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a b s t r a c t 

The one-bit quantization is implemented by one single comparator that operates at low power and a high 

rate. Hence one-bit compressive sensing (1bit-CS) becomes attractive in signal processing. When measure- 

ments are corrupted by noise during signal acquisition and transmission, 1bit-CS is usually modeled as 

minimizing a loss function with a sparsity constraint. The one-sided � 1 loss and the linear loss are two 

popular loss functions for 1bit-CS. To improve the decoding performance on noisy data, we consider the 

pinball loss , which provides a bridge between the one-sided � 1 loss and the linear loss. Using the pinball 

loss, two convex models, an elastic-net pinball model and its modification with the � 1 -norm constraint, 

are proposed. To efficiently solve them, the corresponding dual coordinate ascent algorithms are designed 

and their convergence is proved. The numerical experiments confirm the effectiveness of the proposed 

algorithms and the performance of the pinball loss minimization for 1bit-CS. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Quantization happens in analog-to-digital conversions, and the

xtreme quantization scheme is to acquire one bit for each mea-

urement. This scheme only needs a single comparator and has

any benefits in hardware implementation such as low power and

 high rate. Suppose we have a linear sensing system u ∈ R 

n for

 signal x ∈ R 

n . The analog measurement is u 

� x , and the one-bit

uantized observation is its sign, i.e., y = sgn (u 

� x ) . The signal re-

overy problem related to one-bit measurements can be formu-

ated as finding a signal x from the signs of a set of measurements,

.e., { u i , y i } m 

i =1 
with y i = sgn 

(
u 

� 
i 

x 
)
. 

Note that signals with the same direction but different magni-

udes have the same one-bit measurements with the same mea-

urement systems, i.e., the magnitude of the signal is lost in this

uantization. Therefore, we have to make an additional assump-

ion on the magnitude of x . Without loss of generality, we assume

 x ‖ 2 = 1 . Then the meaning of one-bit signal recovery can be ex-

lained as finding the subset of the unit sphere ‖ x ‖ 2 = 1 parti-

ioned by many hyperplanes. In general, when the number of hy-
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erplanes becomes larger, the feasible set becomes smaller, and

he recovery result becomes more accurate. 

However, there may still be infinitely many points in the sub-

et, and we need additional assumptions on the signal to make it

nique. One-bit compressive sensing (1bit-CS) , which assumes that

he original signal is sparse, is proposed in [1] and has attracted

uch attention in recent years [2,3] . It tries to recover a sparse

ignal from the signs of a small number of measurements. How-

ver, different from the regular CS without quantization [4–6] , the

umber of measurements in 1bit-CS can be larger than the dimen-

ion of the signal. When all the quantized measurements are exact,

bit-CS algorithms try to find the sparsest solution in the feasible

et, i.e., 

inimize 
x ∈ R n 

‖ x ‖ 0 

s . t . ‖ x ‖ 2 = 1 , (1) 

y i = sgn (u 

� 
i x ) , ∀ i = 1 , 2 , . . . , m, 

here ‖ · ‖ 0 counts the number of non-zero components. This

roblem is difficult to solve due to the � 0 penalty and the con-

traint ‖ x ‖ 2 = 1 . There are several algorithms that approximately

olve (1) or its variants; see [1,2,7,8] . 

In (1) , we require that y i = sgn (u 

� 
i 

x ) holds for all the measure-

ents with the assumption that there is no noise. However, in real
pplications, noise is unavoidable in the measurement process, i.e., 
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y i = sgn (u 

� 
i x + ε i ) , (2)

where εi is the noise. When sgn (u 

� 
i 

x + ε i ) = sgn (u 

� 
i 

x ) (i.e., εi is

small) for all i , we can still recover the true signal accurately as in

the noiseless case. However, when the noise εi is large, we may

have sgn (u 

� 
i 

x + ε i ) � = sgn (u 

� 
i 

x ) . In addition, there could be sign

flips on y i during the transmission. Note that sign changes because

of noise happen with a higher probability when the magnitude of

the true analog measurement is small, while sign flips during the

transmission happen randomly among the measurements. 

With noise or/and sign flips, the feasible set of (1) excludes

the true signal and can become empty. To deal with noise and

sign flips, the constraint y i = sgn (u 

� 
i 

x ) is replaced by loss func-

tions to penalize the inconsistency. The first model is given in [3] ,

where the one-sided � 1 loss max { 0 , −y i (u 

� 
i 

x ) } is used to measure

the sign inconsistency. While [9] considers the linear loss −y i (u 

� 
i 

x ) .

Via minimizing the one-sided � 1 or the linear loss, some robust

1bit-CS models and the corresponding algorithms are proposed in

[3,9–11] . These models will be reviewed in Section 2 . 

In this paper, we will consider the trade-off solution between

the one-sided � 1 loss and the linear loss, named pinball loss , to es-

tablish recovery models for 1bit-CS. Statistically, the pinball loss is

closely related to the concept of quantile; see [12–14] for regres-

sion and [15] for classification. Use the following definition for the

pinball loss: 

L τ,c (t) = 

{
c + t, t ≥ −c, 
−τ (c + t) , t < −c, 

(3)

where t = −y i (u 

� 
i 

x ) . (There is another and equivalent definition

of the pinball loss in quantile regression field; see, e.g., [13] .) It

is characterized by parameters τ and c , and it is convex when

τ ≥ −1 . The one-sided � 1 loss and the linear loss can be viewed

as particular pinball loss functions with (τ = 0 , c = 0) and (τ =
−1 , c = 0) , respectively. In other words, L τ , c ( t ) provides a bridge

from the one-sided � 1 loss to the linear loss. 

In this paper, we will use the pinball loss to establish two con-

vex models to recover signals from 1bit observations. The first

model contains the pinball loss, the � 1 -norm regularization term,

and the � 2 -norm ball constraint. Since both the � 1 -norm and the

� 2 -norm are considered, we name it as Elastic-net Pinball loss model

(EPin) . For the second model, we put the � 1 -norm term into the

constraint and then name it as EPin with sparsity constraint ( EPin-

sc ). To efficiently solve them, the dual problems are derived, and

the corresponding dual coordinate ascent algorithms are given.

These algorithms are proved to converge to the optima of the pri-

mal problems, and their effectiveness is evaluated on numerical

experiments. 

