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a b s t r a c t 

The use of indefinite kernels has attracted many research interests in recent years due to their flexibility. 

They do not possess the usual restrictions of being positive definite as in the traditional study of kernel 

methods. This paper introduces the indefinite unsupervised and semi-supervised learning in the frame- 

work of least squares support vector machines (LS-SVM). The analysis is provided for both unsupervised 

and semi-supervised models, i.e., Kernel Spectral Clustering (KSC) and Multi-Class Semi-Supervised Ker- 

nel Spectral Clustering (MSS-KSC). In indefinite KSC models one solves an eigenvalue problem whereas 

indefinite MSS-KSC finds the solution by solving a linear system of equations. For the proposed indefi- 

nite models, we give the feature space interpretation, which is theoretically important, especially for the 

scalability using Nyström approximation. Experimental results on several real-life datasets are given to 

illustrate the efficiency of the proposed indefinite kernel spectral learning. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Kernel-based learning models have shown great success in var-

ious application domains [1–3] . Traditionally, kernel learning is re-

stricted to positive semi-definite (PSD) kernels as the properties

of Reproducing Kernel Hilbert Spaces (RKHS) are well explored.

However, many positive semi-definite kernels such as the sigmoid

kernel [4] remain positive semi-definite only when their associ-

ated parameters are within a certain range, otherwise they become

non-positive definite [5] . Moreover, the positive definite kernels are

limited in some problems due to the need of non-Euclidean dis-

tances [6,7] . For instance in protein similarity analysis, the protein

sequence similarity measures require learning with a non-PSD sim-

ilarity matrix [8] . 

The need of using indefinite kernels in machine learning meth-

ods attracted many research interests on indefinite learning in both

theory and algorithm. Theoretical discussions are mainly on Re-

producing Kernel Kre ̌ın Spaces (RKKS, [9,10] ), which is different to

the RKHS for PSD kernels. In algorithm design, a lot of attempts

have been made to cope with indefinite kernels by regularizing the

non-positive definite kernels to make them positive semi-definite

[11–14] . It is also possible to directly use an indefinite kernel in

e.g., support vector machine (SVM) [4] . Though an indefinite ker-
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el makes the problem non-convex, it is still possible to get a local

ptimum as suggested by Lin and Lin [15] . One important issue

s that kernel trick is no longer valid when an indefinite kernel

s applied in SVM and one needs new feature space interpreta-

ions to explain the effectiveness of SVM with indefinite kernels.

he interpretation is usually about a pseudo-Euclidean (pE) space,

hich is a product of two Euclidean vector spaces, as analyzed in

10,16] . Notice that “indefinite kernels” literally covers asymmetric

nes and complex ones. But this paper restricts “indefinite kernel”

o the kernels that correspond to real symmetric indefinite matri-

es, which is consistent to the existing literature on indefinite ker-

el. 

Indefinite kernels are also applicable to the least squares sup-

ort vector machines [17] . In LS-SVM, one solves a linear system

f equations in the dual and the optimization problem itself has no

dditional requirement on the positiveness of the kernel. In other

ords, even if an indefinite kernel is used in the dual formulation

f LS-SVM, it is still convex and easy to solve, which is different

rom indefinite kernel learning with SVM. However, like in SVM,

sing an indefinite kernel in LS-SVM looses the traditional inter-

retation of the feature space and a new formulation has been re-

ently discussed in [18] . 

Motivated by the success of indefinite learning for some su-

ervised learning tasks, we in this paper introduce indefinite sim-

larities to unsupervised as well as semi-supervised models that

an learn from both labeled and unlabeled data instances. There

ave been already many efficient semi-supervised models, such as

https://doi.org/10.1016/j.patcog.2018.01.014
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aplacian support vector machine [19] , which assumes that neigh-

oring point pairs with a large weight edge are most likely within

he same cluster. However, to the best of our knowledge, there is

o work that extends unsupervised/semi-supervised learning to in-

efinite kernels. 

Since using indefinite kernels in the framework of LS-SVM does

ot change the training problem, here we focus on multi-class

emi-supervised kernel spectral clustering (MSS-KSC) model pro-

osed by Mehrkanoon et al. [20] . MSS-KSC model and its exten-

ions for analyzing large-scale data, data streams as well as multi-

abel datasets are discussed in [21–23] respectively. When one of

he regularization parameters is set to zero, MSS-KSC becomes the

ernel spectral clustering (KSC), which is an unsupervised learning

lgorithm introduced by Alzate and Suykens [24] . It is a special

ase of MSS-KSC. Due to the link to LS-SVM, it can be expected

nd also will be shown here that MSS-KSC with indefinite similar-

ties are still easy to solve. However, the kernel trick is no longer

alid and we have to find corresponding feature space interpreta-

ions. The purpose of this paper is to introduce indefinite kernels

or semi-supervised learning as well as unsupervised learning as a

pecial case. Specifically, we propose indefinite kernels in MSS-KSC

nd KSC models. Subsequently, we derive their feature space in-

erpretation. Besides of theoretical interests, the interpretation al-

ows us to develop algorithms based on Nyström approximation for

arge-scale problems. 

The paper is organized as follows. Section 2 briefly reviews the

SS-KSC with PSD kernel. In Section 3 , the MSS-KSC with an in-

efinite kernel is derived and the interpretation of the feature map

s provided. As a special case of MSS-KSC, the KSC with an indefi-

ite kernel and its feature interpretation is discussed in Section 4 .

n Section 5 , we discuss the scalability of the indefinite KSC/MSS-

SC model on large-scale problems. The experimental results are

iven in Section 6 to confirm the validity and applicability of the

roposed model on several real life small and large-scale datasets.

ection 7 ends the paper with a brief conclusion. 

