
Modelling the Strip Thickness in Hot Steel Rolling Mills Using

Least-Squares Support Vector Machines

Yuri A. W. Shardt,1 Siamak Mehrkanoon,2 Kai Zhang,3 Xu Yang,3* Johan Suykens,2 Steven X. Ding4

and Kaixiang Peng3

1. Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada and Institute of Automatic
Control and Complex Systems (AKS), University of Duisburg-Essen, Germany

2. ESAT-STADIUS, Catholic University of Leuven, Leuven, Belgium

3. Key Laboratory of Knowledge Automation for Industrial Processes of the Ministry of Education, School of Automation and Electrical
Engineering, University of Science and Technology Beijing, Beijing, China

4. Institute of Automatic Control and Complex Systems (AKS), University of Duisburg-Essen, Germany

The development and implementation of better control strategies to improve the overall performance of a plant is often hampered by the lack of
available measurements of key quality variables. One way to resolve this problem is to develop a soft sensor that is capable of providing process
information as often as necessary for control. One potential area for implementation is in a hot steel rolling mill, where the final strip thickness is the
most important variable to consider. Difficulties with this approach include the fact that the datamay not be available when needed or that different
conditions (operating points) will produce different process conditions. In this paper, a soft sensor is developed for the hot steel rolling mill process
using least-squares support vector machines and a properly designed bias update term. It is shown that the system can handle multiple different
operating conditions (different strip thickness setpoints, and input conditions).

Keywords: soft sensors, steel mill, support vector machines, process systems engineering

INTRODUCTION

With the increasing demands placed on industry in terms
of tight production schedules, decreased profit margins,
and increased emphasis on safety, there has been an

increase in the need to implement and develop methods that can
improve the overall control strategy.[1] One industrial area where
these concerns are increasingly being felt is the hot steel rolling
mill process. In this process, the fast nature of the system implies
that even small delays in detecting faults can lead to large amounts
of wasted steel. This implies that any methods that can improve
the detection of faults will have a large industrial benefit for this
process.

In the hot steel mill rolling process, the key performance indicator
is the final thickness of the steel, which is measured at the exit using
anX-raysensor.Unfortunately, this sensor is locatedat somedistance
from theoverall process,which implies that there is a significant time
delay before the value canbe obtained.One approach to this problem
has been to develop intricatemodels of the process in order to predict
the required setpoints for the process.[2] However, in many cases,
obtaining all the relevant information has proven difficult. Thus,
data-driven methods, which do not require knowledge of process
parameters, have been developed.[3] However, the initial conditions
of the steel and the desired steel thickness can vary from batch to
batch, implying that different models for each of the possible
combinationswould be required. Furthermore, it is often impossible
toknowall the initial conditions for thegiven steel roll, so that it isnot
possible to properly assign the given steel roll to the given model.

Recently, soft sensors have been considered for application to the
hot steel rolling mill process.[4,5] Soft sensors are a mathematical
framework for forecasting process valueswhere there are issueswith
missing, inaccurate, or random process variables, which can result

from lack of sensors, design of sensor networks, or other similar
reasons.[6] A typical soft sensor systemconsists of two components: a
processmodel and abiasupdate term.[6] In general, it is assumed that
the process model exists to provide accurate and detailed updates
about the process using all relevant inputs about the process and is
able to accurately track changes in the overall process. However, the
process model may not be able to get the correct absolute value, that
is, the process model may be biased compared with the true value. It
is the role of thebiasupdate term tocorrect anybiasbycomparing the
true values with the soft sensor values. It should be noted that the
reason for this separation of terms lies in the fact that measuring the
true process value is often performed at amuch slower rate than that
of themain system.This implies that thebiasupdate termcanonlybe
updated when new data is available. The process model can be
obtained using any of the standard methods for modelling of
chemical processes including simple regression analysis,[7] principal
component analysis (PCA),[8] partial least squares (PLS),[9] neural
networks,[10] Kalman filter,[11] and support vector machines
(SVM).[12,13]

In soft sensor design, SVM, which seek to remove the
nonlinearities present in the data set by projecting the data into
a higher-dimensional, feature space,[14] can be used to reduce the
complexity of the resultingmodel. One approach to this problem is
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to use a least-squares support vector machine (LS-SVM)-based
approach that allows for a simple solution of the problem without
excessive computations or overfitting problems.[13] This approach
has been used in such fields as function estimation,[13] determin-
ing solutions of differential equations,[15,16] and parameter
estimation of dynamic systems.[17] However, its application to
soft sensor design has not been tested.

