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Abstract— In kernel methods, the kernels are often required
to be positive definitethat restricts the use of many indefinite
kernels. To consider those nonpositive definite kernels, in this
paper, we aim to build an indefinite kernel learning framework
for kernel logistic regression (KLR). The proposed indefinite
KLR (IKLR) model is analyzed in the reproducing kernel
Kreı̆n spaces and then becomes nonconvex. Using the positive
decomposition of a nonpositive definite kernel, the derived IKLR
model can be decomposed into the difference of two convex
functions. Accordingly, a concave-convex procedure (CCCP) is
introduced to solve the nonconvex optimization problem. Since
the CCCP has to solve a subproblem in each iteration, we propose
a concave-inexact-convex procedure (CCICP) algorithm with an
inexact solving scheme to accelerate the solving process. Besides,
we propose a stochastic variant of CCICP to efficiently obtain a
proximal solution, which achieves the similar purpose with the
inexact solving scheme in CCICP. The convergence analyses of the
above-mentioned two variants of CCCP are conducted. By doing
so, our method works effectively not only in a deterministic
setting but also in a stochastic setting. Experimental results
on several benchmarks suggest that the proposed IKLR model
performs favorably against the standard (positive definite) KLR
and other competitive indefinite learning-based algorithms.

Index Terms— Concave-inexact-convex procedure (CCICP),
indefinite kernel learning, kernel logistic regression (KLR),
stochastic gradient descent (SGD).
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I. INTRODUCTION

KERNEL methods [1], [2] have been successfully applied
to many machine learning tasks such as classifica-

tion [3], [4], regression [5], and clustering [6]. In these algo-
rithms, a kernel function K(xi , x j ) is employed to evaluate the
similarity between two data points xi and x j . Herein, a positive
definite (PD) kernel K results in a positive semidefinite (PSD)
kernel matrix K to satisfy Mercer’s condition. Consequently,
the above-mentioned approaches with PD kernels can be
theoretically analyzed in the reproducing kernel Hilbert
spaces (RKHSs) [7].

Nevertheless, in real-world applications, we might meet
some indefinite (real, symmetric, but not PD) [8] similar-
ity measures due to the following reasons. First, one can
comprehensively exploit the domain-specific structure in data
and accordingly design a certain similarity measure. The
kernel matrix derived by such measure often achieves promis-
ing empirical performance without any positive definiteness
requirement on it. For example, one can utilize the Smith
Waterman score [9] for the protein sequence, the optimal
assignment kernels [10] for graph classification, or dynamic
time warping [11], [12] for time series. In these cases, the cor-
responding kernel matrices generated by such similarities
are not PSD. Second, the developed similarity measurements
might be contaminated by outliers or noises [13] that make
the initial PSD kernel matrix degenerate into an indefinite
one. Third, the Mercer condition is difficult to verify even
if a kernel is PD in essence. In this case, we have to tackle
the kernel as an indefinite one. Finally, a PD kernel cannot
be guaranteed to be PD embedded in another space. For
instance, the Gaussian kernel is perhaps the most popular
PD kernel with widespread applications. In a Riemannian
manifold, the geodesic distance is more accurate than the
Euclidean distance [14], [15], and accordingly, it seems natural
to use the geodesic distance in the Gaussian kernel [16].
However, the kernel derived in this manner is not PD in
general [17]. Based on the above-mentioned analyses, there
are both algorithmic and theoretical requirements to consider
these indefinite similarities. Here, we mainly discuss indefi-
nite support vector machine (SVM) in above-mentioned two
aspects.

In theory, a proper nonlinear feature mapping for indefinite
kernels should be redefined because Mercer’s theorem is no
longer valid. Hence, Ong et al. [18] introduce the reproducing
kernel Kreı̆n spaces (RKKS) to give a characterization
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in terms of primal and dual problems for SVM with
indefinite kernels [19]. Compared with the conventional
RKHS for PD kernels, the inner products might be negative
for RKKS.

The solving algorithms for indefinite kernel learning can
be grouped into two categories: spectrum modification and
nonconvex optimization. In the first approach, the indefinite
kernel matrix is transformed into a PSD one by spectrum
modification, and then a regular solver can be used. For
example, “Flip” [20] uses the absolute value of eigenvalues,
“Clip” [21] sets the nonnegative eigenvalues to zero, and
“Shift” [22] plus a positive constant to all eigenvalues until the
smallest one is zero. However, the above-mentioned operations
actually change the indefinite matrix itself, which results in the
inconsistency between the training and test kernel. In compar-
ison, some solvers can directly deal with the nonconvex dual
problem within indefinite kernel matrices. In [23], SVM with
indefinite kernels can still be solved by the SMO-type algo-
rithm. Note that this algorithm still converges but the solution
is just a stationary point. Besides, Akoa [24] and Xu et al. [25]
directly introduce a nonconvex approach, the concave-
convex procedure (CCCP) [26] to solve such problem
effectively.

In this paper, we focus on kernel logistic regression (KLR)
with indefinite kernels. KLR is a powerful and representative
classifier and has been shown to be effective for classification
tasks. However, KLR equipped with indefinite kernels has not
yet been investigated in the past. Formally, the contributions
of this paper are summarized as follows.

1) We build the indefinite KLR (IKLR) model in the RKKS
and directly focus on its nonconvex primal form, the for-
mulation of which keeps consistency to the standard
KLR.

2) To accelerate the solving process, we propose a concave-
inexact-convex procedure (CCICP) algorithm with an
early termination technique to obtain a proximal solution
during each iteration. We provide a convergence analysis
of such approximation algorithm.

3) A stochastic variant of CCICP is proposed with conver-
gence guarantees, which achieves the similar effect with
the inexact solving scheme.