. MSS-KSC with PSD kernel 

Consider training data 

 = { x 1 , . . . , x n UL ︸ ︷︷ ︸ 
Unlabeled 

(D U ) 

, x n UL +1 , . . . , x n ︸ ︷︷ ︸ 
Labeled 
(D L ) 

} , (1)

here { x i } n i =1 
∈ R 

d . The first n UL points do not have labels whereas

he last n L = n − n UL points have been labeled. Assume that there

re Q classes ( Q ≤ N c ), then the label indicator matrix Y ∈ R 

n L ×Q is

efined as follows: 

 i j = 

{
+1 if the i th point belongs to the jth class , 
−1 otherwise. 

(2) 

The primal formulation of multi-class semi-supervised KSC

MSS-KSC) described by Mehrkanoon et al. [20] is given as follows:

min 

w 

(� ) ,b (� ) ,e (� ) 

1 

2 

Q ∑ 

� =1 

w 

(� ) T w 

(� ) − γ1 

2 

Q ∑ 

� =1 

e (� ) 
T 
V e (� ) + 

γ2 

2 

Q ∑ 

� =1 

(e (� ) − c (� ) ) T ˜ A (e (� ) − c (� ) ) 

subject to e (� ) = �w 

(� ) + b (� ) 1 n , � = 1 , . . . , Q, 

(3) 

here c � is the � th column of the matrix C defined as 

 = [ c (1) , . . . , c (Q ) ] n ×Q = 

[
0 n UL ×Q 

Y 

]
n ×Q 

. (4)

ere 

= [ ϕ (x 1 ) , . . . , ϕ (x n )] T ∈ R 

n ×h 
here ϕ(·) : R 

d → R 

h is the feature map and h is the dimension

f the feature space which can be infinite dimensional. 0 n UL ×Q is a

ero matrix of size n UL × Q, Y is defined previously, and the right

and of (4) is a matrix consisting of 0 n UL ×Q and Y . The matrix ˜ A is

efined as follows: 

˜ 
 = 

[
0 n UL ×n UL 

0 n UL ×n L 

0 n L ×n UL 
I n L ×n L 

]
, 

here I n L ×n L is the identity matrix of size n L × n L . V is the inverse

f the degree matrix defined as follows: 

 = D 

−1 = diag 

(
1 

d 1 
, · · · , 

1 

d n 

)
, 

here d i = 

∑ n 
j=1 K(x i , x j ) is the degree of the i th data point. 

As stated in [20] , the object function in the formulation (3) ,

ontains three terms. The first two terms together with the set

f constraints correspond to a weighted kernel PCA formulation

n the least squares support vector machine framework given in

24] which is shown to be suitable for clustering and is referred

o as kernel spectral clustering (KSC) algorithm. The last regular-

zation term in (3) aims at minimizing the squared distance be-

ween the projections of the labeled data and their corresponding

abels. This term enforces the projections of the labeled data points

o be as close as possible to the true labels. Therefore by incor-

orating the labeled information, the pure clustering KSC model

s guided so that it respects the provided labels by not misclas-

ifying them. In this way, one could learn from both labeled and

nlabeled instances. In addition thanks to introduced model selec-

ion scheme in [20] , the MSS-KSC model is also equipped with the

ut-of-sample extension property to predict the labels of unseen

nstances. 

It should be noted that, ignoring the last regularization term, or

quivalently setting γ2 = 0 and Q = N c − 1 , reduces the MSS-KSC

ormulation to kernel spectral clustering (KSC) described in [24] .

herefore, KSC formulation in the primal can be covered as a spe-

ial case of MSS-KSC formulation. As illustrated by Mehrkanoon

t al. [20] , given Q labels the approach is not restricted to find-

ng just Q classes and instead is able to discover up to 2 Q hidden

lusters. In addition, it uses a low embedding dimension to reveal

he existing number of clusters which is important when one deals

ith large number of clusters. 

When the feature map ϕ in (3) is not explicitly known, in the

ontext of PSD kernel, one may use the kernel trick and solve the

roblem in the dual. Elimination of the primal variables w 

( � ) , e ( � ) 

nd making use of Mercer’s Theorem result in the following linear

ystem in the dual [20] : 

2 

(
I n − R 1 n 1 

T 
n 

1 

T 
n R 1 n 

)
c (� ) = α(� ) − R 

(
I n − 1 n 1 

T 
n R 

1 

T 
n R 1 n 

)
�α(� ) , (5) 

here R = γ1 V − γ2 ̃
 A . In (5) , there are two coefficients, namely γ 1 

nd γ 2 , which reflect the emphasis on unlabeled and labeled sam-

les, respectively, as shown in (3) . Besides, there could be one or

ultiple parameters in the kernel. All of these parameters could be

uned by cross-validation. 

. MSS-KSC with indefinite kernel 

Traditionally, the kernel used in MSS-KSC is restricted to be

ositive semi-definite. When the kernel in (5) is indefinite, one still

equires to solve a linear system of equations. However, the feature

pace has different interpretations compared to definite kernels. In

hat follows we establish and analyze the feature space interpre-

ations for MSS-KSC. 

heorem 3.1. Suppose that for a symmetric but indefinite kernel ma-

rix K, the solution of the linear system (5) is denoted by [ α∗ , b ∗ ] T .
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Fig. 1. Illustrating the performance of KSC model with an indefinite kernel (TL1 

kernel) on synthetic three concentric example. (a) Original data. (b) The predicted 

memberships obtained using indefinite KSC model with μ = 0 . 4 . (c) The line struc- 

ture of the score variables, e , indicating the good generalization performance of in- 

definite KSC model with μ = 0 . 4 . 
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Then there exist two feature mappings ϕ1 and ϕ2 , which correspond

to the matrices �1 and �2 , respectively, such that 

w 

(� ) 
1 

= 

n ∑ 

i =1 

α(� ) 
∗,i 

ϕ 1 (x i ) , � = 1 , . . . , Q, (6)

and 

w 

(� ) 
2 

= 

n ∑ 

i =1 

α(� ) 
∗,i 

ϕ 2 (x i ) , � = 1 , . . . , Q, (7)

which is a stationary point of the following primal problem: 

min 

w 

(� ) 
1 

,w 

(� ) 
2 

,b (� ) ,e (� ) 