This paper is organized as follows. A brief review on existing

1bit-CS methods is given in Section 2 . Section 3 introduces the pin-

ball loss and then proposes EPin. An efficient algorithm is designed

as well. The discussion on EPin-sc is given in Section 4 . The pro-

posed methods are then evaluated on numerical experiments in

Section 5 , showing the performance of the pinball loss in 1bit-CS.

A conclusion is given to end this paper in Section 6 . 

2. Review on 1bit-CSmodels 

Let U = [ u 1 , u 2 , . . . , u m 

] and y = [ y 1 , y 2 , . . . , y m 

] � stand for

the sensing system and the measurements, respectively. Denote

y ◦( U 

� x ) as the vector with components { y i (u 

� 
i 

x ) } . 
In order to efficiently recover the sparse signal in 1bit-CS, the � 0 

penalty is replaced by the � 1 norm as in regular compressive sens-

ing [1,2] . In order to pursue the convexity, the non-convex sphere

constraint ‖ x ‖ = 1 is replaced by a convex constraint in [16] , and
2 
 convex model is established as follows: 

inimize 
x ∈ R n 

‖ x ‖ 1 

s . t . ‖ U 

� x ‖ 1 = β, y ◦ (U 

� x ) ≥ 0 , (4)

here β is a given positive constant. Note that (4) can be refor-

ulated as a linear programming problem because the first con-

traint ‖ U 

� x ‖ 1 = β becomes 
∑ m 

i =1 y i (u 

� 
i 

x ) = β if the second con-

traint is satisfied. However, its solution is not necessarily located

n the unit sphere. Hence one needs to project the solution onto

he unit sphere, and the projected solution is independent of β . 

As we mentioned before, the constraint y ◦( U 

� x ) ≥ 0 assumes

he noiseless case, i.e., there is no sign changes in y . To deal with

oise and sign flips, one replaces the constraint y ◦( U 

� x ) ≥ 0 by a

oss function. Using the one-sided � 1 loss, [3] introduces the fol-

owing robust model: 

inimize 
x ∈ R n 

1 

m 

m ∑ 

i =1 

L 0 , 0 (−y i (u 

� 
i x )) 

s . t . ‖ x ‖ 0 = K, ‖ x ‖ 2 = 1 , (5)

here K is the number of non-zero components in the true signal.

hen Binary Iterative Hard Thresholding with a one-sided � 1 -norm

BIHT) is proposed to solve it approximately. Modifications of BIHT

or sign flips are designed in [10] to improve its robustness to sign

ips. There are also several ways to deal with sign changes because

f noise: [17] uses maximum likelihood estimation; [18] uses a lo-

istic function; [19] uses a robust one-sided � 0 penalty. 

Note problem (5) is non-convex, and BIHT only approximately

olves it. To get a convex model, the unit sphere constraint ‖ x ‖ 2 =
 is relaxed to the unit ball constraint ‖ x ‖ 2 ≤ 1, and the sparsity

onstraint ‖ x ‖ 0 = K is replaced by an � 1 constraint ‖ x ‖ 1 ≤ s . More-

ver, the one-sided � 1 loss is replaced by a linear loss to avoid

he trivial zero solution, and minimizing the linear loss can be ex-

lained as maximizing the correlation between y i and u 

� 
i 

x . With

hose modifications, [9] gives the following convex model for ro-

ust 1bit-CS: 

inimize 
x ∈ R n 

1 

m 

∑ m 

i =1 
L −1 , 0 (−y i (u 

� 
i x )) 

s . t . ‖ x ‖ 1 ≤ s, ‖ x ‖ 2 ≤ 1 , (6)

here s is a given positive constant. 

One can also put the � 1 -norm in the objective function. The cor-

esponding problem is given in [11] : 

inimize 
x ∈ R n 

μ‖ x ‖ 1 + 

1 

m 

m ∑ 

i =1 

L −1 , 0 (−y i (u 

� 
i x )) 

s . t . ‖ x ‖ 2 ≤ 1 , (7)

here μ is the regularization parameter for the � 1 -norm. In the

est of this paper, we call (6) Plan’s model and (7) the passive model .

oth problems (6) and (7) are convex, and there is a closed-form

olution for (7) . 

Similar to regular compressive sensing, suitable nonconvex

enalties can be used in (6) or (7) to replace the � 1 -norm to en-

ance the sparsity. For example, smoothly clipped absolute de-

iation [20] and minimax concave penalty [21] are discussed in

22] for 1bit-CS. In addition, fast algorithms with analytical so-

utions for positive homogeneous penalties is recently given by

uang and Yan [23] . The use of nonconvex penalties can enhance

he sparsity and has shown promising performance when there are

nly a few measurements. However, nonconvex penalties for 1bit-

S are currently restricted to linear loss, due to the computational

ffectiveness. 
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Fig. 1. Average SNR of EPin for different c values with m = 500 , n = 1000 . In this 

experiment, μ = 

√ 

log (n ) /m and the observations are corrupted by Gaussian noise 

with s n = 10 and sign flips with r f = 10% . (a) τ = 0 (this also could be regarded as 

a modification from the passive model with an additional bias); (b) τ = −0 . 5 . 

Fig. 2. Average SNR of EPin for different τ and μ. In this experiment, n = 10 0 0 , K = 

10 and the observations are corrupted by Gaussian noise with s n = 10 and sign flips 

with r f = 10% . (a) m = 500 ; (b) m = 20 0 0 . 
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. Pinball loss minimization with elastic-net 

.1. Pinball loss and EPin 

In robust 1bit-CS models, the loss function plays an important

ole. Intuitively, the loss function can be explained as a penalty

iven to the inconsistency of y i and sgn (u 

� 
i 

x ) . Plan’s model, the

assive model, and BIHT have the same loss when y i � = sgn (u 

� 
i 

x ) ,

ut there is a big difference for a measurement that has a correct

ign, i.e., y i (u 

� 
i 

x ) > 0 . In that case, BIHT, which applies the � 1 -sided

oss, does not give any penalty but Plan’s model and the passive

odel, which use the linear loss, give a gain (negative penalty) to

ncourage a larger y i (u 

� 
i 

x ) . 