This paper is the extended version of our previous
work [27]. Apart from details added in several sections,
the main extension contains three parts: first, we incorpo-
rate stochastic gradient descent (SGD) into CCCP to solve
the proposed IKLR model, and then, a stochastic variant
of CCICP is presented to further accelerate the solving
process. Second, the convergence analysis of such stochastic
optimization algorithm is theoretically demonstrated. Third,
we provide more experiments results on several benchmarks.
And accordingly, more parameters’ comparison analysis and
computational complexity analysis are also provided.

The remainder of this paper is organized as follows.
Section II briefly reviews KLR. Section III introduces the
proposed IKLR model. The optimization algorithm of the
IKLR model is presented in Section IV. Experimental results
on several data sets are presented in Section V, and the
conclusion is given in Section VI.

II. REVIEW: KERNEL LOGISTIC REGRESSION

In this section, we briefly review the regular KLR in
the binary classification task. Let {(xi , yi )}ni=1 with its label
yi ∈ {+1,−1} be n training points, we concern the inference
of a function f : X → Y that predicts a target y ∈ Y of
a data point x ∈ X . KLR can be fit in the regularization
framework of loss+penalty using the exponential loss function
�( f ) = ln(1+ e−y f ). Thus, for a given positive regularization
parameter λ, KLR is the minimum of the following regularized
empirical risk functional:

min
f ∈H

1

n

n∑

i=1

ln(1+ e−yi f (xi ))+ λ

2
‖ f ‖2H (1)

with the RKHS H generated by the PD kernel K(·, ·). Using
the representer theorem [28] in RKHS, the optimal function f ∗
is

f ∗ =
n∑

i=1

αiK(xi , ·)

where α = [α1, α2, . . . , αn]� is the coefficient vector.
Combining this to (1), KLR is reformulated as

min
α

1

n

n∑

i=1

ln

⎛

⎝1+exp

⎛

⎝−yi

n∑

j=1

α j Ki j

⎞

⎠

⎞

⎠+ λ

2

n∑

i, j=1

αiα j Ki j

(2)

with Ki j = K(xi , x j ). After some straightforward algebraic
manipulations, we obtain a compact form of KLR

min
α

1

n
1� ln(1+ exp(− y � Kα))+ λ

2
α�Kα (3)

where 1 is the all-one vector, y is the label vector, and �
denotes the Hadamard product. Traditionally, K in (3) is
required to be PSD, and accordingly, the optimization prob-
lem is formulated as a convex, unconstrained quadratic
programming.

III. INDEFINITE KERNEL LOGISTIC REGRESSION MODEL

The functional space spanned by indefinite kernels belong
to the RKKS [29] instead of RKHS. We first introduce Kreı̆n
spaces and then derive the IKLR model.

Definition 1 (Kreı̆n Space [29]): An inner product space is
a Kreı̆n space HK if there exist two Hilbert spaces H+ and
H− such that: 1) all f ∈ HK can be decomposed into f =
f+ + f−, where f+ ∈ H+ and f− ∈ H−, respectively, and
2) ∀ f, g ∈ HK, 〈 f, g〉HK = 〈 f+, g+〉H+ − 〈 f−, g−〉H− .

If H+ and H− are RKHSs, HK is an RKKS with a unique
indefinite kernel K such that the reproducing property holds:
for all f ∈ HK, f (x) = 〈 f, k(x, ·)〉HK . In this space,
the squared norm and the squared distance1 induced by an
indefinite kernel K can be negative in contrast to the Euclidean
case. This definition may not define a metric, as it violates the
triangle inequality. However, this squared distance function is
able to provide a justification of data representation in this

1A corresponding squared distance is defined as d2(x, x ′) = K(x, x) −
2K(x, x ′)+K(x ′, x ′).



LIU et al.: IKLR WITH CCICP 767

vector space. Details about the interpretation of SVM with
indefinite kernels in the feature space can be found in [30].

Based on above-mentioned analyses, our IKLR model with
an indefinite kernel K is formulated as

min
f ∈HK

1

n

n∑

i=1

ln(1+ e−yi f (xi ))+ λ

2
‖ f ‖2HK (4)

with the RKKS HK generated by the indefinite kernel K(·, ·).
By the representer theorem in RKKS [18], the optimal f ∗
admits

f ∗ =
n∑

i=1

αiK(xi , ·).

Accordingly, (4) can be rewritten as

min
α

1

n
1� ln(1+ exp(− y� Kα))+ λ

2
α�Kα. (5)

One can see that the proposed IKLR model in (5) is similar to
the regular KLR in (3), but it must be analyzed in RKKS and
becomes nonconvex because of the indefinite kernel matrix.

To solve such nonconvex problem, we also need the
following proposition.

Proposition 1 [18]: A nonpositive definite kernel K in
RKKS admits a positive decomposition on a given set

K(xi , x j ) = K+(xi , x j )−K−(xi , x j ) ∀xi , x j ∈ X
with two PD kernels K+ and K−.

Hence, the proposed IKLR model in (5) can be further
expressed as

min
α

1

n
1� ln(1+ exp(− y� Kα))+ λ

2
α�(K+ − K−)α (6)

with two PSD kernel matrices K+ and K−, which can be
obtained by eigenvalue decomposition of K . To be specific,
K = V��V , where V is an orthogonal matrix and the
diagonal matrix is � = diag(μ1, μ2, . . . , μn) with eigenvalues
μ1 ≥ μ2 ≥ · · · ≥ μn . Without loss of generality, suppose that
the first s eigenvalues are nonnegative and the remaining n−s
ones are negative, K+ and K− can thus be given as

{
K+ = V� diag(μ1 + τ, . . . , μv + τ, τ, . . . , τ )V

K− = V� diag(τ, . . . , τ, ρ − μv+1, . . . , τ − μn)V

where τ is chosen by τ > −μn to ensure that these two
matrices K+ and K− are PSD. After conducting this positive
decomposition, we decompose the objective function in (6) as
difference of two convex functions g(α) and h(α)

⎧
⎪⎨

⎪⎩

g(α) = 1

n
1� ln(1+ exp(− y � Kα))+ λ

2
α�K+α

h(α) = λ

2
α�K−α.

