∇Fσ(L(k))v. (8.9)

• Select suitable stepsizes (weights) (α1, α2) and update

L(k+1) = α1L
(k) + α2W

(k).

end for

Algorithm 8.1 is related to some recently developed algorithms in the literature. In [15],
a simple algorithm for nuclear norm regularized problems was proposed, where at each
iteration, the algorithm also computes a rank-one matrix by using the power method or the
Lanczos method. Another rank-one matrix updating algorithm was proposed in [34], where
the weights are computed as the matching pursuit type methods [23, 32]. Other rank-one
updating algorithms have also been developed; see, e.g., [5, 31, 39]. However, a limitation
of the above methods is that they are designed for problems with a convex cost function
F (·), while in our case, the Welsch loss-based Fσ(·) is highly nonconvex.

When solving (8.9), both power method and Lanczos method can be applied and scaled
well to large-scale problems. However, to further improve the efficiency of the proposed
algorithms, (8.9) may not be solved exactly. In these cases, performing only a few power
iterations may be enough to obtain an acceptable output W (k).

The computational complexity of solving (8.9) is at most O(mn). Furthermore, if the
matrix ∇Fσ(L(k)) is sparse with N nonzero entries, as in our case, then the complexity can
be reduced to O(N) [14]. Therefore, the computational complexity of the whole algorithm
might be low.

We also note that the proposed algorithms can be easily extended to solving the affine
rank minimization problems (8.7) and (8.8), only by replacing the gradient ∇Fσ(·) in (8.9)
by the gradient of the cost function defined in (8.6).

In the following, we specify the ways of choosing (α1, α2) in Algorithm 8.1 for the two
different problems (8.3) and (8.4). For (8.3), the weights are chosen by the following simple
rule:
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8-6 Handbook of Robust Low-Rank and Sparse Matrix Decomposition

α2 = −
〈
Fσ(L

(k)),W (k)
〉
/‖W (k)‖2Ω, α1 = 1, (8.10)

where ‖W (k)‖Ω = ‖W (k)
Ω ‖F . For (8.4), we first denote

D(k) := −β ·W (k) − L(k), (8.11)

and let
L(k+1) = L(k) + αD(k),

where α ∈ (0, 1) is selected by Armijo search rule:

Fixed scalars l ∈ (0, 1), µ ∈ (0, 1), and we choose the step-size α = lm, where m is the first
non-negative integer m such that

Fσ(L
(k) + lmD(k))− Fσ(L(k)) ≤ µlm〈∇Fσ(L(k)), D(k)〉. (8.12)

The idea behind (8.10) is that we want to minimize a quadratic function that majorizes
Fσ(·) at L(k+1), which forces {Fσ(L(k))} to decrease, as will be shown in the next section.
The idea behind (8.12) follows the Frank-Wolfe method [8]. First, we notice that

−β ·W (k) =−β · arg max
‖u‖F=1,‖v‖F=1

〈∇Fσ(L(k)),W 〉

=−β arg min
‖W‖∗≤1

〈∇Fσ(L(k)),W 〉

=arg min
‖W‖∗≤β

〈∇Fσ(L(k)),W 〉,

where the second equality follows from the duality between the matrix spectral norm and
the nuclear norm. As a result, −βW (k) lies in the nuclear norm ball ‖W‖∗ ≤ β, and D(k)

is a descent direction of Fσ(·) at L(k). Then, a suitable α can be chosen by (8.12) to get a
sufficient decrease from Fσ(L

(k)) to Fσ(L
(k+1)). In the next section, we will present their

convergence analysis.

8.4 Convergence Analysis

In this section, we will establish the convergence results of (8.1). The convergence analysis
is based on the fact that the gradient of Fσ(·) is Lipschitz continuous with constant 1, as
will be shown in Proposition 8.1. We first present the gradient of Fσ(·) at L, which is given
by

∇Fσ(L) = Λ ◦ (L−B),

where Λ ∈ Rm×n is a matrix such that if (i, j) ∈ Ω, then Λij = exp(−(Lij −Bij)2/σ2), and
Λij = 0 if (i, j) 6∈ Ω; ◦ denotes the Hadamard operator, i.e., entry-wise product.

