
Neurocomputing 298 (2018) 46–54

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Deep hybrid neural-kernel networks using random Fourier features

Siamak Mehrkanoon

∗, Johan A.K. Suykens

KU Leuven, ESAT-STADIUS, Kasteelpark Arenberg 10, Leuven (Heverlee) B-3001, Belgium

a r t i c l e i n f o

Article history:

Received 8 July 2017

Revised 2 November 2017

Accepted 27 December 2017

Available online 24 February 2018

Keywords:

Deep learning

Neural networks

Explicit feature mapping

Kernel methods

Hybrid models

a b s t r a c t

This paper introduces a novel hybrid deep neural kernel framework. The proposed deep learning model

makes a combination of a neural networks based architecture and a kernel based model. In particular,

here an explicit feature map, based on random Fourier features, is used to make the transition between

the two architectures more straightforward as well as making the model scalable to large datasets by

solving the optimization problem in the primal. Furthermore, the introduced framework is considered as

the first building block for the development of even deeper models and more advanced architectures.

Experimental results show an improvement over shallow models and the standard non-hybrid neural

networks architecture on several medium to large scale real-life datasets.

© 2018 Elsevier B.V. All rights reserved.

r

o

i

p

T

l

c

t

o

s

i

l

c

e

c

i

f

a

t

d

h

f

t
1. Introduction

Conventional machine learning techniques were limited in pro-

cessing natural data in their raw forms and a lot of domain experts

were required in transforming raw data into meaningful features or

representations. Recent years have witnessed considerable interests

in models with deep architectures, inspired by the layered archi-

tecture of the human visual cortex, due to their successful impact

in revolutionizing many application fields ranging from auditory to

vision sensory signal processing such as computer vision, speech

processing, natural language processing and game playing among

others.

Deep Learning is a class of machine learning techniques that

belongs to the family of representation learning models [1,2] . Deep

learning models deal with complex tasks by learning from sub-

tasks. In particular, several nonlinear modules are stacked in hi-

erarchical architectures to learn multiple levels of representation

(hierarchical features) from the raw input data. Each module trans-

forms the representation at one level into a slightly more ab-

stract representation at a higher level, i.e., the higher-level features

are defined in terms of lower-level ones. Deep learning architec-

tures have grown significantly, resulting in different models such

as stacked denoising autoencoders [3,4] , Restricted Boltzmann Ma-

chines [5–7] , Convolutional Neural Networks [8,9] , Long Short Term

Memories [10] among others.
∗ Corresponding author.

E-mail addresses: siamak.mehrkanoon@esat.kuleuven.be

, mehrkanoon2011@gmail.com (S. Mehrkanoon), johan.suykens@esat.kuleuven.be

(J.A.K. Suykens).

[

[

l

g

t

b

https://doi.org/10.1016/j.neucom.2017.12.065

0925-2312/© 2018 Elsevier B.V. All rights reserved.
Recent works in machine learning have highlighted the supe-

iority of deep architectures over shallow architectures in terms

f accuracy in several application domains [1,11] . However, train-

ng deep neural networks involves costly nonlinear optimization

roblems and demands huge amount of labeled training data.

he generalization performance of deep artificial neural networks

argely depends on the parameters of the model of which they

an be thousands to learn. Furthermore, finding the right archi-

ecture such as the number of layers and hidden units, the type

f activation functions among others, as well as the networks as-

ociated hyper-parameters become a difficult task with increas-

ng complexity of deep architectures. Most of the developed deep

earning models are based on artificial neural networks (ANN) ar-

hitecture, whereas deep kernel based models have not yet been

xplored in great detail. On the other hand support vector ma-

hines (SVM) and kernel based methods have also made a large

mpact in a wide range of application domains, with their strong

oundations in optimization and learning theory [12–14] and are

ble to handle high-dimensional data directly.

Therefore, exploring the existing synergies or hybridization be-

ween ANN and Kernel based models can potentially lead to the

evelopment of models that have the best of two worlds. One

as started already to explore such directions e.g., Kernel Methods

or Deep Learning and a family of positive-definite kernel func-

ions that mimic the computation in multilayer neural networks

15] , Convolutional kernel networks [16] , Deep Gaussian processes

17,18] . In particular, the authors in [19] introduced a convex deep

earning model via normalized kernels. The authors in [20] investi-

ated iterated compositions of Gaussian kernels with an interpreta-

ion that resembles a deep neural networks architecture. A kernel

ased Convolutional Neural Network is introduced in [16] where

https://doi.org/10.1016/j.neucom.2017.12.065
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2017.12.065&domain=pdf
mailto:siamak.mehrkanoon@esat.kuleuven.be
mailto:mehrkanoon2011@gmail.com
mailto:johan.suykens@esat.kuleuven.be
https://doi.org/10.1016/j.neucom.2017.12.065