1 

2 

Q ∑ 

� =1 

w 

(� ) 
1 

T 
w 

(� ) 
1 

− 1 

2 

Q ∑ 

� =1 

w 

(� ) 
2 

T 
w 

(� ) 
2 

+ 

γ2 

2 

Q ∑ 

� =1 

(e (� ) −c (� ) ) T ˜ A (e (� ) −c (� ) )− γ1 

2 

Q ∑ 

� =1 

e (� ) 
T 
V e (� ) 

subject to e (� ) = �1 w 

(� ) 
1 

+ �2 w 

(� ) 
2 

+ b (� ) ∗ 1 n , � = 1 , . . . , Q . 

(8)

Then, the dual problem of (8) is given in (5) , with the kernel ma-

trix � defined as follows, 

�i, j = K 1 (x i , x j ) − K 2 (x i , x j ) , (9)

where, K 1 ( x i , x j ) and K 2 ( x i , x j ) are two PSD kernels. 

Proof. The Lagrangian of the constrained optimization problem

(8) becomes 

L (w 

(� ) 
1 

, w 

(� ) 
2 

, b (� ) ∗ , e (� ) , α(� ) 
∗ ) = 

1 

2 

Q ∑ 

� =1 

w 

(� ) 
1 

T 
w 

(� ) 
1 

−
Q ∑ 

� =1 

w 

(� ) 
2 

T 
w 

(� ) 
2 

−γ1 

2 

Q ∑ 

� =1 

e (� ) 
T 
V e (� ) 

+ 

γ2 

2 

Q ∑ 

� =1 

(e (� ) − c (� ) ) T ˜ A (e (� ) − c (� ) ) 

+ 

Q ∑ 

� =1 

α(� ) 
∗

T 
(

e (� ) − �1 w 

(� ) 
1 

−�2 w 

(� ) 
2 

− b (� ) ∗ 1 n 

)
, 

where α(� ) 
∗ is the vector of Lagrange multipliers. Then the KKT op-

timality conditions are as follows, 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂L 

∂w 

(� ) 
1 

= 0 → w 

(� ) 
1 

= �T 
1 α

(� ) 
∗ , � = 1 , . . . , Q, 

∂L 

∂w 

(� ) 
2 

= 0 → w 

(� ) 
2 

= −�T 
2 α

(� ) 
∗ , � = 1 , . . . , Q, 

∂L 

∂b (� ) 
= 0 → 1 

T 
n α

(� ) 
∗ = 0 , � = 1 , . . . , Q, 

∂L 

∂e (� ) 
= 0 → α(� ) 

∗ = (γ1 V − γ2 ̃
 A ) e (� ) + γ2 c 

(� ) , � = 1 , . . . , Q, 

∂L 

∂α(� ) 
∗

= 0 → e (� ) = �1 w 

(� ) 
1 

+ �2 w 

(� ) 
2 

+ b (� ) ∗ 1 n , � = 1 , . . . , Q . 

(10)

Elimination of the primal variables w 

(� ) 
1 

, w 

(� ) 
2 

, e (� ) and making

use of the kernel trick ( �1 = �T 
1 �1 and �2 = �T 

2 �2 ) lead to the

linear system of equations in the dual defined in (5) with the in-

definite kernel matrix defined in (9) . With α∗ obtained from (5) ,

the weight vectors w 

(� ) 
1 

and w 

(� ) 
2 

defined in (6) and (7) , satisfy the

first-order optimality condition of (8) . �
One can show that from the third KKT optimality condition, the

ias term is determined by 

 

(� ) 
∗ = (1 / 1 

T 
n R 1 n )(−1 

T 
n γ2 c 

(� ) − 1 

T 
n R �α(� ) 

∗ ) , � = 1 , . . . , Q, (11)

here R is defined as in (5) . Once the solution vector and the bias

erm are obtained, one can use the out-of-sample extension prop-

rty of the model to predict the score variables of the unseen test

nstances as follows: 

 

(� ) 
test = �α(� ) 

∗ + b (� ) ∗ , � = 1 , . . . , Q . (12)

The above discussion gives the feature space interpretation for

ndefinite MSS-KSC. The discussion in a pE space is similar to in-

efinite SVM; see, [10,16,18] . The main difference from learning al-

orithms for PSD kernels is that the indefinite learning is to min-

mize a pseudo-distance. The readers are referred to Fig. 1 in [16] ,

hich gives a clear geometric explanation for the distance in a pE

pace. 

In practice, the performance of the MSS-KSC model depends on

he choice of the parameters. In this aspect, there is no difference

etween a PSD kernel and an indefinite kernel. Therefore the fol-

owing model selection scheme introduced in [20] for MSS-KSC can

e employed: 

max 
1 ,γ2 ,μ

η Sil (γ1 , γ2 , μ) + (1 − η) Acc (γ1 , γ2 , μ) . (13)

t is a combination of Silhouette (Sil) and classification accuracy

Acc). η ∈ [0, 1] is a user-defined parameter that controls the trade

ff between the importance given to unlabeled and labeled in-

tances. The MSS-KSC algorithm with an indefinite kernel is sum-

arized in Algorithm 1 . One can note that the main difference

ith respect to Algorithm 1 discussed in [20] is at the level em-

loying the indefinite kernel and all the other steps remain un-

hanged. 
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Algorithm 1 Indefinite kernel in multi-class semi-supervised clas- 

sification model. 

