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ABSTRACT

The use of indefinite kernels has attracted many research interests in recent years due to their flexibility.
They do not possess the usual restrictions of being positive definite as in the traditional study of kernel
methods. This paper introduces the indefinite unsupervised and semi-supervised learning in the frame-
work of least squares support vector machines (LS-SVM). The analysis is provided for both unsupervised
and semi-supervised models, i.e., Kernel Spectral Clustering (KSC) and Multi-Class Semi-Supervised Ker-
nel Spectral Clustering (MSS-KSC). In indefinite KSC models one solves an eigenvalue problem whereas
indefinite MSS-KSC finds the solution by solving a linear system of equations. For the proposed indefi-
nite models, we give the feature space interpretation, which is theoretically important, especially for the
scalability using Nystrom approximation. Experimental results on several real-life datasets are given to
illustrate the efficiency of the proposed indefinite kernel spectral learning.

Low embedding dimension

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Kernel-based learning models have shown great success in var-
ious application domains [1-3]. Traditionally, kernel learning is re-
stricted to positive semi-definite (PSD) kernels as the properties
of Reproducing Kernel Hilbert Spaces (RKHS) are well explored.
However, many positive semi-definite kernels such as the sigmoid
kernel [4] remain positive semi-definite only when their associ-
ated parameters are within a certain range, otherwise they become
non-positive definite [5]. Moreover, the positive definite kernels are
limited in some problems due to the need of non-Euclidean dis-
tances [6,7]. For instance in protein similarity analysis, the protein
sequence similarity measures require learning with a non-PSD sim-
ilarity matrix [8].

The need of using indefinite kernels in machine learning meth-
ods attracted many research interests on indefinite learning in both
theory and algorithm. Theoretical discussions are mainly on Re-
producing Kernel Krein Spaces (RKKS, [9,10]), which is different to
the RKHS for PSD kernels. In algorithm design, a lot of attempts
have been made to cope with indefinite kernels by regularizing the
non-positive definite kernels to make them positive semi-definite
[11-14]. It is also possible to directly use an indefinite kernel in
e.g., support vector machine (SVM) [4]. Though an indefinite ker-
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nel makes the problem non-convex, it is still possible to get a local
optimum as suggested by Lin and Lin [15]. One important issue
is that kernel trick is no longer valid when an indefinite kernel
is applied in SVM and one needs new feature space interpreta-
tions to explain the effectiveness of SVM with indefinite kernels.
The interpretation is usually about a pseudo-Euclidean (pE) space,
which is a product of two Euclidean vector spaces, as analyzed in
[10,16]. Notice that “indefinite kernels” literally covers asymmetric
ones and complex ones. But this paper restricts “indefinite kernel”
to the kernels that correspond to real symmetric indefinite matri-
ces, which is consistent to the existing literature on indefinite ker-
nel.

Indefinite kernels are also applicable to the least squares sup-
port vector machines [17]. In LS-SVM, one solves a linear system
of equations in the dual and the optimization problem itself has no
additional requirement on the positiveness of the kernel. In other
words, even if an indefinite kernel is used in the dual formulation
of LS-SVM, it is still convex and easy to solve, which is different
from indefinite kernel learning with SVM. However, like in SVM,
using an indefinite kernel in LS-SVM looses the traditional inter-
pretation of the feature space and a new formulation has been re-
cently discussed in [18].

Motivated by the success of indefinite learning for some su-
pervised learning tasks, we in this paper introduce indefinite sim-
ilarities to unsupervised as well as semi-supervised models that
can learn from both labeled and unlabeled data instances. There
have been already many efficient semi-supervised models, such as
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Laplacian support vector machine [19], which assumes that neigh-
boring point pairs with a large weight edge are most likely within
the same cluster. However, to the best of our knowledge, there is
no work that extends unsupervised/semi-supervised learning to in-
definite kernels.

Since using indefinite kernels in the framework of LS-SVM does
not change the training problem, here we focus on multi-class
semi-supervised kernel spectral clustering (MSS-KSC) model pro-
posed by Mehrkanoon et al. [20]. MSS-KSC model and its exten-
sions for analyzing large-scale data, data streams as well as multi-
label datasets are discussed in [21-23] respectively. When one of
the regularization parameters is set to zero, MSS-KSC becomes the
kernel spectral clustering (KSC), which is an unsupervised learning
algorithm introduced by Alzate and Suykens [24]. It is a special
case of MSS-KSC. Due to the link to LS-SVM, it can be expected
and also will be shown here that MSS-KSC with indefinite similar-
ities are still easy to solve. However, the kernel trick is no longer
valid and we have to find corresponding feature space interpreta-
tions. The purpose of this paper is to introduce indefinite kernels
for semi-supervised learning as well as unsupervised learning as a
special case. Specifically, we propose indefinite kernels in MSS-KSC
and KSC models. Subsequently, we derive their feature space in-
terpretation. Besides of theoretical interests, the interpretation al-
lows us to develop algorithms based on Nystrom approximation for
large-scale problems.