Therefore, this paper seeks to analyze the problemof developing
a soft sensor for the hot steel rolling process using LS-SVM that can
deal with multibatch cases arising from different operating
conditions. The soft sensors will be developed and tested using
industrial data.

THEORY

Soft Sensor System

Assume that the soft sensor system can be represented as shown in
Figure 1, which consists of two parts: the process model, bGp, and
the bias update term, GB. It can be noted that yt is the true process
output, ut the process input (manipulated variables), dt the
disturbance, ym, t the forecast output value from the soft sensor
system, Gp the true process function, and Gl the disturbance
model.

In terms of soft sensor design, most of the attention has focused
on developing and analyzing appropriate methods for developing
accurate and reliable process models. The overall design philoso-
phy can be written as follows:

1) Gather Process Knowledge, which consists of data, process
schematics, and process information from the various
operators.

2) Preprocess the Information, which performs a preliminary
analysis of the data set to determine if there are any obvious
issues, as well as providing the user with a good picture of the
overall data properties.

3) Develop the Process Model, which uses all the available
information, appropriate data modelling techniques, and
analysis to obtain a good model for the process.

4) Testing theModel, which involves determining and showing
that the given model reflects the given process well and can
accurately forecast future values of the system.

It can be noted that this process is circular, in that it is common
to go back a step or two whenever there are problems. This makes
the modelling exercise quite involved and the final result can take
time to obtain. However, following this procedure ensures that the

final model is accurate and can perform satisfactorily in an
industrial setting.

Least-Squares Support Vector Machines

In many modelling problems, the initial data set is highly
nonlinear. Fitting a model to such data can be difficult, so
methods have been developed that allow the nonlinear data to be
projected onto a suitable, higher dimensional space. Modelling is
then performed in this higher dimensional space. In order to better
understand the application of support vector machines to the
modelling problem, the application of support vector machines to
the 2-class problem will be first considered.
One such method is support vector machines, which seek to

determine the largest margin between two data sets. In the linear
case, this margin will cleanly separate the two data sets. However,
in the nonlinear case, this may no longer be feasible.
Consider a training data set, fxi; yigNi¼1 where xi is the input data

point yi is the output data point, andN is the number of data points.
The standard, linear support vector machine optimization
problem can be stated as follows:[14]

min
w;b;j

1
2
wTwþ c

XN
i¼1

ji

subject to

yiðwTxi þ bÞ � 1� ji i ¼ 1; . . . ;N

ji � 0 i ¼ 1; . . . ;N

ð1Þ

where w is a vector of weights, c a tuning parameter, j the slack
variables, and b the intercept of the hyperplane. It should be noted
that in the standard support vector machine problem it is assumed
that the output data point is simply 1 or �1, which denotes which
of the two sets the given input data belongs.
By allowing the output values to vary, the standard support

vector regression problem is obtained. It assumes that the model
for the process can be written as follows:

yi ¼ wTxi þ b ð2Þ

This gives an optimization problem that can be written as
follows:

min
w;b

1
2
jjwjj2

subject to

yi �wT xi � b � e

wTxi þ b� yi � e

ð3Þ

where e is the threshold. This threshold plays a similar role to the
slack variables in the original problem. However, the problem
with both of these approaches is that they require that a quadratic
programming problem with inequality constraints be solved. In
practice, this can be a difficult proposition. Thus, the least-squares
support vector machine (LS-SVM) framework was proposed by
Suykens et al.[13]