1: Input: Training data set D, labels Z, tuning parameters { γi } 2 i =1 
, 

kernel parameter μ, test set D 

test = { x test 
i 

} N test 
i =1 

and codebook 

CB = { c q } Q q =1 

2: Output: Class membership of test data D 

test 

3: Construct the indefinite kernel matrix � (see (9)). 

4: Solve the dual linear system (5) with the indefinite kernel ma- 

trix � to obtain { α� } Q 
� =1 

and compute the bias term { b � ∗} Q � =1 
us- 

ing (11). 

5: Estimate the test data projections { e (� ) test } Q � =1 
using (12). 

6: Binarize the test projections and form the encoding ma- 

trix [ sign (e (1) 
test ) , . . . , sign (e (Q ) 

test )] N test ×Q for the test points (Here 

e (� ) test = [ e (� ) 
test, 1 

, . . . , e (� ) 
test,N test 

] T ). 

7: For each i , assign x test 
i 

to class q ∗, where q ∗ = 

argmin 

q 
d H (e (� ) 

test ,i 
, c q ) and d H (·, ·) is the Hamming distance. 
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. KSC with indefinite kernels - as a special case 

As a special case of MSS-KSC formulation (8) , when γ2 = 0 and

 = N c − 1 , we obtain (17) , i.e., the KSC model given by Alzate and

uykens [24] . This dual problem itself does not require the pos-

tiveness of �. Thus, an indefinite kernel is applicable here and

ne still solves an eigenvalue problem. However, the kernel trick,

hich is the key to build primal-dual relationship for definite ker-

els, cannot be used for indefinite kernels, which follows that dif-

erent feature space interpretations are needed. In this section, we

stablish and analyze the feature space interpretations, similar to

he discussion for indefinite MSS-KSC. 

heorem 4.1. Suppose that the solution of the eigenvalue problem

17) , in the dual, for a symmetric but indefinite kernel matrix K is

enoted by [ α∗ , b ∗ ] T . Then there exist two feature mappings ϕ1 and

2 , such that 

 

(� ) 
1 

= 

n ∑ 

i =1 

α(� ) 
∗,i 

ϕ 1 (x i ) , � = 1 , . . . , N c − 1 , (14)

nd 

 

(� ) 
2 

= 

n ∑ 

i =1 

α(� ) 
∗,i 

ϕ 2 (x i ) , � = 1 , . . . , N c − 1 , (15)

hich is a stationary point of the following primal problem: 

min 

w 

(� ) 
1 

,w 

(� ) 
2 

,b (� ) ∗ ,e (� ) 

1 

2 

N c −1 ∑ 

� =1 

w 

(� ) 
1 

T 
w 

(� ) 
1 

− 1 

2 

N c −1 ∑ 

� =1 

w 

(� ) 
2 

T 
w 

(� ) 
2 

−γ1 

2 

N c −1 ∑ 

� =1 

e (� ) 
T 
V e (� ) (16) 

subject to e (� ) = �1 w 

(� ) 
1 

+ �2 w 

(� ) 
2 

+ b (� ) ∗ 1 n , � = 1 , . . . , N c − 1 . 

Then, the dual problem of Haasdonk (16) is given as: 

 P v �α(� ) = λα(� ) , (17) 

here λ = n/γ� , α( � ) are the Lagrange multipliers and P v is the

eighted centering matrix: 

 v = I n − 1 

1 

T 
n V 1 n 

1 n 1 

T 
n V. 

ere I n is the n × n identity matrix and the kernel matrix � is defined

s follows, 

i, j = K 1 (x i , x j ) − K 2 (x i , x j ) , (18)

here, K 1 ( x i , x j ) and K 2 ( x i , x j ) are two PSD kernels. 
roof. It follows the proof of indefinite MSS-KSC model described

n (3) . �

From the link between KSC and LS-SVM, the above theorem

lso could be regarded as a weighted and multi-class extension of

he result obtained by Huang et al. [18] . To give an intuitive idea

hat using indefinite kernels in KSC is possible, we show a simple

xample that applies the truncated � 1 distance (TL1) kernel [25] ,

hich is indefinite and takes the following formulation, 

(s, t) = max { μ − ‖ s − t‖ 1 , 0 } . (19)

or this problem, one can observe that KSC with an indefinite ker-

el indeed can successfully cluster the points, as shown in Fig. 1 .

ere the Silhouette index is used for model selection (see [26] for

verview of the internal clustering quality metrics). 

Theorem 4.1 and Theorem 4.2 are both based on the positive

ecomposition of an indefinite kernel matrix �: since it is a sym-

etric and real matrix, we can surely find two PSD matrices K 1 

nd K 2 such that 

i j = K 1 i j − K 2 i j . 

or example, K 1 and K 2 can be constructed from the positive and

egative eigenvalues of �. This decomposition indicates that a PSD

ernel is a special case of indefinite kernel with K 2 i j = 0 . Therefore,

he use of indefinite kernel in spectral learning provides flexibility

o improve the performance of PSD learning, if the kernel, which

ould be indefinite or definite, is suitably designed. 

. Scalability 

Kernel based models have shown to be successful in many ma-

hine learning tasks. However, unfortunately, many of them scale

oorly with the training data size due to the need for storing and

omputing the kernel matrix which is usually dense. 