The paper is organized as follows. Section 2 briefly reviews the
MSS-KSC with PSD kernel. In Section 3, the MSS-KSC with an in-
definite kernel is derived and the interpretation of the feature map
is provided. As a special case of MSS-KSC, the KSC with an indefi-
nite kernel and its feature interpretation is discussed in Section 4.
In Section 5, we discuss the scalability of the indefinite KSC/MSS-
KSC model on large-scale problems. The experimental results are
given in Section 6 to confirm the validity and applicability of the
proposed model on several real life small and large-scale datasets.
Section 7 ends the paper with a brief conclusion.

2. MSS-KSC with PSD kernel

Consider training data

D:{X],.. ,Xn}, (1)

s Xngrs Xngi+1s - - -

Unlabeled Labeled
(Dy) (Dr)
where {x;} | € RY. The first ny; points do not have labels whereas
the last n; = n —ny; points have been labeled. Assume that there
are Q classes (Q <N¢), then the label indicator matrix Y € R"*Q is
defined as follows:

+1
The primal formulation of multi-class semi-supervised KSC
(MSS-KSC) described by Mehrkanoon et al. [20] is given as follows:

if the ith point belongs to the jth class,
otherwise.

(2)

min 1 XQ:W(“)TW(‘) n XQ:e(“TVe“H—
WO _b® e 2 2
=1 =1
Q (3)
y .
V? 3(® — ¢YTAE® — )
=1
subject to  e® = dw® + b1, £=1,...,0,
where ct is the ¢th column of the matrix C defined as
Oy x
c:kmwnx@hw:[“$Q] : (4)
nxQ

Here
D =[px1).....0xn)]" e R™N

where ¢(-) : R - R" is the feature map and h is the dimension
of the feature space which can be infinite dimensional. Oy, .o is a
zero matrix of size ny; x Q, Y is defined previously, and the right
hand of (4) is a matrix consisting of Oy, .o and Y. The matrix Ais
defined as follows:

A' — OTIULXHUL OHULXHL

OannUL IannL
where I, «n, is the identity matrix of size n; x n;. V is the inverse
of the degree matrix defined as follows:

1 . 1 1
V=D _dlag<d—l,--~ , d—ﬂ)
where d; = Z?Zl K(x;,x;) is the degree of the ith data point.

As stated in [20], the object function in the formulation (3),
contains three terms. The first two terms together with the set
of constraints correspond to a weighted kernel PCA formulation
in the least squares support vector machine framework given in
[24] which is shown to be suitable for clustering and is referred
to as kernel spectral clustering (KSC) algorithm. The last regular-
ization term in (3) aims at minimizing the squared distance be-
tween the projections of the labeled data and their corresponding
labels. This term enforces the projections of the labeled data points
to be as close as possible to the true labels. Therefore by incor-
porating the labeled information, the pure clustering KSC model
is guided so that it respects the provided labels by not misclas-
sifying them. In this way, one could learn from both labeled and
unlabeled instances. In addition thanks to introduced model selec-
tion scheme in [20], the MSS-KSC model is also equipped with the
out-of-sample extension property to predict the labels of unseen
instances.

It should be noted that, ignoring the last regularization term, or
equivalently setting y» =0 and Q = N. — 1, reduces the MSS-KSC
formulation to kernel spectral clustering (KSC) described in [24].
Therefore, KSC formulation in the primal can be covered as a spe-
cial case of MSS-KSC formulation. As illustrated by Mehrkanoon
et al. [20], given Q labels the approach is not restricted to find-
ing just Q classes and instead is able to discover up to 22 hidden
clusters. In addition, it uses a low embedding dimension to reveal
the existing number of clusters which is important when one deals
with large number of clusters.

When the feature map ¢ in (3) is not explicitly known, in the
context of PSD kernel, one may use the kernel trick and solve the
problem in the dual. Elimination of the primal variables w(®), e()
and making use of Mercer’s Theorem result in the following linear
system in the dual [20]:

R1,17 1,17R
Iy — = ) =@ —R( I, — 222 ) Qa©, 5
’7(" 1;R1n> " 1TR1, (5)

where R = y;V — A, In (5), there are two coefficients, namely y,
and y,, which reflect the emphasis on unlabeled and labeled sam-
ples, respectively, as shown in (3). Besides, there could be one or
multiple parameters in the kernel. All of these parameters could be
tuned by cross-validation.