In this paper, we consider the trade-off between the linear loss

nd the � 1 -sided loss. Specifically, when y i (u 

� 
i 

x ) is negative, we

ive a penalty as the existing losses and when y i (u 

� 
i 

x ) is large

nough, we still give a gain but with a relatively small weight.

athematically, this kind of loss is formulated as the pinball loss

efined in (3) . The parameter | τ | describes the ratio of the weights

or y i (u 

� 
i 

x ) > c and y i (u 

� 
i 

x ) ≤ c. The one-sided � 1 -norm does not

are about the samples with the correct signs, then τ = 0 ; the lin-

ar loss gives the equal emphasis on all the samples, thus, τ = −1 .

ote that we have an additional parameter c : the changing point

or the large and the small penalty. 

Applying the pinball loss in 1bit-CS, we propose the following

odel: 

in 

x 
P (x ) � μ‖ x ‖ 1 + 

1 

m 

m ∑ 

i =1 

L τ,c (−y i (u 

� 
i x )) 

s . t . ‖ x ‖ 2 ≤ 1 . (8) 

ere the parameter μ is used to balance the regularization and

he loss terms. We name (8) Elastic-net Pinball loss model (EPin)

ecause it involves both the � 1 and the � 2 -norms. When τ = −1 ,

he pinball loss becomes the linear loss, and EPin reduces to the

assive model (7) , for which there is a closed-form solution. When

> −1 , analytic solutions are not available, and we will introduce

ts dual problem and then a dual coordinate ascent method. 

Before discussing the dual problem and the algorithm, we here

umerically show the performance of the pinball loss minimiza-

ion. The underlying signal, denoted by x̄ , has n components with

 non-zero ones. Non-zero components are first generated follow-

ng the standard Gaussian distribution, and then are normalized

uch that ‖ ̄x ‖ 2 = 1 . We take m binary observations with mea-

urement vector u drawn from the standard Gaussian distribution.

hroughout the numerical experiments, we use Gaussian noise and

he noise level is measured by the ratio of the variance of ε to that

f u 

� x̄ , denoted by s n . Moreover, there could be sign flips, of which

he ratio is denoted by r f . Suppose that the recovered signal is ˜ x ,

nd then the Signal-to-Noise Ratio (SNR) in dB, defined below, 

NR dB ( ̄x , ̃  x ) = 10 log 10 

(‖ ̄x ‖ 

2 
2 

/‖ ̄x − ˜ x ‖ 

2 
2 

)
, (9)

s used to measure the recovery quality. 

To investigate the role of the bias term c , we choose r f = 10%

nd s n = 10 , but vary c from 0 to 1.5. First, we choose τ = 0 . The

verage SNR over 200 trials is plotted in Fig. 1 (a). This experi-

ent shows the importance of using a non-zero c for τ = 0 . Sim-

ly minimizing the one-sided � 1 loss has no capability to recover

he signal for small c , and a non-convex constraint is needed, like

 x ‖ 2 = 1 used in (5) . In Fig. 1 (b), we display the performance for

ifferent c values when τ = −0 . 5 . The two figures imply that the

erformance with a large c is similar. Especially, with further tun-

ng μ, there is little difference for different c values when c is large

nough. In the rest, we choose c = 1 . Another important parameter

s μ, which is suggested in [11] to be 
√ 

log (n ) /m when τ = −1 .

or other τ values, this setting is not necessarily optimal but it at
east implies a reasonable range. In this paper, we will use cross-

alidation to tune it around 

√ 

log (n ) /m . 

In Fig. 2 , the average SNR for different τ and μ is displayed.

s mentioned previously, τ = −1 corresponds to the linear loss

mployed in the passive model, for which μ = 

√ 

log (n ) /m is sug-

ested by [11] . The results imply that suitably selecting τ and μ
an improve the recovery performance by about 2dB for this case.

he improvement amplitude depends on the number of measure-

ents, the sparsity level, and the noise level. 

.2. Dual problem 

In order to obtain the dual problem of Epin, we reformulate

8) as: 

inimize 
x , e , z 

μ‖ e ‖ 1 + 

1 

m 

m ∑ 

i =1 

L τ,c (z i ) + ι2 (x ) 

s . t . x = e , −y ◦ (U 

� x ) = z , (10) 

here ι2 ( x ) has value 0 if ‖ x ‖ 2 ≤ 1 and + ∞ otherwise. Let s ∈ R 

n 

nd t ∈ R 

m . Then the corresponding Lagrangian function is 

 (x , e , z , s , t ) = μ‖ e ‖ 1 + 

1 

m 

m ∑ 

i =1 

L τ,c (z i ) + ι2 (x ) 

+ s � (x − e ) + t � (−y ◦ (U 

� x ) − z ) . 

inimizing over primal variables x, e, z , we have: 

in 

x 
ι2 (x ) + s � x − t � (y ◦ (U 

� x )) = −
∥∥∥∥∥

m ∑ 

i =1 

t i y i u i − s 

∥∥∥∥∥
2 

, 

min 

e 
μ‖ e ‖ 1 − s � e = 

{
0 , if ‖ s ‖ ∞ 

≤ μ, 

−∞ , otherwise , 
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min 

z i 

1 

m 

L τ,c (z i ) − t i z i = 

{
ct i , if − τ

m 

≤ t i ≤ 1 
m 

, 

−∞ , otherwise . 

The dual problem of (10) , i.e., max 
s , t 

min 

x , e , z 
L (x , e , z , s , t ) , is 

maximize 
s , t 

D (s , t ) � c 

m ∑ 

i =1 

t i −
∥∥∥∥∥

m ∑ 

i =1 

t i y i u i − s 

∥∥∥∥∥
2 

s . t . ‖ s ‖ ∞ 

≤ μ, − τ

m 

≤ t ≤ 1 

m 

. (11)

From the optimal dual variables s ∗, t ∗, we can easily find an opti-

mal x ∗ for (8) : 

1. If 
∑ m 

i =1 t 
∗
i 

y i u i − s ∗ � = 0 , the optimal x ∗ can be obtained as 

x 

∗ = 

( 

m ∑ 

i =1 

t ∗i y i u i − s ∗

) /∥∥∥∥∥
m ∑ 

i =1 

t ∗i y i u i − s ∗

∥∥∥∥∥
2 

. 