(7)

IV. CCICP OPTIMIZATION FOR IKLR

This section first introduces a CCICP algorithm with two
approximation schemes to solve the nonconvex optimization
problem, and then provides convergence analyses of the pro-
posed CCICP algorithm.

A. CCICP in the IKLR Model

The CCCP [26] is a typical nonconvex algorithm to solve
d.c. (difference of convex functions) programs. By decompos-
ing the nonconvex objective function in (6) into the difference
of two convex functions g(α) and h(α), the CCCP is an
iterative procedure with

αk+1 ∈ argmin
α

g(α)− α�∇h(αk).

The core idea of CCCP is to linearize the concave part of the
nonconvex objective function, i.e., −h(α), around its current
solution αk . At each iteration, its convex approximation is
formulated as

Fk(α) � F(α,αk) = g(α)− [h(αk)+∇h�(αk)(α − αk)]
(8)

where Fk(α) can be solved by an off-the-shelf convex algo-
rithm such as the GD method to obtain αk+1. To be specific,
in our model, h(α) is replaced by its first-order Taylor approx-
imation at αk

h̃(αk) = h(αk)+ λα�k K−(α − αk).

Combining this to (8), we have

Fk(α) = λ

2
α�K+α+ 1

n
1� ln(1+exp(−y�Kα))−h̃(αk). (9)

Nonetheless, one can see that at each iteration, the CCCP
needs to solve the subproblem, which makes CCCP inefficient
especially for a large-scale problem. Based on this, we attempt
to obtain an inexact solution of the subproblem to speed
up the solving process, termed as the CCICP. To this end,
we develop two approaches, one is the GD method with an
early termination condition, termed as “CCICP-GD,” and the
other is incorporated with SGD to achieve the similar effect,
termed as “CCICP-SGD.”

1) Solving With CCICP-GD: In our CCICP-GD method,
the subproblem is solved by the GD method, in which the
gradient ∇αFk(α) is

∇αFk(α) = λK+α − 1

n
y � Kβ − λK−αk (10)

where β = (β1, β2, . . . , βn)
� is defined by

βi = 1

1+ exp
(
yi

∑n
j=1 β j Ki j

) ∀i = 1, 2, . . . , n. (11)

Using an early termination condition, the inexact solution
αk+1 � α

(T )
k after T iterations is obtained by αk+1 ≈

argminαFk(α). In Section IV-B, we detail the definition of
such early termination condition and then theoretically demon-
strate the convergence analyses of such approximation.

2) Solving With CCICP-SGD: The SGD method can also
achieve the similar effect with such inexact scheme to solve
the subproblem. Since it only processes a minibatch of data
points [31] or even one data point [32] in each iteration,
the computational cost per iteration dramatically decreases.
To be specific, in our algorithm, we randomly pick up only
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one data point to compute the gradient in the subproblem. The
updating scheme is given as

α(t+1)← α(t) − ηt (−y j K jβ j + λK+α(t)) (12)

where ηt is the step size in the tth iteration, and K j represents
the (randomly picked) j th column of the kernel matrix K .
Finally, the detailed procedure of the CCICP algorithm with
GD and SGD for IKLR is summarized in Algorithm 1.

Algorithm 1 CCICP for the IKLR Model
Input: an indefinite kernel matrix K and its positive

decomposition K+ and K−.
Output: the coefficient vector α.

1 Set: stopping criterion: the inexact parameter 	 = 1,
kmax = 20, the learning rate η = 0.02, and ρ = 0.8;

2 Initialize k = 0 and α0;
3 The parameter λ is chosen by cross-validation;
4 Repeat
5 Obtain h̃(αk) = λK−αk and the subproblem Fk(α) by

Eq. (9);
// Solve the subproblem.

6 Initialize t = 0 and compute Fk(α
(0)
k ) ;

7 while ‖Fk(α
(t+1)
k )− Fk(α

(t)
k )‖ > 	 do

8 Obtain the gradient ∇Fk(α
(t)
k ) by Eq. (10);

9 GD: α
(t+1)
k := α

(t)
k − ηt∇Fk(α

(t)
k );

10 SGD: Randomly pick a j ∈ {1, 2, · · · , n} and then
update α

(t+1)
k by Eq. (12);

11 η := ρη ;
12 t := t + 1;
13 end
14 Output the inexact solution αk+1 := α

(t)
k of Eq. (9);

// Complete the inner loop.
15 k := k + 1;
16 Until k = kmax;
17 Output the stationary point αkmax of (7).

One can see that Algorithm 1 contains two loops. In each
iteration of the outer loop, an unconstrained quadratic pro-
gramming is solved by GD and its complexity is O(dn), where
d is the feature dimension and n is the number of training
examples. Finally, the total computational complexity of our
CCICP algorithm is O(T kdn), where T is the number of
convergence iterations and k is the number of classes.

When we obtain α∗ by Algorithm 1, a test data point z can
be predicted by

p(z) = exp(Kzα
∗)

1+ exp(Kzα∗)
with Kz = [K(x1, z),K(x2, z), . . .K(xn, z)]. If p(z) ≥ 0.5,
its label is predicted by +1, and −1 otherwise.

B. Analysis of CCICP-GD

This section investigates the convergence of the proposed
CCICP-GD. Since the GD algorithm is used to solve the sub-
problem, it satisfies Fk(αk+1) � Fk(α

(T )
k ) ≤ Fk(α

∗
k ).

Herein, the inexact solution α
(T )
k satisfies

α
(T )
k ∈ Uδ(α)(α

∗
k ) �

{
α | ∥∥α − α∗k

∥∥ ≤ δ(α)
}

where α∗k = argmin
α

Fk(α) is the optimal result. The

notation δ(α) depends on the current solution, and it should
be bounded to guarantee the convergence of CCICP. In this
case, such approximation solution α

(T )
k does not satisfy the

Karush–Kuhn–Tucker (KKT) condition. Suppose that

∇αFk(α)|
α=α

(T )
k
= 	‖αk‖ �= 0 (13)

where 	 depends on δ(α), and its choice will be analyzed
to guarantee the convergence of CCICP-GD in the following
description.