S. Mehrkanoon, J.A.K. Suykens / Neurocomputing 298 (2018) 46–54 47

n

a

t

a

n

n

d

d

d

n

c

c

m

i

d

c

t

e

S

2

i

b

s

o

e

t

h

d

i

m

s

d

p

f

t

r

b

t

c

c

a

g

t

s

n

t

p

S

s

w

u

p

y

w

o

d

i

m

LSSVM Model

Primal:

Dual:

n × d, (n � d)

n × d, (d � n)

y(x) = wTϕ(x) + b

y(x) =
∑n

i=1 αiK(x, xi) + b

Fig. 1. Primal and Dual Formulation of LS-SVM kernel models.

t

m

w

i

d

b

a

a

fi

g

i

f

y

w

n

a

g
ew representations of the given image are obtained by stacking

nd composing kernels at different layers. A survey of recent at-

empts and motivations existing in the community for finding such

 synergy between the two frameworks is also discussed in [21] .

In this paper, we discuss possible strategies to bridge neural

etworks and kernel based models. The approach has been origi-

ally proposed in our previous work [22] where a two layer hybrid

eep neural kernel network is introduced. Here, the model intro-

uced in [22] is used as first building block for developing even

eeper models. Aspects of model selection are discussed. Some

ew test problems are added and comparisons with other deep ar-

hitectures are performed.

This paper is organized as follows. In Section 2 , the existing

onnections between artificial neural networks and kernel based

odels are explored. Section 3 , briefly reviews existing techniques

n kernel based models with explicit feature mapping and intro-

uces the proposed hybrid deep neural-kernel architecture that

an take advantage of the best of two worlds by bridging be-

ween the ANN and kernel based models. Section 4 reports the

xperimental results. Conclusions and future works are drawn in

ection 5 .

. ANNs vs. kernel architecture

In neural networks based approaches, the input is projected

nto a new space via multiplication with a weight matrix followed

y applying a nonlinear activation function. If we consider the de-

cribed operations in a module, then one can stack together several

f these modules and form a deep architecture. In this way, differ-

nt configurations of stacking as well as wiring used in the en-

ire networks can cover different modeling strategies. On the other

and, in kernel based approaches one often works with the primal-

ual setting. In the primal formulation, one projects the input data

nto a potentially infinite dimensional space using implicit feature

apping. The projected data points are then mapped to a target

pace by means of an inner product with a weight matrix (primal

ecision variables). Alternatively one could also work with an ex-

licit feature map and project the data into a finite dimensional

eature space where each of its elements can be approximated. In

he case of an implicit feature mapping, the projection space cor-

esponds to a hidden layer in a neural network with infinite num-

er of neurons [23] . Whereas when using an explicit feature map

he connection with neural network architectures becomes even

loser. More precisely, the dimension of the explicit feature map

orresponds to the number of hidden units in the hidden layer of

 neural network architecture.

It should be noted that in kernel based approaches, when in the

iven dataset the number of instances is much larger than the fea-

ure dimensions, one may prefer to use an explicit feature map and

olve the optimization problem in the primal. In the case that the

umber of variables is much larger than the number of instances,

hanks to the implicit feature mapping and the kernel trick, the

roblem can be solved in the dual.

In particular, the Least Squares Support Vector Machines (LS-

VM) framework with implicit and explicit feature mapping is

hown in Fig. 1 . Here, given training data points D = { x 1 , . . . , x n } ,
here { x i } n i =1

∈ R

d and the targets { y i } n i =1
, one assumes that the

nderlying function describing the relation between input and out-

ut of the system has the following form:

 (x) = w

T ϕ(x) + b, (1)

here ϕ(·) : R

d → R

h is the feature map and h is the dimension

f the feature space. Thanks to the nonlinear feature map, the

ata are embedded into a feature space and the optimal solution

s sought in that space by minimizing the residual between the

odel outputs and the measurements. To this end, one formulates
he following optimization problem known as primal LS-SVM for-

ulation for regression problems [23] :

minimize
w,b,e

1

2

w

T w +

γ

2

e T e

subject to y i = w

T ϕ(x i) + b + e i , i = 1 , . . . , n,

(2)

here γ ∈ R

+ , b ∈ R , w ∈ R

h . Depending whether an explicit or

mplicit feature map is used, one could solve (2) in the primal or

ual.