2. If 
∑ m 

i =1 t 
∗
i 

y i u i − s ∗ = 0 , the optimal x ∗ is not necessarily unique,

and any x ∗ satisfying the conditions below is optimal. 

‖ x 

∗‖ 2 ≤ 1 , (12a)

x ∗j = 0 , if | s ∗j | < μ, (12b)

x ∗j ≥ 0 , if s ∗j = μ, (12c)

x ∗j ≤ 0 , if s ∗j = −μ, (12d)

c − y i (u 

� 
i x 

∗) ≥ 0 , if t ∗i = 1 /m , (12e)

c − y i (u 

� 
i x 

∗) ≤ 0 , if t ∗i = −τ/m , (12f)

c − y i (u 

� 
i x 

∗) = 0 , if t ∗i ∈ ( −τ/m , 1 /m ) . (12g)

Remark. When τ = −1 , any x ∗ satisfying (12a) –(12d) is optimal.

This generalizes the result for the passive model [11, Lemma 1] . 

Let us define two hypercubes for z ∈ R 

n : 

A = 

{ 

z = 

m ∑ 

i =1 

t i y i u i 

∣∣∣ − τ

m 

≤ t ≤ 1 

m 

} 

, 

B = 

{ 

z 

∣∣∣ − μ ≤ z ≤ μ
} 

. 

If A 

⋂ 

B = ∅ , then the optimal x ∗ will always be on the unit

sphere. The case for A ∩ B � = ∅ is more complicated: If c = 0 , the

optimal dual objective is 0, and the primal objective becomes zero

when x = 0 , so 0 is optimal to the primal problem [11] . However,

if c > 0, we may still have 
∥∥∑ m 

i =1 t 
∗
i 

y i u i 

∥∥
∞ 

> μ and x ∗ is still on the

unit sphere. 

In order to get the optimal x ∗ on the unit sphere, we can choose

a small μ because a smaller μ leads to a smaller B, which then

can lead to an empty A ∩ B. 

3.3. Dual coordinate ascent algorithm 

The motivation of solving EPin from the dual space instead of

directly solving (8) is that the constraints in (11) are not coupled,

which allows us to design a coordinate update algorithm. The sub-

problems of dual variables are: 
1) s j -subproblem: D ( s, t ) is separable with respect to s , and s j
an be computed in parallel via 

 j = max 

{ 

−μ, min 

{ 

μ, 

( 

m ∑ 

i =1 

t i y i u i 

) 

j 

} } 

. (13)

2) t i -subproblem: Let us consider updating t i to t i + d i . It is a

nivariate optimization problem on d i : 

maximize 
τ
m ≤t i + d i ≤ 1 

m 

cd i −
∥∥∥∥∥y i u i d i + 

m ∑ 

i =1 

t i y i u i − s 

∥∥∥∥∥
2 

. (14)

enote w = 

∑ m 

i =1 t i y i u i − s . Problem (14) becomes 

maximize 
τ
m ≤t i + d i ≤ 1 

m 

cd i −
√ 

‖ u i ‖ 

2 
2 
d 2 

i 
+ 2 y i u 

� 
i 

w d i + ‖ w ‖ 

2 
2 
, 

nd its optimal solution d ∗
i 

can be calculated as follows: 

• If ‖ u i ‖ 2 ≤ c , the objective function is non-decreasing. We have

that d ∗
i 

= 1 /m − t i is optimal and update t i to be 1/ m . 

• If ‖ u i ‖ 2 > c , we define a d = ‖ u i ‖ 2 2 (‖ u i ‖ 2 2 − c 2 ) , b d = 2(‖ u i ‖ 2 2 −
c 2 ) y i u 

� 
i 

w , c d = (u 

� 
i 

w ) 2 − c 2 ‖ w ‖ 2 2 , then there is 

d ∗i = max 

{ 

− τ

m 

− t i , min 

{ 

1 

m 

− t i , d̄ i 

} } 

, (15)

where 

d̄ i = 

−b d + 

√ 

b 2 
d 

− 4 a d c d 

2 a d 
. 

Summarizing the previous discussion, we give the dual coordi-

ate ascent method for (8) in Algorithm 1 , which is fast because

ach subproblem has an analytical solution. Moreover, the next

heorem states that its output is optimal. 

Algorithm 1: Dual coordinate ascent for EPin. 

Set l := 0 , s 0 := 0 n ×1 , t 
0 := − τ

m 

1 m ×1 ; 

Calculate w := 

∑ m 

i =1 t 
0 
i 

y i u i − s 0 ; 

repeat 

for i = 1 , 2 , . . . , m do 

if c ≥ ‖ u i ‖ 2 then 

d ∗
i 

:= 

1 
m 

− t l 
i 
; 

else 
Calculate d ∗

i 
by (15); 

end 

w := w + y i u i d 
∗
i 
; 

t l+1 
i 

:= t l 
i 
+ d ∗

i 
; 

end 

Calculate s l+1 by (13) and update 

w := w + s l − s l+1 ; l := l + 1 ; 
until t l = t l−1 ; 

if ‖ w ‖ 2 > 0 then 

x := 

w 

‖ w ‖ 2 ; 
else 

Find x that satisfies (12); 

end 

heorem 1. The dual coordinate ascent for EPin ( Algorithm 1 ) con-

erges to an optimal solution of (8) . 

roof. Suppose that x ∗ is the output of Algorithm 1 and s ∗, t ∗ are

he corresponding coordinate optimum for (11) . We are going to

rove that x ∗ is optimal to (8) . This proof considers two different

ases: 
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c − y (u x ) = 0 , if t ∈ ( −τ/m , 1 /m ) . (19f) 
Case 1 ( w � = 0 ): We have ‖ x ∗‖ 2 = 1 and the algorithm shows

hat { s ∗
j 
} and { t ∗

i 
} are coordinate maxima of (11) . Consider a small

hange on t i , denoted by �t i , and define the following function 

 (�t i ) � c�t i − ‖ 

y i u i �t i + w ‖ 2 , 

f which the gradient at �t i = 0 is 

dh (�t i ) 

d�t i 

∣∣∣∣
�t i =0 

= c − y i u 

� 
i 

w 

‖ w ‖ 2 

= c − y i (u 

� 
i x 

∗) . 

ince t ∗ is the coordinate optimum, �t i = 0 is the maximum of

 ( �t i ) under the condition that − τ
m 

≤ t ∗
i 

+ �t i ≤ 1 
m 

. Thus, 

• if t ∗
i 

= 1 /m, then y i (u 

� 
i 

x ∗) ≤ c; 

• if t ∗
i 

= −τ/m, then y i (u 

� 
i 

x ∗) ≥ c; 

• if t ∗
i 

∈ (−τ/m, 1 /m ) , then y i (u 

� 
i 

x ∗) = c. 