3. MSS-KSC with indefinite kernel

Traditionally, the kernel used in MSS-KSC is restricted to be
positive semi-definite. When the kernel in (5) is indefinite, one still
requires to solve a linear system of equations. However, the feature
space has different interpretations compared to definite kernels. In
what follows we establish and analyze the feature space interpre-
tations for MSS-KSC.

Theorem 3.1. Suppose that for a symmetric but indefinite kernel ma-
trix K, the solution of the linear system (5) is denoted by [ctx, b+]T.
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Then there exist two feature mappings ¢, and ¢, which correspond
to the matrices ®; and ®,, respectively, such that

n
[):Zaiﬁ) ‘pl(Xx)aKZL,Q, (6)
i=1
and
n
Z):Z“iﬁ) (%), t=1,....Q, 7)

which is a stationary point of the following primal problem:

: wOTW® T, ©
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e® =o' + &wl) + b1, 6=1,...,Q.
(8)

Then, the dual problem of (8) is given in (5), with the kernel ma-
trix 2 defined as follows,

Qi j =K (xi. X)) — Ko (%3, X;), 9)

subject to

where, Ki(x;, x;) and Ky(x;, ;) are two PSD kernels.

Proof. The Lagrangian of the constrained optimization problem
(8) becomes

T, (© 2 T ©
Wit Wy _sz w,
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where a{” is the vector of Lagrange multipliers. Then the KKT op-
timality conditions are as follows,

ai‘czoﬁ val’,)zqﬂ'o[ié)7 ¢=1,....0,

awl")
aL

7220_> Wy) d>§ot§“,€=l,...,Q,

8{\)/\/2)
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9L © ® ©,

9e® =0— o = (V- yA)e® +y5c®, £=1,....Q
aL

oy =0 €V = w4 ol 4 b0 =1

(10)

Elimination of the primal variables Wgz),wg),e(‘) and making
use of the kernel trick (Q; = ®I®; and Q; = ®T®P,) lead to the
linear system of equations in the dual defined in (5) with the in-
definite kernel matrix defined in (9). With «+ obtained from (5),
the weight vectors w%“ and wé‘) defined in (6) and (7), satisfy the
first-order optimality condition of (8). O
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Fig. 1. lllustrating the performance of KSC model with an indefinite kernel (TL1
kernel) on synthetic three concentric example. (a) Original data. (b) The predicted
memberships obtained using indefinite KSC model with i = 0.4. (c) The line struc-
ture of the score variables, e, indicating the good generalization performance of in-
definite KSC model with u = 0.4.

One can show that from the third KKT optimality condition, the
bias term is determined by
b = (1/17R1,) (=1 y5c® —1TRQa V), £ =1, ...,Q, (11)
where R is defined as in (5). Once the solution vector and the bias
term are obtained, one can use the out-of-sample extension prop-

erty of the model to predict the score variables of the unseen test
instances as follows:

el = Q¥ +b", e=1,....Q. (12)

The above discussion gives the feature space interpretation for
indefinite MSS-KSC. The discussion in a pE space is similar to in-
definite SVM; see, [10,16,18]. The main difference from learning al-
gorithms for PSD kernels is that the indefinite learning is to min-
imize a pseudo-distance. The readers are referred to Fig. 1 in [16],
which gives a clear geometric explanation for the distance in a pE
space.

In practice, the performance of the MSS-KSC model depends on
the choice of the parameters. In this aspect, there is no difference
between a PSD kernel and an indefinite kernel. Therefore the fol-
lowing model selection scheme introduced in [20] for MSS-KSC can
be employed:

max, nSil(y1, Y2, ) + (1 = n)Acc(yr, 2, ). (13)
It is a combination of Silhouette (Sil) and classification accuracy
(Acc). n€[0, 1] is a user-defined parameter that controls the trade
off between the importance given to unlabeled and labeled in-
stances. The MSS-KSC algorithm with an indefinite kernel is sum-
marized in Algorithm 1. One can note that the main difference
with respect to Algorithm 1 discussed in [20] is at the level em-
ploying the indefinite kernel and all the other steps remain un-
changed.
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Algorithm 1 Indefinite kernel in multi-class semi-supervised clas-
sification model.

1: Input: Training data set D, labels Z, tuning parameters {y;}2

i=1’

kernel parameter u, test set Dtest = {xteSI}NteSt and codebook

= {Cq}q=1

2: Output: Class membership of test data Drest

3: Construct the indefinite kernel matrix Q2 (see (9)).

4: Solve the dual linear system (5) with the indefinite kernel ma-
trix € to obtain {az}?=1 and compute the bias term {bﬁ}gﬂ us-
ing (11).