• Implicit feature map: If one uses an implicit feature map ϕ
which in general can be infinite dimensional, then the opti-

mization problem cannot be solved in the primal. Therefore the

kernel trick is used and the problem is solved in the dual [23] .

Obtaining the Lagrangian of the constrained optimization prob-

lem (2) and eliminating the primal variables e i and w leads to

the following linear system in the dual problem: [
� + I n /γ 1 n

1

T
n 0

][
α
b

]
=

[
y
0

]
(3)

where �i j = K(x i , x j) = ϕ (x i)
T ϕ (x j) is the ij th entry of the

positive definite kernel matrix. 1 n = [1 , . . . , 1] T ∈ R

n , α =
[α1 , . . . , αn]

T , y = [y 1 , . . . , y n]
T and I n is the identity matrix. The

model in the dual form becomes:

y (x) = w

T ϕ(x) + b =

n ∑

i =1

αi K(x, x i) + b. (4)

• Explicit feature map: In case that an explicit feature map is

used, then one can rewrite the original constraint optimization

problem (2) as the following unconstrained optimization prob-

lem and solve it in the primal:

min

ˆ w ,b
J(̂ w , b) =

1

2

Q ∑

� =1

ˆ w

T ˆ w +

γ

2

n ∑

i =1

(y i − ˆ w

T ˆ ϕ (x i) − b) 2 (5)

where ˆ ϕ (·) is an explicit finite dimensional feature map. In the

next section some of the existing techniques are mentioned.

Inspecting the mathematical expressions of ANNs and kernel

ased models with explicit feature mapping, reveals the differences

nd similarities between the two frameworks, see Fig. 2 .

In classical artificial neural network architectures the nonlinear

ctivation functions such as sigmoid, hyperbolic tangent or Recti-

ed Linear Units (ReLU), are applied on the weighted sum of the

iven input instance. For instance, a single-layer ANN where the

nputs are directly connected to the output can be formulated as

ollows:

 (x) = f (W x + b) ,

here x ∈ R

d , W ∈ x ∈ R

d h ×d and b is the bias vector. Here f de-

otes the activation function. On the contrary, in the kernel based

pproaches, the nonlinear feature map is directly applied on the

iven input instance and then the target value is estimated by

48 S. Mehrkanoon, J.A.K. Suykens / Neurocomputing 298 (2018) 46–54

X

W

Φ̂(·)

X

W

f (·)

a

b

Fig. 2. Computational graph corresponding to (a) A single module of a neural net-

work architecture. (b) A single module of kernel based models with explicit feature

mapping.

ϕ̂(.)

F
u
ll
y

C
on

n
ec

te
d

misclassification loss

x
S(x)

F
u
ll
y

C
on

n
ec

te
d

h1(x)
h2(x)

Fig. 3. Two-layer hybrid neural kernel network architecture.

d

n

s

d

l

ϕ

w

ϕ

w

s

t

a

t

i

a

s

d

t

t

a

t

e

n

c

i

B

y

o

s

t

l

K

w

K

v

p

s

ϕ

H

o

a

N

m
means of a weighted sum of the projected sample. In the kernel

based approach with an explicit feature map, the optimal values

for the model parameters, i.e., weights and biases, can be learned

in the primal. Furthermore, in this case, the dimension of ˆ ϕ (·) can

be larger or smaller than that of the input layer X . In contrast to

the ANN module shown in Fig. 2 (a), a single module of kernel

based model is linear in the weight matrix W , therefore convex

optimization techniques can be applied to obtain an optimal values

of W . In addition, compared to a single ANN module, in practice, it

has a better capability for learning nonlinear decision boundaries

with a satisfactory generalization performance. It is worth noting

that the matrix of the hidden layer shown in Fig. 2 (a) can also be

treated at the tuning parameter level (see [24]).

In today’s applications, addressing large scale problems is in-

evitable. ANN based models can rely on the stochastic gradient

descent algorithm for obtaining the optimized model parameters

when the size of the data set is large. In kernel based approaches,

on the other hand, one can for instance work with low rank ap-

proximation of the kernel matrix and avoid building and storing

the entire kernel matrix which is not computationally efficient.

3. Proposed deep hybrid model

3.1. Two-layer model

Consider training data points D = { x 1 , . . . , x n } , where { x i } n i =1
∈

R

d , the labels { y i } n i =1
and the total number of classes is Q . This sec-

tion introduces a new deep architecture configuration that bridges

the ANN and kernel based models in the primal level. The pro-

posed model is suitable for both regression and classification. For

the kernel based model counterpart we employ an explicit fea-

ture mapping. In the literature, several methodologies are intro-

duced to scale up the kernel based models for dealing with large

scale problems. For instance Greedy basis selection techniques

[25] , incomplete Cholesky decomposition [26] , and Nyström meth-

ods [27,28] aim at providing a low-rank approximation of the ker-

nel matrix. In particular the Nyström approximation method as

well as a reduced kernel technique have been previously success-

fully applied in the context of large scale semi-supervised learning

for providing an approximation of the feature map and solving the

optimization problem in the primal (see [29]).