In the least-squares support vector machine (LS-SVM) frame-
work, one works with a L2-loss function and equality constraints,
instead of the inequality constraints present in SVM,which allows
for solving a linear system rather than a quadratic programming
problem. In the LS-SVM framework, it is assumed that the
underlying function describing the relationship between the input

Figure 1. Schematic of an Open-Loop Soft Sensor with Bias Update (after
Shardt and Huang[18]).
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and output of the system has the following form:

ytðutÞ ¼ wTfðutÞ þ b ð4Þ

where f is the feature map that projects the inputs into the feature
space. The data are embedded into the feature space using a
nonlinear feature map. The optimal solution is sought in the new
space by minimizing the residual between the model outputs and
the measurements. The primal LS-SVM formulation has the
following form:[13]

min
w;b;e

1
2
wTwþ g

2
eTe

subject to

yi ¼ wTfðuiÞ þ bþ ei; 8i ¼ 1; :::;N

ð5Þ

where g is strictly positive, b is a constant, w are the weights, and:

e ¼ he1; e2; . . . ; eNi ð6Þ

The complexity of the model is controlled by g and thus
overfitting can be avoided.[13] In the LS-SVM approach, the feature
map f is not explicitly known in general and can be infinite
dimensional. Therefore, the kernel trick is used and the problem is
solved in the dual form.[13] The Lagrangian of the constrained dual
optimization problem becomes the following:

Lðw; b; e;aiÞ ¼ 1
2
wTwþ g

2
eTe�

XN
i¼1

ai½wTfðuiÞ þ bþ ei � yi� ð7Þ

where a are the Lagrange multipliers. In this case, the Karush-
Kuhn-Tucker (KKT) optimality conditions are:

@L

@wj
¼ 0 ! wj ¼

XN
i¼1

aifðuiÞ

@L

@ei
¼ 0 ! ai ¼ gei

@L

@b
¼ 0 !

XN
i¼1

ai ¼ 0

@L

@ai
¼ 0 ! wTfðuiÞ þ bþ ei ¼ yi

ð8Þ

Eliminating the primal variables ei and w leads to the following
linear system in the dual problem:

Vþ IN=g
1TN

����1N0
� �

a

b

h i
¼ y

0

h i
ð9Þ

whereVij ¼ K(ui, uj) ¼ f(ui)
Tf(uj) is the ij-th entry of the positive

definite kernel matrix, 1N is a N � 1, column vector of 1’s, a is the
vector containing all the individual ai, y is the vector containing all
the measurements, and IN is the N � N identity matrix.

The model in the dual form becomes:

ytðutÞ ¼ wTfðutÞ þ b ¼
XN
i¼1

aiKðut;uiÞ þ b: ð10Þ

Dealing with Interbatch Variation and Time Delay

In many complex, batch, or semi-batch processes, unexpected
process changes can occur that will perturb the overall process.
These changes will then need to be accounted for in the
development of the model. For example, in the hot steel rolling
mill process, the final thickness of individual batches depends not
only on the process itself, but also on the variable initial conditions
of the roll, such as the temperature, thickness, and cooling rate.
The impact of such changes on the process can be viewed as a
change in the initial offset or bias in the problem with the overall
changes being similar.

In practical terms, during online implementation of the soft
sensor, the direction of change may be accurately forecast in such
cases, but the actual, absolute value would be shifted from that
expected, leading to a bias in the terms.

In order to eliminate this bias, there is a need to include the
available process measurements in order to provide an estimate of
the bias. The easiest approach to take here is to simply consider the
difference between the forecast value and the measured value and
update the future process values based on this approach. Although
this approach will work in an open-loop situation, it will not
provide tracking in closed-loop.[19] Thus, there is a need to design
the bias update term appropriately in order to consider the overall
impact on the system.