5: Estimate the test data projections {eggt ~, using (12).

6: Binarize the test projections and form the encoding ma-
trix [sign(el)), .,sign(egg{)]mestxq for the test points (Here

(0)

_[0© () T
test — [etest,l’ Tt etest.Ntest] )

7: For each i, assign  x{*' to class ¢~

e
where ¢* =

argmm dH(e ¢q) and dy (-, -) is the Hamming distance.

test,i’

4. KSC with indefinite kernels - as a special case

As a special case of MSS-KSC formulation (8), when y, = 0 and
Q = N: — 1, we obtain (17), i.e., the KSC model given by Alzate and
Suykens [24]. This dual problem itself does not require the pos-
itiveness of . Thus, an indefinite kernel is applicable here and
one still solves an eigenvalue problem. However, the kernel trick,
which is the key to build primal-dual relationship for definite ker-
nels, cannot be used for indefinite kernels, which follows that dif-
ferent feature space interpretations are needed. In this section, we
establish and analyze the feature space interpretations, similar to
the discussion for indefinite MSS-KSC.

Theorem 4.1. Suppose that the solution of the eigenvalue problem
(17), in the dual, for a symmetric but indefinite kernel matrix K is
denoted by [a~, b+]T. Then there exist two feature mappings ¢, and
@3, such that

n
<l>=zaiﬁ? (%), £=1,... N, —1, (14)
i=1
and
n
P =>a p(x).t=1,....N.—1, (15)

which is a stationary point of the following primal problem:

NE— Nc—l
wo! w® — ©T,,©
w w
W), W(m b‘“ ) Z ; 2 2
T
—% Z e®Tve® (16)
=1

subject to e® = <I>1W§Z) + CI>ZW§Z) +bO1,, £6=1,...,
Then, the dual problem of Haasdonk (16) is given as:

VP,Qa® = ra©, (17)

where A =n/y,, a'®) are the Lagrange multipliers and P, is the

weighted centering matrix:

P=1I- 1,17V,

1TV1,,

Here I, is the n x n identity matrix and the kernel matrix Q2 is defined
as follows,

Ql‘ijI(](Xi,Xj) —Kz(Xi,Xj), (18)

where, Ki(x;, x;) and Kp(x;, X;) are two PSD kernels.

Proof. It follows the proof of indefinite MSS-KSC model described
in(3). O

From the link between KSC and LS-SVM, the above theorem
also could be regarded as a weighted and multi-class extension of
the result obtained by Huang et al. [18]. To give an intuitive idea
that using indefinite kernels in KSC is possible, we show a simple
example that applies the truncated ¢; distance (TL1) kernel [25],
which is indefinite and takes the following formulation,

K(s,t) = max{u — ||s — t]|1, 0}. (19)

For this problem, one can observe that KSC with an indefinite ker-
nel indeed can successfully cluster the points, as shown in Fig. 1.
Here the Silhouette index is used for model selection (see [26] for
overview of the internal clustering quality metrics).

Theorem 4.1 and Theorem 4.2 are both based on the positive
decomposition of an indefinite kernel matrix €2: since it is a sym-
metric and real matrix, we can surely find two PSD matrices K;
and K; such that

Qij = Kiij — K.

For example, K; and K, can be constructed from the positive and
negative eigenvalues of €2. This decomposition indicates that a PSD
kernel is a special case of indefinite kernel with Kj;; = 0. Therefore,
the use of indefinite kernel in spectral learning provides flexibility
to improve the performance of PSD learning, if the kernel, which
could be indefinite or definite, is suitably designed.

5. Scalability

Kernel based models have shown to be successful in many ma-
chine learning tasks. However, unfortunately, many of them scale
poorly with the training data size due to the need for storing and
computing the kernel matrix which is usually dense.

In the context of kernel based semi-supervised learning with
PSD kernels, attempts have been made to make the kernel based
models scalable, see [21,27,28]. Mehrkanoon, et al. [21] introduced
the Fixed-Size MSS-KSC (FS-MSS-KSC) model for classification of
large-scale partially labeled instances. FS-MSS-KSC uses an explicit
feature map approximated by the Nystrom method [17,29] and
solves the optimization problem in the primal. The finite dimen-
sional approximation of the feature map is obtained by numeri-
cally solving a Fredholm integral equation using the Nystrom dis-
cretization method which results in an eigenvalue decomposition
of the kernel matrix €2; see [29].