In the Nyström approximation method, an explicit expression

for ϕ can be obtained by means of an eigenvalue decomposition of

the kernel matrix �. More precisely, the i th component of the the

n -dimensional feature map feature map ˆ ϕ : R

d → R

n , for any point

x ∈ R

d , can be obtained as follows:

ˆ ϕ i (x) =

1 √

λi

n ∑

k =1

u ki K(x k , x) , (6)

where K (· , ·) is the kernel function, λi and u i are eigenvalues and

eigenvectors of the kernel matrix �n × n whose (i, j)th element is
efined as K (x i , x j). The k th element of the i th eigenvector is de-

oted by u ki . In practice when n is large, one can work with a

ubsample (prototype vectors) of size m � n . In this case, the m -

imensional feature map ˆ ϕ : R

d → R

m can be approximated as fol-

ows:

ˆ (x) = [̂ ϕ 1 (x) , . . . , ˆ ϕ m

(x)] T (7)

here

ˆ i (x) =

1 √

λi

m ∑

k =1

u ki K(x k , x) , i = 1 , . . . , m (8)

here λi and u i are now eigenvalues and eigenvectors of the con-

tructed kernel matrix �m × m

using the selected prototype vec-

ors. Among existing approaches for selecting the prototype vectors

re for instances random selection, incomplete Cholesky factoriza-

ion [26] , clustering and entropy based techniques. The authors

n [30] , compared the performance of the Nyström approximation

nd the reduced kernel techniques to a newly introduced scalable

emi-supervised kernel spectral clustering model by means of ran-

om Fourier features on real large scale datasets. In particular, as

he RFF-MSSKSC model does not involve eigen-decomposition step,

herefore it requires less training computation times, while the test

ccuracy is comparable to that of other explicit feature mapping

echniques.

Therefore, here we use random Fourier features to compute an

xplicit feature map and build a module that can be cast into a

eural networks architecture. Random Fourier features have re-

ently been introduced in the field of kernel methods by exploit-

ng the classical Bochner’s theorem in harmonic analysis [31] . The

ochner’s theorem states that a continuous kernel K(x, y) = K(x −
) on R

d is positive definite if and only if K is the Fourier transform

f a non-negative measure. If a shift-invariant kernel k is properly

caled, its Fourier transform p (ξ) is a proper probability distribu-

ion. This property is used to approximate kernel functions with

inear projections on D random features as follows [31] :

(x − y) =

∫
R d

p(ξ) e jξ
T (x −y) dξ = E ξ [z ξ (x) z ξ (y) ∗] , (9)

here z ξ (x) = e jξ
T x . Here z ξ (x) z ξ (y) ∗ is an unbiased estimate of

 (x, y) when ξ is drawn from p (ξ) (see [31]). To obtain a real-

alued random feature for K , one can replace the z ξ (x) by the map-

ing z ξ (x) = cos (ξ T x) . The random Fourier features ˆ ϕ (x) , for the

ample x , are then defined as

ˆ (x) =

1 √

D

[z ξ1
(x) , . . . , z ξD

(x)] T ∈ R

D . (10)

ere 1 √

D
is used as normalization factor to reduce the variance

f the estimate and ξ1 , . . . , ξD ∈ R

d are sampled from p (ξ). For

 Gaussian kernel, they are drawn from a Normal distribution

 (0 , σ 2 I d) . Assuming that an explicit feature map is given, we for-

ulate a two layer hybrid architecture as follows (see also Fig. 3):

S. Mehrkanoon, J.A.K. Suykens / Neurocomputing 298 (2018) 46–54 49

w

b

s

w

w

v

t

i

l

W

l

p

e

m

i

r

s

b

L

s

A

i

l

f

l

t

b

y

f

b

A

t

i

W

f

s

T

y

3

m

s

c

v

o

Algorithm 1: Deep Hybrid Neural-Kernel Networks.

Input : Training data set D, regularization constants γ1 , ∈ R

+ ,
Kernel parameter, learning rate η and test set

D

test = { x i } n test
i =1

.

Output : Class label for the test instances D

test .

1 Initialize the model parameters θ = [W 1 , W 2 , b 1 , b 2] .

2 while the stopping criterion is not satisfied do

3 Evaluate the gradient of the cost function w.r.t model

parameters.