PROPOSITION 8.1 [ [37], Proposition 1] For any matrices X,Y ∈ Rm×n, there holds

‖∇Fσ(X)−∇Fσ(Y )‖F ≤ ‖X − Y ‖Ω. (8.13)

PROOF 8.1 The proof uses the fact that the influence function ψσ(t) is Lipschitz con-
tinuous, i.e.,

|ψσ(x)− ψσ(y)| ≤ |x− y|, ∀ x, y ∈ R.
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Robust Matrix Completion through Nonconvex Approaches and Efficient Algorithms 8-7

To verify the above inequality, it suffices to verify that the magnitude of

ψ
′

σ(t) = exp(−t2/σ2)− 2 exp(−t2/σ2)t2/σ2

can be upper bounded by 1. We can denote u = t2/σ2 ≥ 0, and in fact, the maximum of
the function | exp(−u)(1− 2u)| is 1 at u = 0. This shows that for any t ∈ R and any σ > 0,

there holds
∣∣∣ψ′
σ(t)

∣∣∣ ≤ 1. As a result, it follows

‖∇Fσ(X)−∇Fσ(Y )‖2F
=
∑

(i,j)∈Ω
(ψσ(Xij)− ψσ(Yij))2

≤‖X − Y ‖2Ω,

as desired.

Following (8.13) we immediately have

PROPOSITION 8.2 For any matrices X,Y ∈ Rm×n, there holds

Fσ(X) ≤ Fσ(Y ) + 〈∇Fσ(Y ), X − Y 〉+ ‖X − Y ‖
2
Ω

2
. (8.14)

Following Proposition 8.2 we have the following convergence result on applying Algo-
rithm 8.1 with strategy (8.10) to solve (8.3).

THEOREM 8.1 [Convergence result on applying Algorithm 8.1 with strategy (8.10) to
solve (8.3)] Let {L(k)} be a sequence generated by Algorithm 8.1 with strategy (8.10). Then
{Fσ(L(k))} is nonincreasing.

PROOF 8.2 Strategy (8.10) tells us that

L(k+1) = L(k) − 〈∇Fσ(L
(k)),W (k)〉

‖W (k)‖2Ω
W (k),

which together with (8.14) implies that

Fσ(L
(k+1))≤Fσ(L(k)) + 〈∇Fσ(L(k)), L(k+1) − L(k)〉+ ‖L

(k+1) − L(k)‖2Ω
2

=Fσ(L
(k))− 〈∇Fσ(L

(k)),W (k)〉2
2‖W (k)‖2Ω

,

which shows that {Fσ(L(k))} is nonincreasing. The proof is completed.

We then consider the convergence result on applying Algorithm 8.1 with strategy (8.12)
to solve (8.4).

THEOREM 8.2 [Convergence result on applying Algorithm 8.1 with strategy (8.12) to
solve (8.4)] Let

{
L(k)

}
be a sequence generated by Algorithm 8.1 with strategy (8.12) to

solve (8.4). Then every limit point of
{
L(k)

}
is a critical point of problem (8.4).
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8-8 Handbook of Robust Low-Rank and Sparse Matrix Decomposition

To prove Theorem 8.2, we need some observations and lemmas first.

PROPOSITION 8.3 Let W = argmin‖W‖∗≤β〈∇Fσ(L),W 〉. If L is not a critical point
of problem (8.4), then

〈∇Fσ(L),W − L〉 < 0.

PROOF 8.3 Suppose 〈∇Fσ(L),W − L〉 ≥ 0. Then it follows

〈∇Fσ(L),W − L〉 ≥ 〈∇Fσ(L),W − L〉 ≥ 0, ∀ W satisfying ‖W‖∗ ≤ β,

which implies that L is a critical point of (8.4), deducing a contradiction.