In the context of kernel based semi-supervised learning with

SD kernels, attempts have been made to make the kernel based

odels scalable, see [21,27,28] . Mehrkanoon, et al. [21] introduced

he Fixed-Size MSS-K SC (FS-MSS-K SC) model for classification of

arge-scale partially labeled instances. FS-MSS-KSC uses an explicit

eature map approximated by the Nyström method [17,29] and

olves the optimization problem in the primal. The finite dimen-

ional approximation of the feature map is obtained by numeri-

ally solving a Fredholm integral equation using the Nyström dis-

retization method which results in an eigenvalue decomposition

f the kernel matrix �; see [29] . 

The i th component of the n -dimensional feature map ˆ ϕ : R 

d →
 

n , for any point x ∈ R 

d , can be obtained as follows: 

ˆ  i (x ) = 

1 √ 

λ(s ) 
i 

n ∑ 

k =1 

u ki K(x k , x ) , (20)

here λ(s ) 
i 

and u i are eigenvalues and eigenvectors of the kernel

atrix �n × n . Furthermore, the k th element of the i th eigenvec-

or is denoted by u ki . In practice when n is large, we work with

 subsample (prototype vectors) of size m � n of which the ele-

ents are selected using an entropy based criterion. In this case,

he m -dimensional feature map ˆ ϕ : R 

d → R 

m can be approximated

s follows: 

ˆ  (x ) = [ ̂  ϕ 1 (x ) , . . . , ˆ ϕ m 

(x )] T , (21)

here 

ˆ  i (x ) = 

1 √ 

λ(s ) 
i 

m ∑ 

k =1 

u ki K(x k , x ) , i = 1 , . . . , m. (22)

ere, λ(s ) 
i 

and u i are the eigenvalues and eigenvectors of the con-

tructed kernel matrix �m × m 

with the selected prototype vectors. 
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When an indefinite kernel is used, the matrix K has both posi-

tive and negative eigenvalues. Thus, according to the previous fea-

ture interpretations, one can then construct two approximations

for the feature maps �1 and �2 based on positive and negative

eigenvalues, respectively. Here we give the following lemma to ex-

plain the approximation for indefinite MSS-KSC and a similar result

is valid for indefinite KSC as well. 

Lemma 5.1. Given the m-dimensional approximation to the

feature map, i.e. ˆ �1 = [ ̂  ϕ (x 1 ) , . . . , ˆ ϕ (x n )] T ∈ R 

n ×m 1 , and
ˆ �2 = [ ̂  ϕ (x 1 ) , . . . , ˆ ϕ (x n )] T ∈ R 

n ×m 2 , and regularization constants

γ1 , γ2 , ∈ R 

+ , the solution to (8) is obtained by solving the following

linear system of equations in the primal: 

⎡ 

⎣ 

ˆ �T 
1 R 

ˆ �1 + I m 1 
ˆ �T 

1 R 

ˆ �2 
ˆ �T 

1 R 1 n 

ˆ �T 
2 R 

ˆ �1 
ˆ �T 

1 R 

ˆ �1 − I m 2 
ˆ �T 

2 R 1 n 

1 n 
T R 

ˆ �1 1 n 
T R 

ˆ �2 1 n 
T R 1 n 

⎤ 

⎦ 

⎡ 

⎣ 

w 

(� ) 
1 

w 

(� ) 
2 

b (� ) 

⎤ 

⎦ 

= γ2 

⎡ 

⎣ 

ˆ �T 
1 c 

(� ) 

ˆ �T 
2 c 

(� ) 

1 

T 
n c 

(� ) 

⎤ 

⎦ , � = 1 , . . . , Q, (23)

where R = γ2 A − γ1 V is a diagonal matrix, V and R are given pre-

viously. I m 1 
and I m 2 

are the identity matrix of size m 1 × m 1 and

m 2 × m 2 respectively. 

Proof. Substituting the explicit feature maps ˆ �1 and 

ˆ �2 into for-

mulation (8) , one can rewrite it as an unconstrained optimization

problem. Subsequently setting the derivative of the cost function

with respect to the primal variables w 

(� ) 
1 

, w 

(� ) 
2 

and b ( � ) to zero re-

sults in the linear system (23) . �
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Fig. 2. Illustrating the performance of MSS-KSC model on synthetic single labeled exa

obtained using MSS-KSC model with the RBF kernel. (c) The predicted memberships obta

matrix indicating the cluster structure in the data. 
The score variables evaluated at the test set D 

test = { x i } n test 
i =1 

be-

ome: 

 

(� ) 
test = 

ˆ �test 
1 w 

(� ) 
1 

+ 

ˆ �test 
2 w 

(� ) 
2 

+ b (� ) 1 n test 
� = 1 , . . . , Q, (24)

here ˆ �test 
1 

= [ ̂  ϕ (x 1 ) , . . . , ˆ ϕ (x n test )] 
T ∈ R 

n test ×m 1 and ˆ �test 
2 

=
 ̂  ϕ (x 1 ) , . . . , ˆ ϕ (x n test )] T ∈ R 

n test ×m 2 . The decoding scheme con-

ists of comparing the binarized score variables for test data with

he codebook CB and selecting the nearest codeword in terms of

amming distance. 

. Numerical experiments 

In this section, experimental results on a synthetic as well as

everal real-life datasets from the UCI machine learning reposi-

ory [30] are given. We also show the applicability of the proposed

ndefinite method on a simple image segmentation task. Further-

ore, the performance of the model for classification of partially

abeled large-scale datasets using indefinite kernels will be studied

n this section. 