The main result for CCICP-GD is demonstrated by
Theorem 1, that is, when 	 is upper bounded, the sequence
{αk}∞k=0 generated by CCICP with an initial point α0 ∈ R

n still
converges. Before we proceed with the proof of Theorem 1,
we need Lemma 1.

Lemma 1: Given a sigmoid function R(x) = (1+ ecx )−1

with c ∈ {+1,−1} on R, for any x1 < x2, we have

|R(x1)− R(x2)| ≤ 1

4
|x1 − x2|. (14)

Proof: Since R(x) is a differentiable function, by the
Lagrange mean value theorem, there exists at least one point
ξ ∈ (x1, x2) such that

|R(x1)− R(x2)| = |(x1 − x2)R′(ξ)|
where |R′(ξ)| admits

|R′(ξ)| = ecξ

(1+ ecξ )2 =
1

ecξ + e−cξ +2
≤ 1

4

which concludes the proof. �
We now present the convergence theorem for CCICP-GD.
Theorem 1: Let {αk}∞k=0 be any sequence generated by

CCICP-GD, its limit point is a stationary point if 	 in (13)
satisfies

	 < λ(‖K+‖ − ‖K−‖)− ‖K‖
2

4n
. (15)

Proof: Let φ : U ⊂ R
n → R

n be a point-to-set map such
that

φ(αk) = argmin
α

Fk(α)

which generates an inexact sequence {αk}∞k=0. Besides, φ(αk)
satisfies

∇αFk(α)|α=φ(αk) = 	‖αk‖.
In the following, we aim to prove that the map φ is a
nonexpansive mapping for two arbitrary points p, q ∈ int (U)
such that

‖φ( p) − φ(q)‖ ≤ κ‖ p − q‖
where the nonexpansive coefficient is κ ∈ [0, 1). Suppose that
φ( p) and φ(q) satisfy

∇αF(α, p)|α=φ( p) = 	1‖ p‖ (16)

∇αF(α, q)|α=φ(q) = 	2‖q‖ (17)
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where 	1 and 	2 correspond to the bounded error. For
simplicity, suppose 	1 ≤ 	2, so the difference between
(16) and (17) is given as

λK+[φ( p)− φ(q)]
= λK−( p − q)+ 1

n
y � K h + 	1‖ p‖ − 	2‖q‖ (18)

where h = [h1, h2, . . . , hn]� is defined by

hi = 1

1+ exp(yi K (i)φ( p))
− 1

1+ exp(yi K (i)φ(q))
.

Using Lemma 1, we have

|hi | ≤ 1

4
|K (i)φ( p)− K (i)φ(q)| ∀i = 1, 2, . . . , n

and accordingly ‖h‖∞ satisfies2

‖h‖∞ ≤ |K
(s)φ( p)−K (s)φ(q)|

4
≤ ‖K

(s)‖1 ·‖φ( p)−φ(q)‖∞
4

≤ 1

4
‖K‖∞‖φ( p)−φ(q)‖∞

with s = argmin
i
|K (i)φ( p) − K (i)φ(q)|, i = 1, 2, . . . , n.

Since K+ is PD, (18) can be rewritten as

φ( p)− φ(q)

= 1

λ
K−1+

{
λK−( p − q)+ 1

n
y� K h + 	1‖ p‖ − 	2‖q‖

}
.

Accordingly, ‖φ(a) − φ(b)‖ can be bounded by (19),
as shown at the bottom of this page, which leads to

‖φ( p) − φ(q)‖ ≤ ‖K−‖ + 	2
λ

‖K+‖ − 1
4λn‖K‖2

‖ p − q‖. (20)

Likewise, if 	2 < 	1, we have

‖φ(q)− φ( p)‖ ≤ ‖K−‖ + 	1
λ

‖K+‖ − 1
4λn‖K‖2

‖q − p‖. (21)

Accordingly, (20) and (21) can be reformulated as

‖φ( p) − φ(q)‖ ≤ ‖K−‖ +
max{	1,	2}

λ

‖K+‖ − 1
4λn ‖K‖2

‖ p − q‖

where we choose 	 = max{	1, 	2}. Thereby, the map φ is a
nonexpansive mapping with the following condition:

κ �
‖K−‖ + 	

λ

‖K+‖ − 1
4λn‖K‖2

< 1

which derives the upper bound of 	 presented in (15) by some
straightforward algebraic manipulations. Hence, by the fixed

2Here we use | p�q| = ‖ p‖a‖q‖b , where (1/a)+ (1/b) = 1.

point theorem [33], the map φ is theoretically demonstrated
to be a nonexpensive mapping if 	 is upper bounded. �

Theorem 1 demonstrates that the CCICP with early termi-
nation condition is theoretically guaranteed to converge if the
inexact parameter 	 is upper bounded. In our IKLR model,
such convergence condition is easily satisfied, and thus the
inexact parameter can be set to a relatively large one in prac-
tice. Note that the early termination condition in Algorithm 1
is given by variations of the subproblem function value F(α)
between the two consecutive iterations instead of the gradient
variations such as ‖∇Fk(α

(t+1)
k ) − ∇Fk(α

(t)
k )‖ < 	. This

is because it is relatively easier to compute the subproblem
function value than the gradient computation, especially when
the SGD method is considered.

C. Analysis With CCICP-SGD

Apart from an early stop scheme in GD to obtain an inexact
solution of the subproblem, effective stochastic gradient-based
methods [34], [35] can also be used as underlying solvers
to accelerate the solving process that achieves the similar
approximation in expectation. Specifically, since the subprob-
lem becomes strongly convex, the combination of CCCP and
SGD in our model achieves fast convergence and theoretical
guarantees when compared to directly using SGD to solve the
initial nonconvex problem.