LEMMA 8.1 Let
{
L(k)

}
be a sequence generated by Algorithm 8.1 with strategy (8.12)

to solve (8.4). Then there holds

Fσ(L
(k+1))− Fσ(L(k)) ≤ −2lµ(1− µ)〈∇Fσ(L(k)), D(k)〉2

‖D(k)‖2Ω
,

where D(k) is defined in (8.11).

PROOF 8.4 The Armijo search rule (8.12) implies that

Fσ(L
(k) +

α

l
D(k))− Fσ(L(k)) > µ

α

l
〈∇Fσ(L(k)), D(k)〉.

Together with Proposition 8.2, it follows

α

l
〈∇Fσ(L(k)), D(k)〉+ α2

2l2
‖D(k)‖2Ω > µ

α

l
〈∇Fσ(L(k)), D(k)〉.

Rearranging the terms and noticing Proposition 8.3, we get

α >
2l(1− µ)

∣∣〈∇Fσ(L(k)), D(k)〉
∣∣

‖D(k)‖2Ω
. (8.15)

The Armijo search rule again tells us that

Fσ(L
(k+1))− Fσ(L(k)) ≤ µα〈∇Fσ(L(k)), D(k)〉. (8.16)

Noticing the non-positivity of 〈∇Fσ(L(k)), D(k)〉 and plugging (8.15) into (8.16), we obtain

Fσ(L
(k+1))− Fσ(L(k)) ≤ −2lµ(1− µ)〈∇Fσ(L(k), D(k)〉2

‖D(k)‖2Ω
,

as desired.

PROOF 8.5 [Proof of Theorem 8.2] Denote

W := {W | ‖W‖∗ ≤ β},

and
diam(W) := max

W1,W2∈W
‖W1 −W2‖
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Robust Matrix Completion through Nonconvex Approaches and Efficient Algorithms 8-9

as the diameter of W. Since W is compact, diam(W) is finite. From the definition of D(k),
it follows

‖D(k)‖Ω ≤ ‖D(k)‖F ≤ diam(W).

This together with Lemma 8.1 shows that

Fσ(L
(k+1))− Fσ(L(k)) < −2lµ(1− µ)〈∇Fσ(L(k), D(k)〉2

diam2(W)
. (8.17)

Lemma 8.1 also tells us that {Fσ(L(k))} is a monotonically decreasing sequence. Since
Fσ(·) ≥ 0, we have

Fσ(L
(k+1))− Fσ(L(k))→ 0,

which together with (8.17) implies that

|〈∇Fσ(L(k)), D(k)〉| → 0.

Let L∗ be a limit point of {L(k)} and let {L(k)}K be a subsequence of {L(k)} such that
{L(k)}K → L∗. Furthermore, let K be a subset of K such that there exists a subsequence
{W (k)}K of {W (k)}K such that {W (k)}K →W ∗. Without loss of generality we can assume
K is K itself. Then it follows

〈∇Fσ(L∗),W ∗ − L∗〉 = 0.

We claim that W ∗ is a minimizer of minW∈W〈∇Fσ(L∗),W 〉. Otherwise suppose W is
a minimizer. Then 〈∇Fσ(L∗),W ∗ − W 〉 > 0. Since {〈∇Fσ(L(k)),W (k) − W 〉}k∈K →
〈∇Fσ(L∗),W ∗ −W 〉, when k is sufficiently large, it follows

〈∇Fσ(L(k)),W (k) −W 〉 > 0,

which shows that W (k) is not a minimizer of minW∈W〈∇Fσ(L(k)),W 〉, deducing a contra-
diction. As a result, by the property of W ∗ we have

〈∇Fσ(L∗),W − L∗〉 ≥ 〈∇Fσ(L∗),W ∗ − L∗〉 = 0, ∀ W ∈W,

which shows that L∗ is a critical point of (8.4). The proof is completed.