The performance of kernel learning relies on the choice of ker-

el. In this paper, we consider two indefinite kernels in KSC/MSS-

SC. One is the TL1 kernel (19) and the other is the tanh kernel

ith parameters c, d : 

(s, t) = tanh (cs T t + d) . (25)

otice that when c > 0, the tanh kernel is conditionally positive

efinite; otherwise, it is indefinite. In the following experiments,

 is selected from both positive and negative vales, and hence the

anh kernel is regarded as an indefinite kernel in this paper. The

erformance of these indefinite kernels will be compared with the

BF kernel, which is the most popular PSD kernel and takes the
x
1

x 2
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mple. (a) Original labeled and unlabeled points. (b) The predicted memberships 

ined using MSS-KSC model with an indefinite kernel. (d) The associated similarity 
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Fig. 3. Illustrating the sensitivity of the MSS-KSC model with respect to its param- 

eters, γ 2 and μ in the case of the TL1 kernel for the Wine dataset. 
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ollowing formulation: 

(s, t) = exp (−‖ s − t‖ 

2 
2 /σ

2 ) . (26)

.1. Semi-supervised classification 

First, Two-moons dataset, a 2-dimensional synthetic problem,

s considered to visualize the performance of indefinite kernels in

 semi-supervise setting. The results obtained via the RBF kernel

nd the TL1 kernel are shown in Fig. 2 , from which it can be seen

hat the two classes have been successfully classified by both the

SD and the non-PSD kernel. One may notice that the decision

oundaries obtained by the TL1 kernel is not as smooth as the RBF
Table 1 

The average accuracy and the standard deviation of the LapSVMp [19] and MSS-KSC on t

Dataset d Q Ratio label D train 
Labeled 

/ D train 
Unlabeled 

/ D test MSS-

RBF 

σ is 

Iris 4 3 1/4 15/45/90 0.85 

1/3 20/40/90 0.87 

1/2 30/30/90 0.92 

Wine 13 3 1/4 18/54/106 0.89 

1/3 24/48/106 0.92 

1/2 36/36/106 0.94 

Zoo 16 7 1/4 11/30/60 0.89 

1/3 14/27/60 0.89 

1/2 21/20/60 0.90 

Seeds 7 3 1/4 21/63/126 0.87 

1/3 28/56/126 0.88 

1/2 42/42/126 0.90 

Monk1 6 2 1/4 56/167/333 0.63 

1/3 75/148/333 0.67 

1/2 112/111/333 0.68 

Monk2 6 2 1/4 61/180/360 0.63 

1/3 81/160/360 0.64 

1/2 121/120/360 0.71 

Monk3 6 2 1/4 56/166/332 0.74 

1/3 74/148/332 0.79 

1/2 111/111/332 0.81 

Pima 8 2 1/4 77/231/460 0.70 

1/3 74/148/460 0.71 

1/2 154/154/460 0.72 

Ionosphere 33 2 1/4 36/105/210 0.77 

1/3 47/94/210 0.83 

1/2 71/70/210 0.86 
ernel. It is due to the piecewise linearity of the TL1 kernel and

ould be different if other non-PSD kernels are used. 

Next, we conduct experiments on real-life datasets from UCI

epository [30] . Here, 60% of the whole data (at random) is used as

est set and the remaining 40% as training set. We randomly select

art of the training data as the labeled and the remaining ones as

he unlabeled training data. The ratio of the labeled training data

oints that is used in our experiments is denoted as follows: 

atio label = 

# labeled training data points 

# training data points 
. 

he considered ratios for forming a labeled training set are one-

ourth, one-third and half of the whole training dataset. To re-

uce the randomness of the experiment, we repeat this process

0 times. At each run, 10-fold cross validation is performed for

odel selection. The parameters to tune are the regularization

onstants γ 1 , γ 2 and kernel parameters. In our experiments, we

et γ1 = 1 and then find reasonable values for γ 2 , μ in the range

10 −3 , 10 0 ] and [0, d ], respectively. For the RBF kernel, and σ ∈
 10 −4 , 10 −3 , . . . , 10 4 } . For tanh kernel, the candidate sets are c ∈
−0 . 5 − 0 . 2 , −0 . 1 , 0 , 0 . 1 , 0 . 2 , 0 . 5 } and d ∈ { 2 −10 , 2 −7 , . . . , 2 3 } . The

ross-validation performance on the Wine dataset for the TL1 ker-

el is shown in Fig. 3 , from which and other experiments, we

mpirically observed that the TL1 kernel enjoys good stability on

ts kernel parameters. This makes its performance for a pre-given

alue, e.g., μ = 0 . 7 d, satisfactory in many tested examples. 

The average accuracy on the test dataset over 10 trials are re-

orted in Table 1 , where the details of the datasets are provided

s well. From the results, one can observe that the performance

f the unsupervised KSC model with an indefinite kernel is gen-

rally comparable to that with the RBF kernel. For most problems,

he TL1 kernel with a pre-given μ outputs good results. Moreover,

here are indeed some problems, like Monk3 and Ionosphere, for

hich indefinite kernel learning can improve the performance sig-

ificantly. 
he test set using PSD and indefinite kernels. 