Furthermore, in many practical systems, the process values are
not immediately available due to such factors as time delay or
sampling rate. This lack of information can introduce additional
limitations on both the design parameters and the overall bias
update system. As well, since different batches can potentially
have different delay characteristics, it can happen that until
process information is available, the soft sensor model may not be
very accurate. This situation can easily arise, in such examples as
steel rolling mills, where the speed at which the steel passes
through the mill depends on such factors as initial thickness,
desired thickness, and potentially other factors.

It has been shown that the behaviour of the bias update term
strongly depends on the manner in which the soft sensor will be
used. In open-loop cases, then a simple bias update term is
sufficient to provide good process tracking, while in closed-loop
cases, the bias update termwill need to contain an integrating term
in order to track all possible situations.

Since the bias update term provides an easymethod for updating
and incorporating measured information into the soft sensor, it
will be used in the proposed soft sensor system to handle any
uncertainties arising from changes in the initial conditions, aswell
as to account for unmeasured disturbances and the inevitable
plant-model mismatch.

PROCESS DESCRIPTION

The hot rolling process (HRP) consists of 6 key parts: the reheating
furnace, the rough mill, the transfer table and crop shear, the
finishing mill, the run-out table cooling, and the coiler.[20,21] A
single batch consists of a coil of rough steel, which enters the
reheating furnace to be reheated to the appropriate temperature.
Next, the strip passes through the rough mill, where its thickness
and width are reduced to close to the desired value. Then, the strip
passes through the transfer table and enters the finishing mill
section, where the strip is carefully milled to the required width
and thickness. Afterwards, the strip passes through the run-out
table to be cooled to an appropriate final temperature. Finally, the
strip is coiled and is ready for shipment.
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In the HRP, a key performance indicator is the final strip
thickness,which isdeterminedby thefinishingmill process.Thus, it
makes sense to focus themodellingandcontrol on thefinishingmill.

Figure 2 shows a diagram of the finishing mill rolling process
(FMRP) that consists of 7 groups of stands. In each group of stands,
there are 4 rollers: two that work directly on the strip and two that
support the working rollers.[22] Before a strip reaches a given stand,
the rolling force for theupper supporting roller is computedbasedon
the desired rate of thickness reduction, while the bending force is
found using an empirical equation. The actual change in the steel
thickness is determined by the rolling force, temperature, bending
force, and other physical properties that depend on the specific steel
batch.[22] Thus, a first principles model can be difficult to obtain. In
practice, the individual stands are not autonomous, but are
combined together using various control methods. After the last
stand, the steel thickness ismeasured using an online, X-ray device,
that is located at a distance from the stands.[22] The difference
between themeasured and setpoint thicknesses can thenbe fedback
to the current or previous stands to adjust themilling force. It should
be noted that the distance between the X-ray measurement sensor
and the stands introduces time delay into the feedback control
system. Furthermore, since the thickness cannot be calculated
between twostands, thegapmeasurementbetween the twoworking
rollers can be used as a proxy variable. It has been found that the
thickness of the steel strip after each stand is approximately equal to
the gap between the working rollers plus the ratio between the
applied force and the roller’s stiffness.[22] However, since the
stiffness can be difficult to calculate precisely, it is impossible to
adjust the downstream stands based on the upstream thickness.

RESULTS AND DISCUSSION

The soft sensor model developed using the LS-SVM method will be
developed for thefinishingmill processusing industrial data available
from the system. Comparison of the results against different batches
with andwithout a biasupdate termwill be considered. Furthermore,
the impact of time delay on the system will be considered.

Modelling Parameters

In the hot steel rolling mill process, each batch is assumed to be a
single coil of steel. Each batch, or coil of steel, is assumed to have had
a similar preparation and target specifications, for example, a single
batchmay contain a specific type of steel that has been processed in a
given manner that will be rolled into a given thickness. This implies
that the model must be able to handle different initial conditions, as
well as varying requirements.