Next we estimate the rate of convergence in terms of |〈∇Fσ(L(k)), D(k)〉|. We have the
following results.

THEOREM 8.3 Let {L(k)} be a sequence generated by Algorithm 8.1 with strategy (8.12)
to solve (8.4). Then for every K ≥ 1, we have

min
0≤k≤K

|〈∇Fσ(L(k)), D(k)〉|2 ≤ diam2(W)(Fσ(L
(0))− F ∗σ )

2lµ(1− µ)K ,

where F ∗σ is the limit of Fσ(L
(k)).

PROOF 8.6 Let C := diam2(W)
2lµ(1−µ) . Then it follows form Lemma 8.1 that

〈∇Fσ(L(k)), D(k)〉2 ≤ C(Fσ(L(k))− Fσ(L(k+1))).
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8-10 Handbook of Robust Low-Rank and Sparse Matrix Decomposition

Summing the above inequality from 0 to K, we get

K∑

k=0

〈∇Fσ(L(k)), D(k)〉2 ≤ C(Fσ(L(0))− Fσ(L(K)),

which implies that

min
k=0,...,K

〈∇Fσ(L(k)), D(k)〉2 ≤ C(Fσ(L
(0))− F ∗σ )
K

,

as desired.

REMARK 8.1 Theorem 8.3 tells us that |〈∇Fσ(L(k)), D(k)〉| → 0 with rate O(1/
√
K).

This together with Theorem 8.2 yields the result that Algorithm 8.1 with the Armijo search
rule finds a critical point of (8.4) with convergence rate O(1/

√
K).

8.5 Numerical Experiments

In this section, we present some numerical experiments on synthetic data as well as real data.
All the numerical computations are conducted on an Intel i7-3770 CPU desktop computer
with 16 GB of RAM. The supporting software is MATLAB R2013a.

8.5.1 Algorithms Setting

We mainly compare the proposed algorithms with RPCA [2], which solves convex optimiza-
tion problems and employs the LAD loss to penalize the noise or outliers. Algorithm 8.1
with strategy (8.10) for solving the rank constrained problem (8.3) is denoted by RoMu1
for short, while Algorithm 8.1 with strategy (8.12) for solving the nuclear norm constrained
problem (8.4) is denoted as RoMu2 for short. The max iteration for all the methods is 400.
The stopping criterion for all the methods is that the difference between the current trial and
the previous trial is less than a threshold, where the threshold is set to ǫ = 10−4. Parameters
are tuned via 5-fold cross validation. All the results are averaged over ten instances.

8.5.2 Synthetic Data

We randomly generate some matrices of size 500 × 500, and then truncate them to be
low rank, where we consider rank ∈ {10, 50}. Next, 20% of the entries are contaminated by
outliers in [−10, 10]. Finally, some entries are randomly missing, where the missing ratio (MR
for short) varies between {0.2, 0.3, 0.5, 0.7, 0.9}. The relative error relerr = ‖X∗−B‖F /‖B‖F
will be used to evaluate performances of the algorithms. Results are reported in Figure 8.1,
where the blue curve represents the performance of RoMu1, the red one is that of RoMu2,
and the green one stands for RPCA. First we look at Figure 8.1.a, which is the case that
rank = 10. We observe that when the MR value is less than 0.65, RPCA is better than
our methods. However, its performance decreases sharply as the MR value increases, and
it achieves 1 when the MR value is 0.9. On the other hand, our method is more stable.
Comparing between RoMu1 and RoMu2, we see that RoMu1 is better than RoMu2 when the
MR value is less than 0.85. The reason might be that the weights chosen by RoMu1 are more
greedy, which leads to a sufficient decrease of the cost function, whereas for RoMu2, choosing
the weights has restrictions in (0, 1), as shown in (8.12). We then consider Figure 8.1.b ,
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Robust Matrix Completion through Nonconvex Approaches and Efficient Algorithms 8-11

a) rank = 50 b) rank = 50

FIGURE 8.1 Performance comparisons of RoMu1, RoMu2 and RPCA [2] on synthetic data (500 ×
500), rank = {10, 50}. The x-axis is the MR value; the y-axis stands for the relative error.