In other words, 

m ∑ 

i =1 

t ∗i y i u i ∈ 

∂ 1 
m 

∑ m 

i =1 L τ,c (−y i (u 

� 
i 

x )) 

∂x 

∣∣∣
x = x ∗

. (16)

From the calculation of s ∗ (c.f. (13) ), we have: 

• if −μ < s ∗
j 
< μ, then w j = 

(∑ m 

i =1 t 
∗
i 

y i u i 

)
j 
− s ∗

j 
= 0 , i.e, x ∗

j 
= 0 ; 

• if s ∗
j 
= μ, then x ∗

j 
≥ 0 ; 

• if s ∗
j 
= −μ, then x ∗

j 
≤ 0 ; 

hich means that s ∗ ∈ 

∂μ‖ x ‖ 1 
∂x 

∣∣
x = x ∗ . Together with (16) , we have 

 

∗ −
∑ m 

i =1 
t ∗i y i u i ∈ 

∂P (x ) 

∂x 

∣∣∣
x = x ∗

, 

rom which it follows that 

 

∗ = 

∑ m 

i =1 t 
∗
i 
y i u i − s ∗

‖ 

∑ m 

i =1 t 
∗
i 
y i u i − s ∗‖ 2 

s optimal to (8) . 

Case 2 ( w = 0 ): in this case, x ∗ satisfies (12a) , then 

 (x 

∗) = μ‖ x 

∗‖ 1 + 

m ∑ 

i =1 

t ∗i (c − y i (u 

� 
i x 

∗)) 

= μ‖ x 

∗‖ 1 −
m ∑ 

i =1 

t ∗i y i (u 

� 
i x 

∗) + c 

m ∑ 

i =1 

t ∗i . 

ote that w = 

∑ m 

i =1 t 
∗
i 

y i u i − s ∗ = 0 , we have 

m 

 

i =1 

t ∗i y i (u 

� 
i x 

∗) = 

(∑ m 

i =1 
t ∗i y i u i 

)� 
x 

∗

= (s ∗) � x 

∗ = μ‖ x 

∗‖ 1 , 

here the last equality comes from (12b) –(12d) . Therefore, we

ave that 

 (x 

∗) = c 

m ∑ 

i =1 

t ∗i = D (s ∗, t ∗) , 

.e., the duality gap is zero and x ∗ is optimal to (8) . �

emark 3. Both Algorithm 1 and the proof of Theorem 1 suggest

hat if c ≥‖ u i ‖ 2 for all i , then t ∗
i 

= 1 /m, and EPin reduces to the

assive model no matter what τ is. It happens because y i (u 

� 
i 

x ) ≤ c

or all x in the � 2 -norm ball. Thus, we choose c to be much smaller

han most ‖ u i ‖ 2 . 
In practice, we can set a maximum number of iterations l max 

nd use ‖ t l − t l−1 ‖ ∞ 

< δ as the stopping criterion. Here δ is a

mall positive number. In the following experiments, we set l max =
00 and δ = (1 + τ ) / (100 m ) . 
. EPin with sparsity constraint 

In the previous section, we considered the pinball loss mini-

ization with the � 1 -norm regularization and the � 2 -norm con-

traint. Similarly to Plan’s model (6) , we can put the � 1 -norm term

n the constraint when there is prior-knowledge about the � 1 -norm

f the true signal. Specifically, the new model is 

inimize 
x ∈ R n 

1 

m 

m ∑ 

i =1 

L τ,c (−y i (u 

� 
i x )) 

s . t . ‖ x ‖ 1 ≤ α, ‖ x ‖ 2 ≤ 1 , (17) 

hich is named an Elastic-net Pinball loss with sparsity constraint

EPin-sc) . 

When τ = −1 , EPin-sc reduces to Plan’s model (6) . For Plan’s

odel, there is no efficient algorithm until now and, CVX, one

tandard convex optimization toolbox [24] , was suggested in

11] to solve it. In the following, we will establish a dual coordinate

scent algorithm to solve (17) , and this method is also applicable

o Plan’s model. 

To derive the dual problem, we reformulate (17) as 

minimize 
x , e , z 

ι1 (e ) + 

1 

m 

m ∑ 

i =1 

L τ,c (z i ) + ι2 (x ) 

s . t . x = e , −y ◦ (U 

� x ) = z , 

here ι1 ( e ) returns 0 if ‖ e ‖ 1 ≤α and + ∞ otherwise. Then the cor-

esponding Lagrangian function is: 

 (x , e , z , s , t ) = ι1 (e ) + 

1 

m 

m ∑ 

i =1 

L τ,c (z i ) + ι2 (x ) 

+ s � (x − e ) + t � (−y ◦ (U 

� x ) − z ) . 

herefore, the dual problem of (17) can be derived in the same way

s in the previous section: 

aximize 
s , t 

c 

m ∑ 

i =1 

t i − α‖ s ‖ ∞ 

−
∥∥∥∥∥

m ∑ 

i =1 

t i y i u i − s 

∥∥∥∥∥
2 

s . t . − τ

m 

≤ t ≤ 1 

m 

. (18) 

fter obtaining the optimal dual variables s ∗ and t ∗, the optimal x ∗

o (17) can be constructed as follows, 

1. If 
∑ m 

i =1 t 
∗
i 

y i u i − s ∗ � = 0 , the optimal x ∗ is 

x 

∗ = 

( 

m ∑ 

i =1 

t ∗i y i u i − s ∗

) /∥∥∥∥∥
m ∑ 

i =1 

t ∗i y i u i − s ∗

∥∥∥∥∥
2 

. 

2. If 
∑ m 

i =1 t 
∗
i 

y i u i − s ∗ = 0 , the optimal x ∗ is not necessarily unique,

and all x ∗ satisfying conditions below are optimal. 