When performing SVM analysis, there are three key steps:
model training, model validation, and model testing.[13] In model
training, the model parameters are determined, while model
validation seeks to determine if the given model structure is
appropriate. Finally, model testing seeks to test the final model on
another data set to determine its predictive properties. Ideally, for
each step a different data set would be used. However, in practice,
this may not be feasible. In general, the model training and
validation steps often use the same data set. In such cases, other
methods, such as k-fold cross-validation, are used to provide an
approximation to a different data set. In k-fold cross-validation, the
data set is split into k equally sized subsets. One of the k subsets is
selected as the validation data set, while the remaining subsets are
used as the training data set. This is repeated so that all k subsets
are used once as the validation subset.
A single batch, that is, the result of processing a single complete

coil, was selected to be both the training and validation data sets.
Selecting acomplete runcorresponding toa single coil eliminates the
need to consider thechangesof theprocessover thecourseof a single
coil run. The data frombatch #4was used for training andvalidating
themodel,while testingwasperformedusingbatches #3, 7, and8.A
Gaussian radial basis function kernel was selected as the basis
function. Other basis functionswere tested, but they did not provide
any significant improvement to the results. Tenfold cross-validation
was used to select the best model given the training data set.
For each batch, a total of 42 variables are available, that is, for

each of the 7 stands, 6 separate variables are measured: the
working roll force, the driving roll force, the setpoint for the
working roll force, the total force placed on the top of the stand,
and the speed feedback value. The sampling time is 0.1 s. The
model parameters were set to g ¼ 1.6709 � 105 and the final
dimension was selected to be 1253.

Single Batch Investigation

The first set of examples will consider the issue of modelling the
hot steel rollingmill using a single batch of data to build themodel
and compare the predictions against the different batches.
Batch #4 was used to develop the model since it was

representative of the largest group of similar thicknesses. For
each batch comparison, the mean forecast error (MFE), defined as
follows:[23]

MFE ¼ 1
N

XN
i¼1

yi � bym;i

�� �� ð11Þ

Figure 2. Diagram of the finishing mill process.
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where N is the total number of data points, was computed. The
smaller the mean forecast error, the better the fit.

Model testing was performed using batch #7, which had the same
nominal setpoint thickness. The testing results are presented in
Figure 3. From Figure 3, it can clearly be seen that, although the
developedmodel in general tracks the overall changes in the process
well, the predicted values are offset from the measured values even
though the strip thickness setpoints were similar.

Figure 4 and Figure 5 show the forecast values using the above
model for two different batches. Both a time series plot of the data,
and a scatter plot where the measured values are on the x-axis and
the forecast values are on the y-axis, are shown. This implies that if
thefit is perfect all the valueswill lie along the y ¼ x line (shown as
the solid black line). Deviations from this behaviour can be used to
determine the underlying issues with the model. From Figure 4, it
can be seen that for batch #8, the model can accurately capture the
dynamics of the process, but there is a substantial offset. On the
other hand, Figure 5 shows that for batch #3, there are significant
deviations from the expected behaviour. However, even in this
case, it would seem that it could be a case of determining the
appropriate nonconstant bias update.

Table 1 shows the mean forecast errors, computed using
Equation (12). As expected the mean forecast error is smallest
for batch #7 and largest for batch #3. These results agree well
with the observations made from both the time series and scatter
plots.

Based on the above results, it can be concluded that the model
can, in general, obtain an accurate estimate of the process
direction or change. However, the model is unable to correctly
predict the absolute process value.

Single Batch Investigation with Bias Update Term

In this case, a simplebiasupdate termwillbedesignedassuming that
there are no time delays in the system. In order to design the bias
update term, it is necessary to first note that specific conditionsmust
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Figure 3. Model validation using batch 7. (top) Time series plot of the
forecast and measured values; (bottom) measured values as a function of
the forecast ones.
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Figure 4. Model validation using batch 8. (top) Time series plot of the
forecast and measured values; (bottom) measured values as a function of
the forecast ones.
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Figure 5. Model validation using batch 3. (top) Time series plot of the
forecast and measured values; (bottom) measured values as a function of
the forecast ones.