KSC method 

kernel TL1 kernel TL1 kernel Tanh-kernel LapSVMp 

tuned μ is tuned μ = 0 . 7 d c, d is tuned 

± 0.09 0.88 ± 0.07 0.86 ± 0.09 0.65 ± 0.11 0.70 ± 0.12 

± 0.07 0.88 ± 0.09 0.86 ± 0.03 0.71 ± 0.07 0.76 ± 0.11 

± 0.03 0.90 ± 0.08 0.88 ± 0.09 0.77 ± 0.10 0.83 ± 0.10 

± 0.07 0.90 ± 0.08 0.89 ± 0.03 0.59 ± 0.12 0.73 ± 0.11 

± 0.01 0.93 ± 0.01 0.92 ± 0.03 0.75 ± 0.11 0.84 ± 0.09 

± 0.01 0.95 ± 0.02 0.93 ± 0.03 0.84 ± 0.12 0.90 ± 0.10 

± 0.05 0.84 ± 0.10 0.75 ± 0.17 0.60 ± 0.10 0.78 ± 0.08 

± 0.04 0.90 ± 0.04 0.80 ± 0.10 0.66 ± 0.09 0.82 ± 0.11 

± 0.04 0.89 ± 0.04 0.83 ± 0.17 0.72 ± 0.12 0.85 ± 0.10 

± 0.05 0.88 ± 0.03 0.85 ± 0.09 0.62 ± 0.10 0.80 ± 0.10 

± 0.09 0.86 ± 0.09 0.85 ± 0.04 0.70 ± 0.12 0.83 ± 0.11 

± 0.01 0.88 ± 0.02 0.88 ± 0.02 0.79 ± 0.11 0.87 ± 0.09 

± 0.04 0.66 ± 0.03 0.63 ± 0.03 0.59 ± 0.09 0.60 ± 0.10 

± 0.03 0.69 ± 0.03 0.64 ± 0.03 0.60 ± 0.03 0.65 ± 0.11 

± 0.07 0.70 ± 0.08 0.70 ± 0.03 0.63 ± 0.07 0.69 ± 0.08 

± 0.08 0.61 ± 0.06 0.54 ± 0.03 0.57 ± 0.02 0.58 ± 0.11 

± 0.06 0.62 ± 0.05 0.55 ± 0.03 0.61 ± 0.06 0.63 ± 0.10 

± 0.04 0.65 ± 0.06 0.58 ± 0.02 0.63 ± 0.03 0.66 ± 0.11 

± 0.03 0.81 ± 0.03 0.81 ± 0.02 0.68 ± 0.10 0.77 ± 0.08 

± 0.02 0.85 ± 0.03 0.83 ± 0.04 0.74 ± 0.02 0.80 ± 0.09 

± 0.02 0.87 ± 0.03 0.87 ± 0.02 0.77 ± 0.04 0.84 ± 0.10 

± 0.01 0.70 ± 0.03 0.70 ± 0.03 0.62 ± 0.14 0.70 ± 0.08 

± 0.02 0.72 ± 0.03 0.71 ± 0.01 0.69 ± 0.02 0.71 ± 0.10 

± 0.02 0.72 ± 0.02 0.72 ± 0.02 0.70 ± 0.05 0.72 ± 0.06 

± 0.05 0.81 ± 0.08 0.75 ± 0.07 0.69 ± 0.04 0.77 ± 0.09 

± 0.06 0.88 ± 0.03 0.77 ± 0.07 0.71 ± 0.05 0.83 ± 0.08 

± 0.07 0.88 ± 0.03 0.79 ± 0.05 0.73 ± 0.03 0.86 ± 0.09 
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Table 2 

Comparison of the KSC model with PSD and indefinite kernel, K-means and landmark-based 

spectral clustering algorithm using two internal clustering quality metrics, i.e. Silhouette and 

DB index, on some real datasets. 

Dataset n d N c Silhouette index DB index 

RBF TL1 K-means RBF TL1 K-means 

Wine 178 13 3 0.44 0.46 0.50 1.41 1.06 1.22 

Thyroid 215 3 2 0.68 0.81 0.75 0.52 0.43 0.97 

Breast 699 9 2 0.75 0.75 0.75 0.77 0.86 0.76 

Glass 214 9 7 0.81 0.84 0.63 1.20 1.09 0.64 

Iris 150 4 3 0.77 0.77 0.64 0.73 0.59 0.70 

(a) (b) (c)

(d) (e) (f)

Fig. 4. Illustrating the performance of MSS-KSC model with an indefinite kernel (TL1) on image segmentation. (a,d) The labeled images. (b,e) The segmentations obtained 

by unsupervised KSC model with the TL1 kernel. (c,f) The segmentation obtained by semi-supervised MSS-KSC model with the TL1 kernel. 
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Table 3 

Dataset statistics. 

Dataset # points # attributes # classes 

Adult 48,842 14 2 

IJCNN 141,691 22 3 

Cod-RNA 331,152 8 2 

Covertype 581,012 54 3 

SUSY 5,0 0 0,0 0 0 18 2 

Sensorless 58,509 48 11 

letter 20,0 0 0 16 26 
6.2. Clustering 

The experimental results on several real world clustering

datasets 1 using KSC model with the RBF and the TL1 kernel are

reported in Table 2 . The cluster memberships of these datasets

are not known beforehand, therefore the clustering results can be

evaluated by internal clustering quality metrics such as the widely

used silhouette index (Sil-index) and the Davies Bouldin index (DB-

index) [26] . Larger values of Sil-index imply better clustering qual-

ity. While, the lower the value of DB-index means that the clus-

tering quality is better. In Table 2 , the best indices are underlined

where one can observe the good performance of the TL1 kernel.

Notice that simply from these experiments, we cannot conclude

indefinite kernel is better or worse than the definite ones. But the

results indicate that for some problems, it is worth to consider the

proposed indefinite unsupervised learning methods, which may

further improve the performance from the traditional PSD kernel

learning methods. 

6.3. Image segmentation 

Here we show the application of the proposed indefinite Ker-

nel on unsupervised and semi-supervised image segmentation. Fol-

lowing the lines of Mehrkanoon et al. [22] , for each image, a lo-

cal color histogram with a 5 × 5 local window around each pixel
1 http://cs.joensuu.fi/sipu/datasets/ (accessed: 2015-12-29). 
s computed using minimum variance color quantization of eight

evels. A subset of 500 unlabeled pixels together with some la-

eled pixels are used for training and the whole image for test. The

riginal and labeled images together with segmentation results are

hown in Fig. 4 . One can qualitatively observe that thanks to the

rovided labeled pixels, the semi-supervised model performs bet-

er than completely unsupervised model on the test images. 