The ith component of the n-dimensional feature map ¢ : RY —
R", for any point x € RY, can be obtained as follows:

Zuk, K (X, X), (20)
/)\, () |

where ki(s) and u; are eigenvalues and eigenvectors of the kernel
matrix 2. Furthermore, the kth element of the ith eigenvec-
tor is denoted by uy. In practice when n is large, we work with
a subsample (prototype vectors) of size m«n of which the ele-
ments are selected using an entropy based criterion. In this case,
the m-dimensional feature map ¢ : R? - R™ can be approximated
as follows:

@i(x) =

PX) =[1(0)..... om()]", (21)
where
Pi(x) = Zula K. x),i=1,. (22)

/A(S k=1

Here, )\i(s) and u; are the eigenvalues and eigenvectors of the con-
structed kernel matrix 2, xm with the selected prototype vectors.
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When an indefinite kernel is used, the matrix K has both posi-
tive and negative eigenvalues. Thus, according to the previous fea-
ture interpretations, one can then construct two approximations
for the feature maps ®; and ®, based on positive and negative
eigenvalues, respectively. Here we give the following lemma to ex-
plain the approximation for indefinite MSS-KSC and a similar result
is valid for indefinite KSC as well.

Lemma 5.1. Given the m-dimensional approximation to the
feature  map, ie. &y =[@X1).....0x)]|T eR™>M  and
<T>2 =[@Xx1).....9xn)]T e R™™2, and regularization constants
Y1, V2, € R, the solution to (8) is obtained by solving the following
linear system of equations in the primal:

OTR Dy + I, TR &, SIR1, [ wi?
PIR D, OIRPy — Iy, | PIR1, || W)
1, R®, 1,' R, 1, R1, b©®
PIc®
=y2| ®Ic® |, £=1,....Q, (23)
1T

where R = y»A — 4V is a diagonal matrix, V and R are given pre-
viously. Im, and Iy, are the identity matrix of size m; xmy and
my x my respectively.

Proof. Substituting the explicit feature maps ®; and &, into for-
mulation (8), one can rewrite it as an unconstrained optimization
problem. Subsequently setting the derivative of the cost function
with respect to the primal variables ng), wy) and b to zero re-
sults in the linear system (23). O

15 *%&fﬁéx*;‘ .
*gi ?i* *#ﬁ}*sr d
*%*
o guRy el
- ey,
5** '3 * Pk X
5 3%:2, * i*&: y
¥ Cm 3]
ﬁ rd é]ﬂ o . %;‘g oog
*
*

X

(c)

The score variables evaluated at the test set Dt = {x,-}?fft be-
come:

el = Pl L St £ b1, £=1,...,Q, (24)

where ﬁthSt =[@®x1),..., (ﬁ(xntest)]T € RMestxM1 and ﬁ)&e“ =
[@(X1), ..., @(Rneeg)]T € RMest*M2, The decoding scheme con-
sists of comparing the binarized score variables for test data with
the codebook CB and selecting the nearest codeword in terms of
Hamming distance.

6. Numerical experiments

In this section, experimental results on a synthetic as well as
several real-life datasets from the UCI machine learning reposi-
tory [30] are given. We also show the applicability of the proposed
indefinite method on a simple image segmentation task. Further-
more, the performance of the model for classification of partially
labeled large-scale datasets using indefinite kernels will be studied
in this section.

The performance of kernel learning relies on the choice of ker-
nel. In this paper, we consider two indefinite kernels in KSC/MSS-
KSC. One is the TL1 kernel (19) and the other is the tanh kernel
with parameters c, d:

K(s,t) = tanh(cs"t + d). (25)

Notice that when c> 0, the tanh kernel is conditionally positive
definite; otherwise, it is indefinite. In the following experiments,
c is selected from both positive and negative vales, and hence the
tanh kernel is regarded as an indefinite kernel in this paper. The
performance of these indefinite kernels will be compared with the
RBF kernel, which is the most popular PSD kernel and takes the

100 200 300 400

(d)

Fig. 2. Illustrating the performance of MSS-KSC model on synthetic single labeled example. (a) Original labeled and unlabeled points. (b) The predicted memberships
obtained using MSS-KSC model with the RBF kernel. (c) The predicted memberships obtained using MSS-KSC model with an indefinite kernel. (d) The associated similarity

matrix indicating the cluster structure in the data.
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0 Model selection on validation set

-»

10.75

10.7

10.65
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Fig. 3. Illustrating the sensitivity of the MSS-KSC model with respect to its param-
eters, ¥, and p in the case of the TL1 kernel for the Wine dataset.

following formulation:

K(s.t) = exp(—||s —t[|3/0?). (26)

6.1. Semi-supervised classification

First, Two-moons dataset, a 2-dimensional synthetic problem,
is considered to visualize the performance of indefinite kernels in
a semi-supervise setting. The results obtained via the RBF kernel
and the TL1 kernel are shown in Fig. 2, from which it can be seen
that the two classes have been successfully classified by both the
PSD and the non-PSD kernel. One may notice that the decision
boundaries obtained by the TL1 kernel is not as smooth as the RBF

Table 1

kernel. It is due to the piecewise linearity of the TL1 kernel and
could be different if other non-PSD kernels are used.