Before we prove that a sequence {αk}∞k=0 generated by
CCICP-SGD converges to a stationary point, we need a few
additional results. We denote the nonconvex objective function
by �(α) = g(α)− h(α). The idea of the following lemma is
to show that the objective function is monotonic decent in
probability.

Lemma 2: The sequence {αk}∞k=0 generated by CCICP-
SGD satisfies the monotonic decent property in probability

E[�(αk+1)] ≤ E[�(αk)]. (22)
Proof: Due to the convexity of g(α) and h(α), we denote

h̄(α) = −h(α) as a concave function, and thus �(α) =
g(α) + h̄(α). In the kth iteration, SGD is used to solve
the subproblem Fk(α) in (8), yielding αk+1 to satisfy the
KKT condition in expectation, namely E[∇Fk(αk+1)] = 0.
Accordingly, we have the following equation:

E[∇g(αk+1)] = E[∇h(αk)] = −E[∇h̄(αk)].
For αk and αk+1, it satisfies

{
g(αk) ≥ g(αk+1)+ (αk − αk+1)∇g(αk+1)

h̄(αk) ≥ h̄(αk+1)+ (αk − αk+1)∇h̄(αk).
(23)

‖φ( p) − φ(q)‖ ≤ 1

λ
K−1+

{
λK−( p − q)+ 1

n
y � K h+ 	1‖ p‖ − 	2‖q‖

}

≤ ∥∥K−1+ K−
∥∥‖ p − q‖ +

∥∥K−1+ K
∥∥

λn
‖h‖ + 	2

λ

∥∥K−1+
∥∥|‖ p‖ − ‖q‖|

≤ ∥∥K−1+
∥∥‖K−‖‖ p − q‖ +

∥∥K−1+ K‖‖K∥∥
4λn

‖φ( p) − φ(q)‖ + 	2

λ

∥∥K−1+
∥∥‖ p − q‖ (19)
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Then, we take the expectation of (23) and use the expectation
independence
{

E[g(αk)] ≥ E[g(αk+1)] + E[(αk − αk+1)]E[∇g(αk+1)]
E[h̄(αk)] ≥ E[h̄(αk+1)] + E[(αk − αk+1)]E[∇h̄(αk)].

Combining the above-mentioned two subequations, we have

E[g(αk)+ h̄(αk)] ≥ E[g(αk+1)+ h̄(αk+1)] (24)

which completes the proof. �
Lemma 2 demonstrates the monotonic decent property in

probability. However, such analysis is not complete, as the
monotone descent property by itself is not sufficient to claim
the convergence of {αk}∞k=0. The similar situation in the initial
CCCP version has been discussed in [36].

In Section V, we first give the definition of Lipschitz
smoothness required by the subsequent analyses, and then
investigate the convergence of {αk}∞k=0.

Definition 2: A function F is gradient Lipschitz smooth if
there exists L F > 0 such that

‖∇F(α) −∇F(α′)‖2 ≤ L F‖α − α′‖2 ∀α,α′ ∈ dom F.

Furthermore, if F is also a convex function over a (closed)
convex domain, it satisfies

F(α)− F(α′) ≤ ∇F�(α′)(α − α′)+ L F

2
‖α − α′‖22.

Suppose that Fk is the LF -smooth function, we have

Fk(α)− Fk(αk) ≤ ∇F�k (αk)(α − xk)+ LF
2
‖α − αk‖22.

To obtain αk+1, we use SGD to solve Fk(α) with T iterations,
i.e., αk+1 � α

(T )
k . Specifically, the first iteration is defined as

α
(1)
k = αk − η ĝ, where the stepsize η is set to (1/LF ) and

the produced vector ĝ satisfies E[ ĝ] = ∇Fk(αk). Therefore,
we have

Fk
(
α

(1)
k

)− Fk(αk)

≤ ∇F�k (αk)
(
α

(1)
k − αk

)+ LF
2

∥∥α
(1)
k − αk

∥∥2
2

= − 1

LF
∇F�k (αk) ĝ + 1

2LF
‖ ĝ‖22. (25)

We take the expectation

E
[Fk

(
α

(1)
k

)]

≤ E[Fk(αk)] − 1

LF
E
[∇F�k (αk) ĝ

]+ 1

2LF
E
[‖ ĝ‖22

]
(26)

where the formula satisfies E[∇F�k (αk) ĝ] =
E[∇F�k (αk)]E[ ĝ] because they are independent of each
other, and E[Fk(αk+1)] � E[Fk(α

(T )
k )] ≤ E[Fk(α

(1)
k )] by

Lemma 2. By combining (25) and (26), we obtain

E[Fk(αk+1)] ≤ E[Fk(αk)] − 1

2LF
E
[∥∥∇F�k (αk)

∥∥2
2

]
. (27)

Besides, h(α) is a convex function, and it satisfies
h(αk)− h(αk+1) ≤ ∇h�(αk)(αk − αk+1), and then

E[ f (αk+1)] = E[g(αk+1)− h(αk+1)]
≤ E[g(αk+1)− h(αk)+∇h�(αk)(αk − αk+1)]
= E[Fk(αk+1)]. (28)

Note that f (αk) = Fk(αk), from (27) and (28), we obtain

E[ f (αk+1)] ≤ E[ f (αk)] − 1

2LF
E
[‖∇ f (αk)‖22

]
.

Finally, we arrive at the following formula as we expect:

E[ f (αk)− f (αk+1)] ≥ 1

2LF
E
[‖∇ f (αk)‖22

]
. (29)

By Lemma 2 and the above-mentioned formula, we verify the
convergence of {αk}∞k=0. Such proof is definitely suitable for
the proposed IKLR model. To be specific, LF in our IKLR
model can be solved during the proof of Theorem 1, and thus
it is set to LF = λ‖K+‖ + (‖K‖/4n).