i.e., the case rank = 50. One first notices that all the methods perform worse than the case
rank = 10. The reason is evident, since low-rank methods perform better when the rank is
not high. One then observes that our methods outperform RPCA when the MR value is
larger than 0.4. In summary, our methods are more stable when there are missing values
and outliers.

We also report the computational time of the three methods in Table 8.1. From the table,
we observe that RoMu1 performs the fastest, followed by RoMu2. This observation confirms
the efficiency of our methods. Particularly, an appealing feature of our methods is that as
the MR value increases, the computational time decreases, which is due to the fact that the
simple structure of Algorithm 8.1 can utilize the sparsity of the matrix: When computing
the rank-one matrix, only sparse matrix-vector multiplications are needed; computing the
weights is also fast as it can be given by the inner product of sparse matrices, as shown in
(8.10).

TABLE 8.1 Efficiency comparisons of RoMu1, RoMu2, and RPCA [2] on synthetic

data (500× 500), rank ∈ {10, 50}.
MR (%) 20 30 40 50 60 70 80 90

RoMu1 1.49 1.32 1.15 0.89 0.71 0.56 0.38 0.20
rk=10 RoMu2 6.30 5.54 4.77 3.59 2.90 2.26 1.58 0.94

RPCA [2] 3.77 4.40 5.06 9.26 41.00 40.91 40.83 40.74
RoMu1 6.04 5.31 4.57 3.47 2.78 2.14 1.51 0.88

rk=50 RoMu2 6.28 5.59 4.82 3.64 2.97 2.26 1.58 0.92
RPCA [2] 40.93 41.29 41.48 40.64 31.13 36.08 40.59 40.80

8.5.3 Real Data

Image/Video recovery

Gray images can be seen as matrices, while a video can also be treated as a matrix by
vectorizing every frame into a vector and arranging them one by one. In real-world appli-
cations, due to some reasons, a large fraction of entries of image/video may be missing and
may be contaminated by noise or outliers. The goal of this section is to recover such kinds
of images/videos. The following datasets are selected: Facade (493 × 517), Hyperspectral
images (50430×96), Brain MRI (39277×181), Incisix (16384×166), and Ocean (17920×32).
The first dataset is a gray image, while the last four can be seen as videos. Then 20% of the
entries are contaminated by outliers in [−256, 256]. Last, some entries are randomly missing,
where the missing ratio varies between {0.5, 0.6, 0.7, 0.8, 0.9, 0.95}. The relative error will
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8-12 Handbook of Robust Low-Rank and Sparse Matrix Decomposition

also be used to evaluate performances of the algorithms.

The performances are reported in Table 8.2. From the table, we can observe that in most
cases, RoMu2 outperforms others, followed by RoMu1. RPCA only performs better than our
methods in the image Facade, which has a relatively small size compared to other datasets.
This observation implies that our methods may be suitable for large-scale problems. In
Figure 8.2 and Figure 8.3, we present part of the recovery results of RoMu1, RoMu2, and
RPCA on the datasets Facade and Incisix to intuitively illustrate their performances. On
Facade, although Table 8.2 shows that RPCA performs better, from Figure 8.2 it seems
that to penalize the outliers, RPCA has to remove more details from the image, while our
methods retain more details. Figure 8.3 shows that RPCA cannot correctly recover the
dataset. On the other hand, the efficiency is also reported in Table 8.2, where our methods
are again much faster than RPCA.