‖ x 

∗‖ 2 ≤ 1 , (19a) 

‖ x 

∗‖ 1 ≤ s, (19b) 

s ∗� x 

∗ = α‖ s ∗‖ ∞ 

, (19c) 

c − y i (u 

� 
i x 

∗) ≥ 0 , if t ∗i = 1 /m , (19d) 

c − y i (u 

� 
i x 

∗) ≤ 0 , if t ∗i = −τ/m , (19e) 

� ∗ ∗

i i i 
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Algorithm 2: Dual coordinate ascent for EPin-sc. 

Set l := 0 , s 0 := 0 n ×1 , t 
0 := − τ

m 

1 m ×1 ; 

Calculate w := 

∑ m 

i =1 t 
0 
i 

y i u i − s 0 ; 

repeat 

for i = 1 , 2 , . . . , m do 

if c ≥ ‖ u i ‖ 2 then 

d ∗
i 

:= 

1 
m 

− t l 
i 
; 

else 
Calculate d ∗

i 
by (15); 

end 

w := w + y i u i d 
∗
i 
; 

t l+1 
i 

:= t l 
i 
+ d ∗

i 
; 

end 

Set v := w + s l ; 

Select k ∗ satisfying (24), calculate ξ ∗ by (25), and 

s l+1 
i 

:= B v i (ξ
∗) ; 

l := l + 1 ; 
until t l = t l−1 ; 

if ‖ w ‖ 2 > 0 then 

x := 

w 

‖ w ‖ 2 ; 
else 

Find x that satisfies (19); 

end 

S  

c  

z

−
h

 

t

α

M  

t
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w  
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a

 

α  

i  

a  

h  

d

Same as in the previous section, we can update t i and s in turn

to efficiently solve (18) . Minimization on t i is the same as for EPin,

i.e., t l+1 
i 

= t l 
i 
+ d ∗

i 
, where d ∗

i 
is computed by (15) . 

However, the subproblem on s , i.e., 

maximize 
s 

−α‖ s ‖ ∞ 

−
∥∥∥∥∥

m ∑ 

i =1 

t i y i u i − s 

∥∥∥∥∥
2 

, (20)

is no longer separable. (20) can be equivalently written as 

minimize 
ξ , s 

αξ + 

√ 

m ∑ 

i =1 

(v i − s i ) 2 , s . t . | s i | ≤ ξ , ∀ i, (21)

where v = 

∑ m 

i =1 t i y i u i . Fix ξ , and problem (21) becomes 

minimize 
s 

√ ∑ m 

i =1 (v i − s i ) 2 , s . t . | s i | ≤ ξ , ∀ i, 

of which the optimal solution is 

s i = B v i (ξ ) � 

{
sgn (v i ) ξ , | v i | > ξ , 

v i , | v i | ≤ ξ . 
(22)

Plugging (22) into (21) , we have a problem of ξ , 

minimize 
ξ≥0 

T (ξ ) � αξ + 

√ ∑ 

| v i | >ξ

(| v i | − ξ ) 2 . (23)

This is a convex univariate problem, and its optimizer ξ ∗ ei-

ther equals to zero or satisfies the first-order optimality condition

T ′ (ξ ∗) = 0 , where 

T ′ (ξ ) = α −
∑ 

| v i | >ξ (| v i | − ξ ) √ ∑ 

| v i | >ξ (| v i | − ξ ) 2 
. 

Note that T ′ ( ξ ) is a piecewise smooth function, of which the

segment is given by [ | v [ k +1] | , | v [ k ] | ] . Here, v [ k ] stands for the

k -th component of v in the order of the absolute value, i.e.,

| v [ n ] | ≤ ��� ≤ | v [1] |. Moreover, T ′ ( t ) is an increasing function. So it

is easy to find the segment containing the solution of T ′ (ξ ) = 0 .

Specifically, we select k ∗ such that 

T ′ 
(| v [ k ∗+1] | 

)
≤ 0 and T ′ 

(| v [ k ∗] | 
)

> 0 . (24)

Then ξ ∗ is in 

[| v [ k ∗+1] | , | v [ k ∗] | 
)
, from which it follows that it is the

solution to the following quadratic equation: 

(k ∗ − α2 ) k ∗ξ 2 − 2(k ∗ − α2 ) 
(∑ k ∗

k =1 
| v [ k ] | 

)
ξ

+ 

(∑ k ∗

k =1 
| v [ k ] | 

)2 

− α2 
(∑ k ∗

k =1 
| v [ k ] | 2 

)
= 0 . 

Thus, the optimizer for (23) is analytically given by 

ξ ∗ = 

−b ξ −
√ 

b 2 
ξ

− 4 a ξ c ξ

2 a ξ
, (25)

with a ξ = (k ∗ − α2 ) k ∗, b ξ = −2(k ∗ − α2 ) 
(∑ k ∗

k =1 | v [ k ] | 
)

and c ξ =(∑ k ∗
k =1 | v [ k ] | 

)2 

− α2 
(∑ k ∗

k =1 | v [ k ] | 2 
)

. After the optimal t ∗ is obtained,

optimal solution for (20) can be directly calculated by (22) . 

The dual coordinate ascent for EPin-sc is summarized in

Algorithm 2 . Its output gives an optimal solution for EPin-sc (17) ,

as guaranteed by Theorem 2 . 

Theorem 2. Algorithm 2 converges to an optimum of (17) . 

Proof. Denote the output of Algorithm 2 as x ∗ and the correspond-

ing dual variables as s ∗, t ∗. Then there is 

s ∗ = arg max 
s 

−α‖ s ‖ ∞ 

−
∥∥∥∥∥

m ∑ 

i =1 

t i y i u i − s 

∥∥∥∥∥
2 

. 
uppose ī = arg max i | s ∗i | , and let �s be a vector of which the ī th

omponent takes value sgn (s ∗
i 
) and other components equal to

ero. The following function 

α‖ s ∗ + t�s ‖ ∞ 

− ‖ 

w − t�s ‖ 2 

as the maximal value at t = 0 . 