Remark: The convergence analysis of a stochastic proximal
difference of the convex algorithm has been discussed in [35],
which relies on a known bounded residual error δ, namely,
Fk(αk+1) ≤ Fk(α

∗
k )+ δ as demonstrated. However, the resid-

ual error δ is usually not known. In our analysis, the decrease is
related to the gradient, which could be calculated or estimated
in each iteration.

V. EXPERIMENTS

In this section, we carry out experiments to show the
performance of the IKLR model with two indefinite kernels
on a collection of multimodal data sets from computer vision
and machine learning fields. The experiments implemented
in MATLAB are repeated over 10 runs on a PC with Intel
i5-6500 CPU (3.20 GHz) and 8-GB memory. The source code
of the proposed method can be found in the website.3

A. Experiment Setup

Here, we describe kernel settings, the compared algorithms,
and other settings of the experiments.

1) Kernel Setting: Three kernels including one PD and two
indefinite ones are chosen to fully evaluate the performance
of our method. As a representative PD kernel, the radius basis
function (RBF) kernel, i.e., K(xi , x j ) = exp(−‖xi−x j‖22/σ 2)
with the kernel width σ , is chosen for comparison.

For indefinite kernels, we first choose the truncated �1
distance (TL1) indefinite kernel [37], namely, K(xi , x j ) =
max{τ−‖xi−x j‖1, 0}, and then incorporate it into our model.
As discussed in [37], the performance of the TL1 kernel is
robust to τ , and thus, we set τ = 0.7 m as suggested.

Apart from a delicately designed TL1 kernel, we extend the
RBF kernel from the Euclidean space to a Riemannian mani-
fold with a geodesic metric [16]. Here, we use the covariance
matrix descriptor [38] on the space of d×d symmetric positive
definite (SPD) matrices, namely, Sym+d . Let S1 and S2 be
the two descriptors (SPD matrices), if the Euclidean distance
in the Gaussian kernel between such two descriptors is used,
the derived Gaussian kernel is PD. In comparison, to define a
kernel on the Riemannian manifold, we would like to replace
the Euclidean distance by a more accurate geodesic distance
on the manifold. However, not all geodesic metrics yield a
PD kernel. Feragen et al. [17] point out that the geodesic
Gaussian kernels on the Riemannian manifolds are PD only if

3http://www.lfhsgre.org
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TABLE I

PROPERTIES OF DIFFERENT METRICS ON Sym+d . WE ANALYZE POSITIVE DEFINITENESS OF GAUSSIAN KERNELS GENERATED BY DIFFERENT METRICS

the geodesic metric space is flat in the sense of Alexandrov.
Here, we summarize the definitions and properties of some
representative metrics for Sym+d in Table I. It can be observed
that the geodesic Gaussian kernel (“log-Euclidean”) is still
PD since the geodesic metric space derived by log-Euclidean
is flat, while the affine-invariant metric results in an indefinite
one. Based on this, in our experiment, we take the affine-
invariant kernel as an example of indefinite kernels to test the
proposed IKLR model.

2) Compared Methods: We conduct the proposed IKLR
model with two versions, including CCICP-GD and
CCICP-SGD, in which the inexact parameter 	 in CCICP-GD
and CCICP-SGD is set to 1 and 0.0001, respectively.4 The
proposed algorithms are compared with other representative
indefinite kernel methods, “Flip,” “Clip,” and “Shift” [39]:
these methods use the spectrum transformation to directly
transform the non-PSD kernel matrix into a PSD one;
“TDCASVM” [24]: an approach incorporates CCCP into the
SMO-type algorithm for SVM with an indefinite kernel; and
“KSVM” [19]: this method formulates the indefinite SVM as a
min–max problem, and then solves this optimization problem
in Kreı̆n space. In essence, our method and “TDCASVM”
directly solve a nonconvex optimization problem, while the
objective function in other algorithms has been transformed
into a convex form. Specifically, two PD kernels, i.e., the
Gaussian kernel and log-Euclidean kernel are incorporated
into SVM and KLR as baseline methods for comparisons.

3) Parameter Setting: In our experiment, we choose λ,
the kernel width σ in the Gaussian kernel, and C in
SVM by fivefold cross validation over {0.0001, 0.001, 0.01,
0.1, 1, 5, 10} on the training set. For each data set, half of the
data are randomly picked up for training and the rest for the
test process.

B. Results on UCI Database

1) Description of Data Sets: Table II lists a brief description
of 20 data sets from the UCI machine learning repository [40]
including the feature dimension m, the number of data points n
(the training and test data have been divided in some data sets
such as monks1, monks2, and monks3), and the minimum and
maximum eigenvalues μmin and μmax of the TL1 kernel.

2) Results on Small-Scale Data Sets: Table III reports the
average classification accuracy on the test data and its standard
deviation. One can see that the proposed IKLR model with

4Since SGD achieves the similar purpose with the inexact scheme to solve
the subproblem, the inexact parameter 	 in CCICP-SGD is fixed with an
“exact” one.

TABLE II

STATISTICS FOR VARIOUS DATA SETS. SPECIFICALLY, THE LARGER

THAN SMALL-SCALE DATA SETS ARE HIGHLIGHTED BY BOLD

CCICP-GD and CCICP-SGD algorithms achieves a promising
performance in most data sets such as australian, monks1,
and splice. TDCASVM, KSVM, and the baseline (KLR) also
provide a comparable performance on some data sets including
monks2, spect, and diabetic. Meanwhile, the performance
of kernel approximation methods is often inferior to other
indefinite learning-based algorithms. Besides, we observe that
the training TL1 kernel in several data sets such as climate and
parkinsons is still PD. In these data sets, there is no distinct
difference on the classification accuracy for most compared
algorithms.

In terms of these algorithms, comparing the baseline (KLR),
we find that the used TL1 kernel is able to adaptively find
the partition and locally fit nonlinearity. However, in this
paper, we do not want to claim that the TL1 kernel is
better than the RBF kernel, as their performance is actually
dependent on the specific task. Instead, our aim is to show
the performance of the indefinite kernels in KLR. Since the
indefinite kernels contain definite ones, it can be expected that
a suitable indefinite kernel can outperform a PD kernel.