Yale face

As with [2], the goal of this application is to remove shadows from faces, where the datasets
are chosen from the extended Yale face database B. We choose two datasets, each of which
consists of 64 faces of a person under 64 illumination conditions, and the size of each image
is 192× 168. We do not add outliers to the datasets, because the shadows in the faces can
be regarded as noise or outliers. There do not have to be missing values as well. To show the
results, from each dataset we select four images, which are shown in Figure 8.4 and Figure
8.5. From the results, we can observe that all the three methods can remove shadows, while
from the second row of Figure 8.4, it seems that our methods perform slightly better than
RPCA, as the left eye of the person recovered by RPCA cannot be seen clearly. The first
row of Figure 8.5 also indicates that our methods perform better, as the lines in the face
have been totally removed by our methods. Finally, we find that empirically we only need
the linear combination of around ten rank-one matrices to yield the recovery results, which
means that our methods can be stopped within ten iterations, implying that our methods
are very efficient.

8.6 Conclusion

In this chapter, we proposed a nonconvex approach for robust matrix completion. Along
with the approach, we presented two solution methods, one for solving the rank constrained
model, the other one for solving the nuclear norm constrained model. The convergence of the
algorithms were verified; particularly, for the second algorithm, we proved that it converges
to a stationary point, and showed the iteration complexity, which is O(1/

√
K). Finally,

numerical experiments show that the proposed models and algorithms are comparable and
better than the state-of-the-art method.
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TABLE 8.2 Performances and efficiency comparisons of RoMu1, RoMu2, and RPCA [2]

on some real datasets.
RoMu1 RoMu2 RPCA [2]

Dataset relerr time relerr time relerr time
0.50 9.84E-02 2.57 9.60E-02 3.54 3.55E-02 42.02
0.60 1.14E-01 2.09 1.09E-01 2.96 4.17E-02 42.14

Facade 0.70 1.45E-01 1.76 1.30E-01 2.36 5.22E-02 42.12
(493 × 517) 0.80 1.73E-01 1.16 1.48E-01 1.56 8.14E-02 41.46

0.90 2.63E-01 0.67 1.83E-01 0.93 2.15E-01 40.89
0.95 3.98E-01 0.43 2.21E-01 0.60 1.00E+00 2.55
0.50 2.18E-02 52.40 1.66E-02 57.19 1.17E-02 141.14
0.60 3.12E-02 43.70 2.34E-02 50.60 2.03E-02 143.09

Hyperspectral 0.70 4.76E-02 39.76 3.85E-02 34.61 3.91E-02 148.80
(50430 × 96) 0.80 8.42E-02 27.37 6.22E-02 26.24 1.18E-01 156.54

0.90 1.95E-01 15.83 1.53E-01 10.41 1.00E+00 14.73
0.95 5.37E-01 8.14 3.39E-01 10.92 1.00E+00 5.72
0.50 4.44E-02 58.86 3.77E-02 86.69 3.03E-01 264.82
0.60 6.43E-02 49.22 5.56E-02 72.10 3.85E-01 265.54

Brain 0.70 9.79E-02 38.58 8.74E-02 58.28 5.19E-01 260.55
(39277 × 181) 0.80 1.61E-01 28.59 1.46E-01 42.47 8.48E-01 262.08

0.90 3.12E-01 14.78 2.79E-01 23.69 1.00E+00 256.96
0.95 4.93E-01 7.19 4.41E-01 12.88 1.00E+00 237.04
0.50 2.48E-01 37.94 2.22E-01 52.76 2.67E-01 99.42
0.60 2.80E-01 31.87 2.58E-01 44.52 2.99E-01 101.58

Incisix 0.70 3.19E-01 23.60 3.01E-01 33.97 3.60E-01 100.22
(16384 × 166) 0.80 3.88E-01 15.84 3.68E-01 23.38 4.60E-01 98.81