In the case w � = 0 , t = 0 being the maximum of the above func-

ion means that 

+ 

w 

� �s 

‖ w ‖ 2 

= 0 . 

oreover, for any i : x ∗
i 

� = 0 , the optimality condition on s ∗
i 

implies

hat s ∗
i 

= ‖ s ∗‖ ∞ 

. Therefore, we have 

(s ∗) � x 

∗ = ‖ x 

∗‖ 1 ‖ s ∗‖ ∞ 

= α‖ s ∗‖ ∞ 

≥ (s ∗) T ˜ x , ∀‖ ̃

 x ‖ 1 ≤ α. 

hus, x ∗ is optimal to (17) . 

In the case w = 0 , the corresponding dual objective equals to

α‖ s ∗‖ ∞ 

+ c 
∑ m 

i =1 t 
∗
i 

. Meanwhile, the primal objective is 

1 

m 

m ∑ 

m =1 

L τ,c (−y i (u 

� 
i x 

∗)) = c 

m ∑ 

i =1 

t ∗i −
m ∑ 

i =1 

t ∗i y i (u 

� 
i x 

∗) 

= c 

m ∑ 

i =1 

t ∗i − (s ∗) T x 

∗, 

= −α‖ s ∗‖ ∞ 

+ c 

m ∑ 

i =1 

t ∗i , 

here the first equality comes from the optimality condition

19d) –(19f) , the second and the last equality are true because

 = 0 and (19c) , respectively. Since the objectives of the primal

nd dual problems are equal, x ∗ is optimal to (17) . �

Assume that the � 1 -norm of the true signal x̄ is known. We set

= ‖ ̄x ‖ 1 for EPin-sc and test its performance for different τ values

n Fig. 3 (a). Note that τ = −1 corresponds to Plan’s model. In many

pplications, the � 1 -norm of the true signal is not known, and we

ave to estimate it. We fix τ = −0 . 3 and show the performance for

ifferent α values in Fig. 3 (b), where α = 

√ 

K is marked. 
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Fig. 3. Average SNR of EPin-sc for different τ and α values with m = 500 , n = 

10 0 0 , K = 10 , s n = 10 , and r f = 10% . (a) We optimally choose s = ‖ ̄x ‖ 1 and test the 

performance for different τ values. (b) Set τ = −0 . 3 , and test different α values. 

Fig. 4. Average computational time for EPin by the proposed algorithms (red solid 

curve) and CVX (blue dashed curve). (a) n/m = 2 , K/n = 0 . 02 , τ = −0 . 5 , and we 

vary m from 50 to 600. (b) we choose n = 100 , m = 50 , and change τ from −1 . 0 to 

0.0. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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Fig. 5. Recovery performance of the passive model (blue dashed line), EPin (red 

solid line), Plan’s model (blue dashed line with triangle), and EPin-sc (red solid 

line with triangle) for different sign flip ratios. In this experiment, n = 10 0 0 , m = 

500 , K = 10 , and s n = 10 . The recovery quality is measured by: (a) recovery SNR; 

(b) inconsistency ratio. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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t  
. Numerical experiments 

In the previous sections, we discussed the pinball loss min-

mization for robust 1bit-CS, proposed two convex models, and

esigned the corresponding fast algorithms. In this section, we

valuate the performance of the pinball loss minimization in

umerical experiments. The data are generated as in the pre-

ious section, i.e., we randomly choose K components from a

 -dimensional signal, draw their values from the Gaussian distri-

ution, and normalize the signal onto the unit � 2 -norm ball. Then,

 sign observations are generated by (2) , where ε is the Gaus-

ian noise with signal-to-noise ratio s n . We also consider sign flips

ith ratio r f . The experiments are done with Matlab 2014b on Core

5-3.10GHz and 8.0GB RAM. The source code of the proposed al-

orithms can be found on the authors’ homepage 1 . Notice that

n our numerical study we only consider Gaussian measurements

nd normalized signals, which is the mainstream for 1bit-CS. Re-

ently, there are some discussions on non-Gaussian measurements

25] and the � 2 -norm estimation [26] . 

Before investigating the recovery quality of the pinball loss min-

mization, we first evaluate the effectiveness of the dual coordi-

ate ascent algorithms. We compare the computational time of

lgorithm 1 and CVX for solving EPin (8) . More specifically, we

ary the number of measurements m from 50 to 600, meanwhile

eep the ratio n/m = 2 and the sparsity level K/n = 0 . 02 . The noise

evel is s n = 10 , r f = 10% , and the parameter in EPin (1) is chosen

s μ = 

√ 

log (n ) /m , τ = −0 . 5 . The average computational time over

00 trials is then reported in Fig. 4 (a), from which we can observe

hat the proposed dual coordinate ascent algorithm significantly

ave the computational time from CVX. 

Similarly, Algorithm 2 can solve EPin-sc (17) efficiently. Besides

he problem size, the computational time is also linked with τ ,

hich controls the feasible set in the dual problem. In Fig. 4 (b),
1 http://www.esat.kuleuven.be/stadius/ADB/huang/downloads/1bitCSLab.zip. 

i  

s  

s  
e report the average computational time of EPin-sc by CVX and

lgorithm 2 . The computational time of Plan’s model, for which

VX is suggested by Zhang et al. [11] , is marked as well. 

Next we consider signal recovery quality for EPin and EPin-

c. Denote the recovered signal as ˜ x and the true signal as

¯ . The recovery quality then can be measured by SNR (9) .

oreover, we will also consider inconsistency ratio INR ( ̄x , ̃  x ) =
{ i : sgn (u 

� 
i 

x̄ ) � = sgn (u 

� 
i 

˜ x ) } ∣∣/m . 

As discussed previously, the best choice of τ and μ for EPin

8) is problem-dependent and 10-fold cross-validation based on

onsistency can be used to tune the parameters. Specifically, we

andomly partition the data into 10 subsets. In turn, one of the

ubsets is used for validation and the rest are used for training.

or each pair of τ and μ, we use Algorithm 1 on the training data

nd calculate the sign consistency on the validation data. Then τ
nd μ corresponding to the highest consistency are chosen. The

arameter candidate set is τ ∈ {−1 , −0 . 8 , −0 . 6 , −0 . 4 , −0 . 2 } and

/ 
√ 

log (n ) /m ∈ { 0 . 6 , 0 . 8 , 1 . 0 , 1 . 2 } . To make a fair comparison, μ
n passive model (7) is also tuned by 10-fold cross-validation. For

Pin-sc (17) and Plan’s model (6) , the best s is the � 1 -norm of the

rue signal. It also can be tuned by cross-validation but in this ex-

eriment we set s = ‖ ̄x ‖ 1 to show the best performance of EPin-sc

nd Plan’s model. Additionally, the comparison between EPin with

obtained by cross-validation and EPin-sc with an optimal s helps

s evaluate the parameter tuning method. 