Next, we conduct experiments on real-life datasets from UCI
repository [30]. Here, 60% of the whole data (at random) is used as
test set and the remaining 40% as training set. We randomly select
part of the training data as the labeled and the remaining ones as
the unlabeled training data. The ratio of the labeled training data
points that is used in our experiments is denoted as follows:

. # labeled training data points
I'athlabe] = — n .

#training data points
The considered ratios for forming a labeled training set are one-
fourth, one-third and half of the whole training dataset. To re-
duce the randomness of the experiment, we repeat this process
10 times. At each run, 10-fold cross validation is performed for
model selection. The parameters to tune are the regularization
constants Y, ¥, and kernel parameters. In our experiments, we
set y; =1 and then find reasonable values for y,, i in the range
[10-3,10°] and [0, d], respectively. For the RBF kernel, and o ¢
{104,103, ...,10%}. For tanh kernel, the candidate sets are c e
{-0.5-02,-0.1,0,0.1,0.2,0.5} and de {219,277, ...,23}. The
cross-validation performance on the Wine dataset for the TL1 ker-
nel is shown in Fig. 3, from which and other experiments, we
empirically observed that the TL1 kernel enjoys good stability on
its kernel parameters. This makes its performance for a pre-given
value, e.g., u = 0.7d, satisfactory in many tested examples.

The average accuracy on the test dataset over 10 trials are re-
ported in Table 1, where the details of the datasets are provided
as well. From the results, one can observe that the performance
of the unsupervised KSC model with an indefinite kernel is gen-
erally comparable to that with the RBF kernel. For most problems,
the TL1 kernel with a pre-given y outputs good results. Moreover,
there are indeed some problems, like Monk3 and Ionosphere, for
which indefinite kernel learning can improve the performance sig-
nificantly.

The average accuracy and the standard deviation of the LapSVMp [19] and MSS-KSC on the test set using PSD and indefinite kernels.

Dataset d Q Ratioj el Diain /DA ea/ Dt MSS-KSC method
RBF kernel TL1 kernel TL1 kernel Tanh-kernel LapSVMp
o is tuned [ is tuned u=0.7d ¢, d is tuned
Iris 4 3 1/4 15/45/90 0.85+0.09 0.88 +£0.07 0.86+0.09 0.65+0.11 0.70+0.12
1/3 20/40/90 0.87 +0.07 0.88 +0.09 0.86+0.03 0.71+0.07 0.76 +0.11
1/2 30/30/90 0.92+0.03 0.90+0.08 0.88+0.09 0.77 £0.10 0.83+£0.10
Wine 13 3 1/4 18/54/106 0.89+0.07 0.90+0.08 0.89+0.03 0.59+£0.12 0.73+0.11
1/3 24/48/106 0.92+0.01 0.93+0.01 0.92+0.03 0.75+0.11 0.84+0.09
1/2 36/36/106 0.94+0.01 0.95+0.02 0.93+0.03 0.84+£0.12 0.90£0.10
Zoo 16 7 1/4 11/30/60 0.89+0.05 0.84+0.10 0.75+0.17 0.60+£0.10 0.78 £0.08
1/3 14/27/60 0.89+0.04 0.90+0.04 0.80+0.10 0.66 +0.09 0.82+0.11
1/2 21/20/60 0.90+0.04 0.89+0.04 0.83+0.17 0.72+£0.12 0.85+0.10
Seeds 7 3 1/4 21/63/126 0.87+£0.05 0.88 +£0.03 0.85+0.09 0.62+£0.10 0.80+£0.10
1/3 28/56/126 0.88+0.09 0.86 +0.09 0.85+0.04 0.70£0.12 0.83+£0.11
1/2 42/42/126 0.90+0.01 0.88 +£0.02 0.88 +0.02 0.79+£0.11 0.87 +£0.09
Monk1 6 2 1/4 56/167/333 0.63 +0.04 0.66 +0.03 0.63+0.03 0.59+0.09 0.60+£0.10
1/3 75/148/333 0.67+0.03 0.69+£0.03 0.64+0.03 0.60+0.03 0.65+£0.11
1/2 112/111/333 0.68 +0.07 0.70+0.08 0.70+£0.03 0.63 +£0.07 0.69+0.08
Monk2 6 2 1/4 61/180/360 0.63 +0.08 0.61+0.06 0.54+0.03 0.57 +0.02 0.58 £0.11
1/3 81/160/360 0.64+0.06 0.62+£0.05 0.55+0.03 0.61+0.06 0.63+£0.10
1/2 121/120/360 0.71+0.04 0.65+0.06 0.58 +0.02 0.63+0.03 0.66 +0.11
Monk3 6 2 1/4 56/166/332 0.74+0.03 0.81+0.03 0.81+0.02 0.68 +0.10 0.77 £0.08
1/3 74/148/332 0.79+0.02 0.85+0.03 0.83+0.04 0.74+0.02 0.80+0.09
1/2 111/111/332 0.81+0.02 0.87+0.03 0.87+0.02 0.77 £0.04 0.84+0.10
Pima 8 2 1/4 77/231/460 0.70+£0.01 0.70+0.03 0.70 +0.03 0.62+0.14 0.70+0.08
1/3 74/148/460 0.71+0.02 0.72+0.03 0.71+0.01 0.69 +0.02 0.71+0.10
1/2 154/154/460 0.72 +£0.02 0.72+0.02 0.72+£0.02 0.70 £0.05 0.72 +0.06
Ionosphere 33 2 1/4 36/105/210 0.77 £0.05 0.81+0.08 0.75+0.07 0.69 +0.04 0.77 £0.09
1/3 47/94/210 0.83+£0.06 0.88 +0.03 0.77 £0.07 0.71+0.05 0.83+0.08
1/2 71/70/210 0.86+0.07 0.88 +£0.03 0.79+0.05 0.73+0.03 0.86 £0.09