VOLUME 96, JANUARY 2018 THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING 175



be satisfied in order that the bias update term provide appropriate
tracking. Assuming that the bias update term can be written as
follows:

GB ¼ a0 þ a1z�1 þ a2z�2 þ � � � þ anz�n

b0 þ b1z�1 þ b2z�2 þ � � � þ bmz�m ¼
Pn
i¼0

aiz�i

Pm
i¼0

biz�i
ð12Þ

and b0 6¼ 0, then the following conditions need to be satisfied for
satisfactory tracking:[18]

1) Sbi ¼ 0, and
2) An integrator must be present in the bias update term, that is,

the denominator must contain the root z ¼ �1.

The two additional constraints can be rewritten as follows:

a k � bk 6¼ 0

a l � bl ¼ 0 8l 6¼ k

(
ð13Þ

where k is an arbitrarily selected integer located between 0 and
max(m, n). Simplifying the condition allows for a faster
determination of an optimal bias update term. For the time delay
case, setting k equal to the delay provides the best tracking and a
simple solution.

Therefore, using these constraints and assuming that the time
delay is not relevant, the bias update term can be written as
follows:

GB ¼ z�1

1� z�1 ð14Þ

Using the samemodel as before, the current measured values as a
function of the current forecast values is shown in Figure 6.Unlike in
theprevious case,most of thedatapointsnow lie along they ¼ x line.
This suggests that a simple bias update term can help eliminate the
bias problempreviously noted. Furthermore, Table 2 shows theMFE
for this situation. As expected, the MFE has decreased compared to
the original case. This confirms that including the bias update term
improvesperformance.However, therearepractical issueswith such
an implementation, since the measured process values are often
delayed and not available as required. Therefore, it is important to
consider thisfinal problem indetermining the implications of using a
single model for modelling the process.

Single Batch Investigation with Bias Update and Time Delay

The final example will consider the impact on forecast accuracy of
adding a time delay to the measurement of the key performance
indicator of 10 samples. This is close to the mean value of the time
delay in the actual process. It can be noted that the true time delay
varies depending on the process conditions. Using the conditions
provided, the bias update term in this case can be written as
follows:

GB ¼ z�10

1� z�10 ð15Þ

Figure 7 shows themeasured values as a function of the forecast
values. Firstly, it should be noted that until the first measured
value arrives there is no way of knowing the appropriate
correction to apply. Therefore, the first 10 samples, although
shown, will be equivalent to the case where there is no bias
update. Secondly, even in the presence of time delay, the bias
update term is able to accurately track the process changes. In fact,
the overall accuracy has not changed from the previous case. This
suggests that the bias correction is almost constant for a given
batch and only varies between batches depending on the initial
conditions and other external factors. It can be noted that Batch 3
seems to display some rather peculiar behaviour in that there are
two regions with more or less constant bias. The reason for this
difference is not known.
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Figure 6. Current measured strip thickness as a function of the current forecast values for the case where a bias update term is present.

Table 2. Mean forecast error for the bias update case

Batch Mean Forecast Error

#3 0.0937
#7 0.0328
#8 0.0487

Table 1. Mean forecast error for the base case

Batch Mean Forecast Error

#3 0.0941
#7 0.0330
#8 0.0488
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Table 3 gives the mean forecast error for this case. It can be seen
that the mean forecast errors have decreased. The largest drop can
be observed for batch #3, since initially the performancewasmuch
lower.

Thus, implementing an appropriate bias update term can have
the potential of allowing a single process model to be applied
over a wide range of different process conditions and still obtain
a good fit.

CONCLUSIONS

This paper has examined the design of soft sensors for the hot steel
rolling mill using least-squares support vector machines and bias
updates. It was shown that, although the individual batches may
have different behaviours, implementing a soft sensor with a bias
update term can accurately model the overall process. Further-
more, the presence of time delay in the measured data was shown
not to have an impact on the ability to obtain accurate process
values. Futureworkwill consider the problemof trying to estimate
the time delay for an individual batch using available process
information.
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Figure 7. Measured strip thickness as a function of forecast values for the case where a bias update term is present and a delay of 10 samples is assumed.
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