Using the above setting, we evaluate Passive, Plan’s model and

ur proposed algorithms for different sign flip ratios r f . Here, n =
0 0 0 , m = 500 , s n = 10 and the average recovery performance of

00 trials for different r f is displayed in Fig. 5 . The performance

rends for these methods are similar. It is interesting to further

onsider sign flip detection methods, e.g., adaptive outlier pursuit

echnique designed in [10] for BIHT. These methods have already

hown good performance for the one-sided � 1 loss minimization,

nd are also promising to improve the performance of the pinball

oss minimization. 

In the following, we fix r f = 10% but vary s n from 1 to 100 and

hen report the average performance in Fig. 6 . From these results,

ne can observe that the performance is generally stable for dif-

erent noise levels, showing the robustness of EPin and EPin-sc

o Gaussian noise. Moreover, in Fig. 6 (b), when s n ≥ 20, INRs for

Pin/EPin-sc are below 0.1. Notice that in data generation, there

re r f = 10% sign flips. Then INR being less than 0.1 implies the

olerance of the sign flips. 

Next, we fix s n = 10 but increase the number of measurements

o compare these methods. The recovered qualities are illustrated

n Fig. 7 . With the increasing of m , all the recovery quality mea-

ures become better. The change trends for different models are

imilar that EPin and EPin-sc can improve the performance from

http://www.esat.kuleuven.be/stadius/ADB/huang/downloads/1bitCSLab.zip
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Fig. 6. Recovery performance of the passive model (blue dashed line), EPin (red 

solid line), Plan’s model (blue dashed line with triangle), and EPin-sc (red solid line 

with triangle) for different noise levels in the case n = 10 0 0 , m = 500 , K = 10 and 

r f = 10% . The recovery quality is measured by: (a) recovery SNR; (b) inconsistency 

ratio. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. 7. Recovery performance of the passive model (blue dashed line), EPin (red 

solid line), Plan’s model (blue dashed line with triangle), and EPin-sc (red solid 

line with triangle) for different number of observations. In this experiment, n = 

10 0 0 , K = 10 , s n = 10 , and r f = 10% . The recovery quality is measured by: (a) re- 

covery SNR; (b) inconsistency ratio. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Recovery performance of the passive model (blue dashed line), EPin (red 

solid line), Plan’s model (blue dashed line with triangle), and EPin-sc (red solid line 

with triangle) for different sparsity levels in the case n = 10 0 0 , m = 20 0 0 , s n = 10 

and r f = 10% . The recovery quality is measured by: (a) recovery SNR; (b) inconsis- 

tency ratio. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Recovery performance of the passive model (blue dashed line), EPin (red 

solid line), Plan’s model (blue dashed line with triangle), and EPin-sc (red solid line 

with triangle) on different dimensions. In this experiment, m = n/ 2 , K = n/ 100 , s n = 

10 , and r f = 10% . The recovery quality is measured by: (a) recovery SNR; (b) incon- 

sistency ratio. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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the existing algorithms. The performance of EPin-sc is slightly bet-

ter than EPin, which is mainly due to the fact that s is optimally

given but μ is tuned by cross-validation. It indicates that good es-

timation on the sparsity can help recovering the true signal and in

that case EPin-sc is more suitable. Though μ is chosen based on

cross-validation, there is generally no big difference between EPin

and EPin-sc with an optimal s . If there is no prior-knowledge on

‖ ̄x ‖ 0 or ‖ ̄x ‖ 1 , EPin is a good choice and cross-validation on μ can

help. 

The above observations and comparison keep true for different

sparsity levels, as plotted in Fig. 8 (a). When the number of non-

zero components is small, the difference among these methods is

minor. But when the number is large, Epin and Epin-sc show sig-
ificant advantage over the other methods, demonstrating the ef-

ect of using pinball loss. 

At last, we evaluate the proposed EPin and EPin-sc in higher

imensional spaces. In this experiment, we keep the ratio of the

umber of measurements over the signal dimension as 0.5, and

hat of the sparsity level over the dimension as 0.01. The SNRs

nd INRs of reconstructed signal for n = 10 0 0 , 20 0 0 , . . . , 10 0 0 0 are

iven in Fig. 9 . which shows that the reconstruction performance

or different dimensional problems is stable for the same sparsity

nd observations ratio. Note that here we do not tune parameters

or different n but use the ones set for n = 10 0 0 . Thus, the perfor-

ance for n = 10 0 0 is a bit better than the other cases. 

. Conclusions 

One-bit compressive sensing aims at recovering a signal from a

et of sign measurements. Currently, the one-sided � 1 and the lin-

ar loss are the two popular choices for 1bit-CS. Inspired by this

bservation, a compromise between them, i.e., the pinball loss, is

xpected to have good recovery performance. In this paper, we an-

lyzed the pinball loss from maximum likelihood and then estab-

ish two convex models, EPin and EPin-sc, to deal with 1bit-CS in

he presence of noise. The corresponding fast dual coordinate as-

ent algorithms are proposed, and the convergence is proved. The

umerical experiments demonstrate that the proposed algorithms

an efficiently find the optimal solutions and the recovery quality

s quite good. 

For the future work, the adaptive outlier pursuit correspond-

ng to EPin/EPin-sc is promising to further improve the perfor-

ance with sign flips. Moreover, replacing the � 1 -norm penalty in

Pin/EPin-sc by some non-convex ones could enhance sparsity of

he solution and the recovery could be improved, especially when

here are not enough observations. The current nonconvex meth-

ds for 1bit-CS is mainly for the linear loss [22,23,27,28] . For other

oss functions, e.g., the hinge loss and the pinball loss, the main

bstacle is that nonconvex penalties are hard to optimize. The po-

ential techniques include difference of convex functions algorithm

nd Frank-Wolf algorithm [29–31] . 
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