Besides, it can be noted that KSVM investigates its dual
form in RKKS, while we directly focus on the nonconvex
primal form of the IKLR model using the representer theorem.
The coefficient vector α in IKLR should not be interpreted as a
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TABLE III

CLASSIFICATION ACCURACY (MEAN± STD. DEVIATION) OF EACH COMPARED METHOD. THE BEST PERFORMANCE IS HIGHLIGHTED IN BOLD

TABLE IV

RESULTS OF CCCP-GD, CCICP-GD, AND CCICP-SGD
ON FOUR LARGER THAN SMALL-SCALE DATA SETS

Lagrange multiplier, which is different from the dual variable
in SVM. Therefore, our IKLR model is more flexible to learn
the data distribution than KSVM. Admittedly, KLR and SVM-
based algorithms including TDCASVM and KSVM have their
respective pros and cons, and each solution might depend on
a case-by-case basis.

3) Results on Larger Than Small-Scale Data Sets: Apart
from experiments on several small-scale data sets, we also con-
duct the proposed CCICP algorithm on four larger small-scale
data sets to further validate its effectiveness. Table IV reports
the test accuracy, training time, and test time of the original
CCCP, and the proposed CCICP-GD and CCICP-SGD.
Specifically, CCCP-GD is taken as a baseline to evaluate the
performance of the proposed two algorithms. In CCCP-GD,
the inexact parameter 	 is fixed with 0 in theoretical aspect
while we set it to 0.0001 in practice. This small value in our
experiments means that CCCP-GD is not equipped with any
inexact scheme, which further guarantees that CCCP-GD is
able to yield an accurate solution during each iteration.

On EEG, guide1-t, and madelon data sets, CCCP-GD
achieves the best performance on classification accuracy,
which is narrowly followed by CCICP-GD and CCICP-SGD.
On the ijcnn1-tr data set, the above-mentioned three
algorithms achieve the similar classification performance

without a distinct difference. In terms of the computational
cost during training, CCICP-GD is the most efficient, while
CCCP-GD is much time consuming. Note that 	 in the
proposed CCICP-SGD algorithm is set to 0.0001, which
makes the training process relatively inefficient. Specifically,
we also discuss CCICP-SGD with 	 = 1 in Section V-G
to see how fast it is. From the above-mentioned analyses,
we can conclude that the proposed IKLR model with CCICP
is often slightly inferior to the CCCP setting in the terms
of classification accuracy, but the inexact scheme makes our
method much efficient during the training process.

The experimental results on UCI database demonstrate the
superiority of our IKLR model with PD or indefinite kernels.
Besides, the inexact scheme including the early termination
condition and a stochastic version is able to accelerate the
training process.

C. Results on Yale Face Database

Apart from using the designed TL1 kernel on UCI database,
we also illustrate the use of the geodesic Gaussian kernel
on the Riemannian manifold in the IKLR model for face
recognition on Sym+d . In the experiment, we choose the Yale
face database B5 to evaluate the performance of the proposed
IKLR model with the affine-invariant kernel. This database
contains 5760 single light source images of 10 subjects
with each shot under 576 viewing conditions (9 poses ×
64 illumination conditions). For every subject in a particular
pose, an image with ambient (background) illumination is
also captured. Hence, the total number of images is in fact
5760 + 90 = 5850. All images have been cropped based on
the location of eyes. The size of each image is 192 × 168.
Fig. 1 shows some image examples of this database.

To compute the affine-invariant kernel (shown in Table I)
on the Riemannian manifold, we use covariance descrip-
tors [38] computed from the feature vector [x, y, Ixy ,
|Gx |, |Gy|, (G2

x + G2
y)

1/2
, |Gx x |, |Gyy|, arctan(|Gx |/|Gy|)],

5http://vision.ucsd.edu/content/yale-face-database



LIU et al.: IKLR WITH CCICP 773

TABLE V

STATISTICS OF THE AFFINE-INVARIANT (AFF-I) KERNEL AND THE TEST CLASSIFICATION ACCURACY(%) ON YALE FACE DATABASE B

Fig. 1. Some examples from the Yale Face Database B.

where x and y are the pixel locations, Ixy is the grayscale
value at xy-coordinate location, and Gx and Gy are the
first-order intensity derivatives. Likewise, Gx x and Gyy are
the second-order intensity derivatives. Accordingly, each face
image in this database can be represented by the covariance
matrix, i.e., a 9× 9 SPD matrix. Then, the similarity between
two images can be evaluated by the affine-invariant kernel.

Table V presents the statistics including the minimum
and maximum eigenvalues of the affine-invariant kernel,
i.e., μmin and μmax. Note that such kernel on this data shows
highly indefinite. We compare the proposed CCICP-GD and
CCICP-SGD algorithms with five indefinite learning-based
methods with the affine-invariant kernel including “Flip,”
“Clip,” “Shift,” “TDCASVM,” and “KSVM.” Also, the log-
Euclidean kernel [16], a PD kernel, is incorporated into two
representative classifiers such as SVM and KLR for compar-
isons. Table V reports the average test accuracy(%) across the
above-mentioned algorithms. One can see that these kernel
approximation-based methods “Flip,” “Clip,” and “Shift” do
not achieve satisfactory performance when compared with
other PD/indefinite kernel learning-based algorithms. This
is because the above-mentioned methods actually change
the indefinite matrix itself. Among these indefinite learning-
based algorithms, the proposed CCICP-GD algorithm per-
forms better than “TDCASVM” and “KSVM” with a margin
of 0.6% and 0.5% on the test classification accuracy. Besides,
the proposed CCICP-SGD algorithm achieves a comparable
performance among these methods. The experimental results
on this data set reinforce to demonstrate the effectiveness of
the proposed algorithms with various indefinite kernels.