0.90 5.00E-01 8.55 4.76E-01 12.75 1.00E+00 30.83
0.95 6.02E-01 4.64 5.74E-01 7.42 1.00E+00 6.10
0.50 1.02E-01 7.39 9.82E-02 11.39 1.34E-01 17.14
0.60 1.21E-01 5.70 1.18E-01 7.77 1.87E-01 17.01

Ocean 0.70 1.51E-01 4.51 1.43E-01 4.62 3.02E-01 16.74
(17920 × 32) 0.80 2.12E-01 3.03 1.86E-01 5.34 1.00E+00 13.55

0.90 4.06E-01 1.82 3.54E-01 3.72 1.00E+00 6.87
0.95 6.52E-01 1.15 5.97E-01 1.84 1.00E+00 3.43
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(MR=0.5)

(MR=0.6)

(MR=0.7)

(MR=0.8)

(MR=0.9)

(MR=0.95)

FIGURE 8.2 Comparison of RoMu1 (Column 1), RoMu2 (Column 2), and RPCA [2] (Column 3) on

recovering the gray image Facade.

© 2016 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

C
ol

um
bi

a 
U

ni
ve

rs
ity

] 
at

 0
2:

04
 0

6 
Se

pt
em

be
r 

20
16

 

http://www.crcnetbase.com/action/showImage?doi=10.1201/b20190-11&iName=master.img-287.jpg&w=86&h=505
http://www.crcnetbase.com/action/showImage?doi=10.1201/b20190-11&iName=master.img-288.jpg&w=86&h=505
http://www.crcnetbase.com/action/showImage?doi=10.1201/b20190-11&iName=master.img-287.jpg&w=86&h=505
http://www.crcnetbase.com/action/showImage?doi=10.1201/b20190-11&iName=master.img-288.jpg&w=86&h=505
http://www.crcnetbase.com/action/showImage?doi=10.1201/b20190-11&iName=master.img-287.jpg&w=86&h=505
http://www.crcnetbase.com/action/showImage?doi=10.1201/b20190-11&iName=master.img-288.jpg&w=86&h=505
http://www.crcnetbase.com/action/showImage?doi=10.1201/b20190-11&iName=master.img-287.jpg&w=86&h=505
http://www.crcnetbase.com/action/showImage?doi=10.1201/b20190-11&iName=master.img-288.jpg&w=86&h=505
http://www.crcnetbase.com/action/showImage?doi=10.1201/b20190-11&iName=master.img-287.jpg&w=86&h=505
http://www.crcnetbase.com/action/showImage?doi=10.1201/b20190-11&iName=master.img-288.jpg&w=86&h=505
http://www.crcnetbase.com/action/showImage?doi=10.1201/b20190-11&iName=master.img-287.jpg&w=86&h=505
http://www.crcnetbase.com/action/showImage?doi=10.1201/b20190-11&iName=master.img-288.jpg&w=86&h=505


Robust Matrix Completion through Nonconvex Approaches and Efficient Algorithms 8-15

(MR=0.5)

(MR=0.6)

(MR=0.7)

(MR=0.8)

(MR=0.9)

(MR=0.95)

FIGURE 8.3 Comparison of RoMu1 (Column 1), RoMu2 (Column 2), and RPCA [2] (Column 3) on

recovering one slide of the Incisix dataset.

© 2016 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

C
ol

um
bi

a 
U

ni
ve

rs
ity

] 
at

 0
2:

04
 0

6 
Se

pt
em

be
r 

20
16

 



8-16 Handbook of Robust Low-Rank and Sparse Matrix Decomposition

(a) Origin (b) RoMu1 (c) RoMu2 (d) RPCA [2]

FIGURE 8.4 Comparison of RoMu1 (Column 1), RoMu2 (Column 2), and RPCA [2] (Column 3) on

removing shadows from faces.
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(a) Origin (b) RoMu1 (c) RoMu2 (d) RPCA [2]

FIGURE 8.5 Comparison of RoMu1 (Column 1), RoMu2 (Column 2), and RPCA [2] (Column 3) on

removing shadows from faces.
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