150 S. Mehrkanoon et al./Pattern Recognition 78 (2018) 144-153

Table 2

Comparison of the KSC model with PSD and indefinite kernel, K-means and landmark-based
spectral clustering algorithm using two internal clustering quality metrics, i.e. Silhouette and

DB index, on some real datasets.

Dataset n d N¢ Silhouette index DB index

RBF TL1 K-means RBF TL1 K-means
Wine 178 13 3 044 046 0.50 141 1.06 1.22
Thyroid 215 3 2 0.68 0.81 0.75 052 043 097
Breast 699 9 2 075 075 075 077 086 0.76
Glass 214 9 7 0.81 084 063 120 109 0.64
Iris 150 4 3 077 077 0.64 073 059 0.70

Fig. 4. lllustrating the performance of MSS-KSC model with an indefinite kernel (TL1) on image segmentation. (a,d) The labeled images. (b,e) The segmentations obtained
by unsupervised KSC model with the TL1 kernel. (c,f) The segmentation obtained by semi-supervised MSS-KSC model with the TL1 kernel.

6.2. Clustering

The experimental results on several real world clustering
datasets! using KSC model with the RBF and the TL1 kernel are
reported in Table 2. The cluster memberships of these datasets
are not known beforehand, therefore the clustering results can be
evaluated by internal clustering quality metrics such as the widely
used silhouette index (Sil-index) and the Davies Bouldin index (DB-
index) [26]. Larger values of Sil-index imply better clustering qual-
ity. While, the lower the value of DB-index means that the clus-
tering quality is better. In Table 2, the best indices are underlined
where one can observe the good performance of the TL1 kernel.
Notice that simply from these experiments, we cannot conclude
indefinite kernel is better or worse than the definite ones. But the
results indicate that for some problems, it is worth to consider the
proposed indefinite unsupervised learning methods, which may
further improve the performance from the traditional PSD kernel
learning methods.

6.3. Image segmentation

Here we show the application of the proposed indefinite Ker-
nel on unsupervised and semi-supervised image segmentation. Fol-
lowing the lines of Mehrkanoon et al. [22], for each image, a lo-
cal color histogram with a 5 x5 local window around each pixel

1 http://cs.joensuu.fi/sipu/datasets/ (accessed: 2015-12-29).

is computed using minimum variance color quantization of eight
levels. A subset of 500 unlabeled pixels together with some la-
beled pixels are used for training and the whole image for test. The
original and labeled images together with segmentation results are
shown in Fig. 4. One can qualitatively observe that thanks to the
provided labeled pixels, the semi-supervised model performs bet-
ter than completely unsupervised model on the test images.

6.4. Large scale datasets

Here we show the possibility of applying the TL1 kernel in the
context of semi-supervised learning on large-scale datasets. The
size of the real-life data, on which the experiments were con-
ducted, ranges from medium to large and covering both binary and

Table 3

Dataset statistics.
Dataset # points # attributes  # classes
Adult 48,842 14 2
[JCNN 141,691 22 3
Cod-RNA 331,152 8 2
Covertype 581,012 54 3
SUSY 5,000,000 18 2
Sensorless 58,509 48 1
letter 20,000 16 26
Satimage 6435 36 6
texture 5500 40 11
USPS 9298 256 10
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Table 4

Comparing the average test accuracy, standard deviation and computation time of the FS-MSS-KSC model [21] with the RBF kernel and the TL1

kernel on real-life datasets over 10 simulation runs.