D. Effect of the Inexact Parameter 	

As aforementioned, the only difference between CCCP-GD
and CCICP-GD is the selection of the inexact parameter 	.
When 	 approaches to zero, the CCICP-GD algorithm degen-
erates to a standard CCCP-GD algorithm. In our experiment,
	 is set to 0.0001 in the CCCP-GD algorithm while we choose
	 = 1 in CCICP-GD. Based on this, this section investigates
how its variation (i.e., 0.0001, 0.001, 0.01, 0.1, 0.5, 1, and 5)
in the inexact solving scheme influences the test accuracy and

Fig. 2. Influence of tuning 	 on monks1 (red) and guide1-t (blue), with
(a) accuracy and (b) time versus iteration.

TABLE VI

CCICP-GD AND CCICP-SGD WITH DIFFERENT RANDOM

INITIALIZATIONS ON THE MONKS1 AND GUIDE1-T DATA SET

the computational cost during training. Two data sets appeared
in Section V-B are used here for our experiments, namely,
a small-scale data set monks1 and a larger one guide1-t.

Fig. 2(a) illustrates that the performance of CCICP-GD is
generally not sensitive to 	 on such two different types of data
sets. In Fig. 2(b), on monks1, the training time cost does not
dramatically decrease when 	 ranges from 0.0001 to 0.01, and
then it rapidly falls down. We can conclude that CCICP-GD
(	 = 1) is much efficient than CCCP-GD (	 = 0.0001),
and thus such tendency demonstrates the effectiveness of the
proposed inexact scheme. Meanwhile, on guide1-t, the setting
with 	 = 0.001 spends the minimum time during training,
which almost cuts by half when compared with the situation
of initial value 	 = 0.0001. Afterward, the time cost steadily
increases, which shows an “abnormal” tendency on 	. This
is because the algorithm with an inexact solution sometimes
requires more iterations to converge to a stationary point.
However, CCICP-GD (	 = 1) is still efficient than CCCP-GD
(	 = 0.0001) in this data set. Generally, CCICP-GD with
larger 	 often spends less training time than the setting with
smaller one to converge. This is because the termination
condition can be significantly relaxed, which has been well
demonstrated on these two data sets.

E. Algorithm Convergence

Fig. 3 shows the convergence of IKLR with three optimiza-
tion algorithms on monks1 and ijcnn1-tr. It can be observed
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TABLE VII

RESULTS OF CCICP-SGD AND CCICP-SGD-I ON FOUR LARGER THAN SMALL-SCALE DATA SETS

Fig. 3. Convergence plots for CCCP-GD (red), CCICP-GD (blue), and
CCICP-SGD (green) on (a) monks1 and (b) ijcnn1-tr, respectively.

that in Fig. 3(a), on the monks1 data set, CCICP-GD con-
verges within five iterations but CCCP-GD takes 16 iterations
to converge. In Fig. 3(b), both CCCP-GD and CCICP-GD
converge fast on the ijcnn1-tr data set. The above-mentioned
two gradient-based algorithms (CCCP-GD and CCICP-GD)
monotonically decrease in each iteration. However, in our
CCICP-SGD version, it cannot be guaranteed to monotonically
decrease due to its random scheme. Instead, it just converges
to a stationary point in expectation as shown in Fig. 3.

F. Different Random Initializations

The proposed algorithms, CCICP-GD and CCICP-SGD,
have been experimentally demonstrated to converge as
illustrated in Section V-E. Since the IKLR model is
nonconvex, different initializations might lead to different
stationary points. Here, we choose two data sets, monks1 and
guide1-t, to investigate the influence of our algorithms with
different initializations on the final classification accuracy.
Such two data sets are conducted with 10 runs on a fixed
(or predefined) training and test data for fair comparisons. As
suggested in [41], in our experiment, we choose four different
initializations with small values, i.e., α(0) = 0, α(0) = 1,
α(0) = −1, and the randomly initialization α

(0)
i ∈ (0, 1). By

doing so, such small initialization values can guarantee that
the objective function value in (6) is always positive during
the optimization process. Table VI demonstrates that different
initializations near zero often lead to slight fluctuation on the
final classification accuracy.

G. Discussion on CCICP-SGD

As aforementioned in Section V-A2, the inexact parameter 	
in CCICP-SGD is fixed to 0.0001 because SGD achieves
the similar purpose with the inexact scheme, i.e., 	 = 1.
However, in Table IV, it can be observed that the CCICP-GD
is much efficient than CCICP-SGD. Such time cost reduction

motivates us to see how fast our algorithm can be when SGD
comes to the inexact scheme. Accordingly, we investigate
the performance of CCICP-SGD with the early termination
condition (i.e., 	 = 1), termed as “CCICP-SGD-I.”

Table VII reports the classification accuracy and the
computation cost of CCICP-SGD and CCICP-SGD-I on four
larger small-scale data sets. One can see that CCICP-SGD-I
degrades the test accuracy to some extent when compared
with CCICP-SGD on EEG, guide1-t, and madelon. However,
CCICP-SGD-I equipped with the inexact scheme extremely
accelerates the training process, of which the training time
is about one-hundreds or less than that of CCICP-SGD. On
ijcnn1-tr, CCICP-SGD-I is more efficient than CCICP-SGD
without too much degeneracy on the classification accuracy.

VI. CONCLUSION

In this paper, we investigate KLR with indefinite kernels in
theoretical and algorithmic aspects. The derived IKLR model
is nonconvex and further analyzed in RKKS with explicit
demonstration due to the nonpositive definite kernels. Such
nonconvex problem can be effectively and efficiently solved
by the proposed CCICP equipped with two approximation
schemes. Its GD version using an early stop scheme is able
to make the training process efficient; the stochastic variant
of CCICP also has the capability of accelerating the solv-
ing process. The convergence analyses of CCICP-GD and
CCICP-SGD are conducted with theoretical guarantees and
experimental validation. The classification accuracy of the
proposed IKLR model on several benchmarks demonstrates
its effectiveness when compared to other PD/indefinite kernel
learning methods.
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