.4. Large scale datasets 

Here we show the possibility of applying the TL1 kernel in the

ontext of semi-supervised learning on large-scale datasets. The

ize of the real-life data, on which the experiments were con-

ucted, ranges from medium to large and covering both binary and
Satimage 6435 36 6 

texture 5500 40 11 

USPS 9298 256 10 

https://doi.org/cs.joensuu.fi/sipu/datasets/
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Table 4 

Comparing the average test accuracy, standard deviation and computation time of the FS-MSS-KSC model [21] with the RBF kernel and the TL1 

kernel on real-life datasets over 10 simulation runs. 

Dataset p Ratio label D L tr D U tr D test Test accuracy Computation time (in seconds) 

RBF TL1 RBF TL1 

USPS 2 1/3 10 0 0 20 0 0 1859 0.86 ± 0.002 0.86 ± 0.002 0.02 0.16 

1/3 20 0 0 40 0 0 1859 0.88 ± 0.003 0.89 ± 0.002 0.02 0.81 

Texture 3 1/4 500 1500 1100 0.85 ± 0.002 0.87 ± 0.002 0.01 0.02 

1/4 10 0 0 30 0 0 1100 0.89 ± 0.004 0.91 ± 0.001 0.02 0.05 

Satimage 3 1/4 500 1500 1287 0.83 ± 0.003 0.85 ± 0.003 0.01 0.02 

1/4 10 0 0 30 0 0 1287 0.85 ± 0.001 0.86 ± 0.002 0.02 0.05 

Adult 3 1/4 40 0 0 12,0 0 0 9768 0.844 ± 0.003 0.847 ± 0.006 0.08 0.20 

1/4 80 0 0 24,0 0 0 9768 0.846 ± 0.003 0.852 ± 0.005 0.22 0.34 

Letter 3 1/4 20 0 0 60 0 0 40 0 0 0.65 ± 0.002 0.68 ± 0.003 0.05 0.12 

1/4 40 0 0 12,0 0 0 40 0 0 0.69 ± 0.004 0.71 ± 0.002 0.12 0.25 

Sensorless 3 1/4 40 0 0 12,0 0 0 11,701 0.92 ± 0.002 0.93 ± 0.002 0.24 1.46 

1/4 80 0 0 24,0 0 0 11,701 0.94 ± 0.001 0.96 ± 0.001 0.54 3.21 

IJCNN 5 1/6 40 0 0 20,0 0 0 28,338 0.935 ± 0.004 0.933 ± 0.001 0.51 1.70 

1/6 16,0 0 0 80,0 0 0 28,338 0.956 ± 0.002 0.953 ± 0.001 2.53 6.01 

Cod-RNA 5 1/6 80 0 0 40,0 0 0 66,230 0.959 ± 0.001 0.952 ± 0.001 0.92 1.57 

1/6 32,0 0 0 160,0 0 0 66,230 0.962 ± 0.0 0 05 0.958 ± 0.001 6.63 8.27 

Covertype 5 1/6 80 0 0 40,0 0 0 116,202 0.732 ± 0.001 0.740 ± 0.003 1.80 8.01 

1/6 64,0 0 0 320,0 0 0 116,202 0.781 ± 0.001 0.772 ± 0.002 12.20 25.7 

SUSY 2 1/3 50 0,0 0 0 1,0 0 0,0 0 0 1,0 0 0,0 0 0 0.771 ± 0.001 0.771 ± 0.001 4.91 15.98 

1/3 1,0 0 0,0 0 0 2,0 0 0,0 0 0 1,0 0 0,0 0 0 0.783 ± 0.001 0.787 ± 0.001 10.01 34.70 
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ulti-class classification. The classification of these datasets is per-

ormed using different number of training labeled and unlabeled

ata instances. In our experiments, for all the datasets, 20% of the

hole data (at random) is used for test, and the training set is

onstructed from the reaming 80% of the data. In order to have a

ealistic setting, the number of unlabeled training points are con-

idered to be p times more than that of labeled training points,

here, in our experiments, depending on the size of the dataset, p

anges from 2 to 5. Descriptions of the considered datasets can be

ound in Table 3 . 

The average results of the proposed MSS-KSC model with the

L1 kernel together with that of Fixed-size MSS-KSC [21] are tabu-

ated in Table 4 . From Table 4 , one can observe that the proposed

SS-KSC algorithm with an indefinite kernel has been successfully

pplied on large scab data and its accuracy is comparable to that

f the RBF kernel. This is an interesting point as in many applica-

ions one need to address the scalability of the models when us-

ng indefinite kernel. It should be mentioned that as expected, the

omputational time of MSS-KSC with the RBF kernel is faster than

hat of MSS-KSC with the TL1 kernel. This can be explained by the

act that in the RBF kernel, one feature map is constructed where

s in the TL1 kernel one needs to calculate two feature maps. 

. Conclusions 

Motivated by success of indefinite kernels in supervised learn-

ng, we in this paper proposed to use indefinite kernels in the

emi-supervised learning framework. Specifically, we studies the

ndefinite KSC and MSS-KSC models. For both models the opti-

ization problems remain easy to solve if indefinite kernels are

sed. The interpretations of the feature map in the case of indefi-

ite kernels are provided. Based on these interpretations, Nyström

pproximation can be used for the scalability of indefinite KSC and

SS-KSC. The proposed indefinite learning methods are evaluated

n real datasets in comparison with the existing methods with the

BF kernel. One can observe that for some datasets, the indefinite

ernel shows its superiority, which implies that there are some

emi-supervised tasks requiring indefinite learning methods. For

xample, when some (dis)similarity induces to indefinite kernels,

t is better to directly use those indefinite kernel rather than to

nd approximate PSD ones. Furthermore, if an indefinite kernel is
uitably selected or designed, the indefinite learning performance

ould be very promising. 
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