Dataset p Ratiopel DL DY Drest Test accuracy Computation time (in seconds)
RBF TL1 RBF TL1
USPS 2 13 1000 2000 1859 0.86 +£0.002 0.86 +0.002 0.02 0.16
1/3 2000 4000 1859 0.88 £0.003 0.89+0.002 0.02 0.81
Texture 3 1/4 500 1500 1100 0.85+0.002 0.87 £0.002 0.01 0.02
1/4 1000 3000 1100 0.89 +£0.004 0.91+£0.001 0.02 0.05
Satimage 3 1/4 500 1500 1287 0.83+£0.003 0.85+0.003 0.01 0.02
1/4 1000 3000 1287 0.8540.001 0.86 +£0.002 0.02 0.05
Adult 3 1/4 4000 12,000 9768 0.844+0.003 0.847 £0.006 0.08 0.20
1/4 8000 24,000 9768 0.846 +0.003 0.852 4 0.005 0.22 0.34
Letter 3 1/4 2000 6000 4000 0.65+0.002 0.68+0.003 0.05 0.12
1/4 4000 12,000 4000 0.69 +£0.004 0.71+£0.002 0.12 0.25
Sensorless 3 1/4 4000 12,000 11,701 0.92 +£0.002 0.93 £0.002 0.24 1.46
1/4 8000 24,000 11,701 0.94 +£0.001 0.96 +0.001 0.54 3.21
[JCNN 5 1/6 4000 20,000 28,338 0.935+0.004 0.933 +0.001 0.51 1.70
1/6 16,000 80,000 28,338 0.956 +0.002 0.953 +0.001 253 6.01
Cod-RNA 5 1/6 8000 40,000 66,230 0.959 £0.001 0.952 +0.001 0.92 1.57
1/6 32,000 160,000 66,230 0.962 +£0.0005  0.958 +0.001 6.63 8.27
Covertype 5 1/6 8000 40,000 116,202 0.732+£0.001 0.740 + 0.003 180 8.01
1/6 64,000 320,000 116,202 0.781 £0.001 0.772 £0.002 12.20 25.7
Susy 2 13 500,000 1,000,000 1,000,000  0.771+0.001 0.771+£0.001 4.91 15.98
1/3 1,000,000 2,000,000 1,000,000  0.783+0.001 0.787 £+ 0.001 10.01 34.70

multi-class classification. The classification of these datasets is per-
formed using different number of training labeled and unlabeled
data instances. In our experiments, for all the datasets, 20% of the
whole data (at random) is used for test, and the training set is
constructed from the reaming 80% of the data. In order to have a
realistic setting, the number of unlabeled training points are con-
sidered to be p times more than that of labeled training points,
where, in our experiments, depending on the size of the dataset, p
ranges from 2 to 5. Descriptions of the considered datasets can be
found in Table 3.

The average results of the proposed MSS-KSC model with the
TL1 kernel together with that of Fixed-size MSS-KSC [21] are tabu-
lated in Table 4. From Table 4, one can observe that the proposed
MSS-KSC algorithm with an indefinite kernel has been successfully
applied on large scab data and its accuracy is comparable to that
of the RBF kernel. This is an interesting point as in many applica-
tions one need to address the scalability of the models when us-
ing indefinite kernel. It should be mentioned that as expected, the
computational time of MSS-KSC with the RBF kernel is faster than
that of MSS-KSC with the TL1 kernel. This can be explained by the
fact that in the RBF kernel, one feature map is constructed where
as in the TL1 kernel one needs to calculate two feature maps.

7. Conclusions

Motivated by success of indefinite kernels in supervised learn-
ing, we in this paper proposed to use indefinite kernels in the
semi-supervised learning framework. Specifically, we studies the
indefinite KSC and MSS-KSC models. For both models the opti-
mization problems remain easy to solve if indefinite kernels are
used. The interpretations of the feature map in the case of indefi-
nite kernels are provided. Based on these interpretations, Nystrom
approximation can be used for the scalability of indefinite KSC and
MSS-KSC. The proposed indefinite learning methods are evaluated
on real datasets in comparison with the existing methods with the
RBF kernel. One can observe that for some datasets, the indefinite
kernel shows its superiority, which implies that there are some
semi-supervised tasks requiring indefinite learning methods. For
example, when some (dis)similarity induces to indefinite kernels,
it is better to directly use those indefinite kernel rather than to
find approximate PSD ones. Furthermore, if an indefinite kernel is

suitably selected or designed, the indefinite learning performance
could be very promising.
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