4 Make a gradient step and update the model

parameters: θnew = θ − η∇ θ J(θ) .

5 θ ← θnew

.

6 return W

7 Compute the score variable s , for the test instances in D

test

using (15).

8 Predict the test labels using (16).

ϕ̂1(.)

F
u
ll
y

C
on

n
ec

te
d

M
is

cl
as

si
fi
ca

ti
on

L
os

s

x
S(x)

F
u
ll
y

C
on

n
ec

te
d

h1 h2

h3

ϕ̂2(.)

h4

F
u
ll
y

C
on

n
ec

te
d

Fig. 4. Deep hybrid neural kernel network architecture.

[

t

d

i

t

t

a

h

h

h

h

w

m

d

d

f

s

w

d

p

{

T

b

r

t

o

h 1 = W 1 x + b 1 ,

h 2 = ˆ ϕ (h 1)

s = W 2 h 2 + b 2 ,

(11)

here W 1 ∈ R

d 1 ×d and W 2 ∈ R

Q×d 2 are weight matrices and the

ias vectors are denoted by b 1 and b 2 .

Equivalently, one can re-write (11) as follows:

 = W 2 ̂ ϕ (W 1 x + b 1) + b 2 . (12)

hich makes the exiting connections to the standard neural net-

orks architecture more clear. Here, the dimensions of the hidden

ariables h 1 and h 2 are user defined parameters. Here we assume

hat the input data are first projected to a d 1 dimensional space

n the first layer followed by a d 2 dimensional space in the second

ayer. The formulation of the proposed method is as follows:

min

 1 ,W 2 ,b 1 ,b 2
J(W 1 , W 2 , b 1 , b 2) =

γ

2

2 ∑

j=1

T r(W j W

T
j) +

1

n

n ∑

i =1

L (x i , y i) .

(13)

The cost function is composed of regularization terms and the

oss function L (·). Any misclassification loss function can be em-

loyed in the misclassification loss layer.

Here, in order to have probabilistic membership assignments to

ach instance, the cross-entropy loss function (also known as soft-

ax function) is used which equips the results with a probabilistic

nterpretation by minimizing the negative log likelihood of the cor-

ect class. Let us denote the class scores for a single instance x i as

�
i

for � = 1 , . . . , Q . Then the cross-entropy loss for this instance can

e calculated as:

 (x i , y i) = − log

(exp (s y i
i
) ∑ Q

j=1
exp (s j

i
)

)
. (14)

Here s
j
i

denotes the score that is assigned to j th class for the in-

tance x i . Here y i is the true class membership for the instance x i .

s can be seen from expression (14) , the softmax classifier can be

nterpreted as the normalized probability assigned to the correct

abel y i given the instance x i . The first two terms in the objective

unction are regularization terms over the model parameters. The

ast term in (13) aims at minimizing the negative log likelihood of

he correct class. The (stochastic) gradient descent algorithm can

e employed to train the model in (13) . Some theoretical anal-

sis regarding the approximation quality of the Random Fourier

eatures (RFF) for shift-invariant kernels and their derivatives can

e found in [32] . The pseudocode of our approach is described in

lgorithm 1 . The stopping criterion is when the residual loss func-

ion is less than a threshold ε = 10 −3 or the maximum number of

terations is reached. After obtaining the model parameter W 1 and

 2 , the score variable for the test point x test can be computed as

ollows:

 test = W 2 ˜ ϕ (W 1 x test + b 1) + b 2 . (15)

he final class label for the test point x test is computed as follows:

ˆ
 test = arg max

� =1 , ... ,Q

(s test) . (16)

.2. Deep hybrid model

As it has been shown in the literature, in many tasks, deep

odels with several staking nonlinear layers perform better than

hallow models and are able to better learn the complex hierar-

hical representations of the given dataset. In particular, deep con-

olutional neural networks models are the state-of-the-art meth-

ds for learning the abstract representations of the labeled images
9,33] . It is possible to use the introduced hybrid model (11) as

he first building block for exploring even deeper models. Here we

evelop a deeper model by staking the hybrid model (11) follow-

ng the architecture shown in Fig. 4 where the input data passes

hrough two linear and nonlinear layers in total before reaching

he fully connected layer which is attached to the output.

One can formulate the stacked hybrid deep neural kernel model

s follows:

 1 = W 1 x + b 1 ,

 2 = ˆ ϕ 1 (h 1)

 3 = W 2 h 2 + b 2 ,

 4 = ˆ ϕ 2 (h 3)

s = W 3 h 4 + b 3 , (17)

here x ∈ R

d , W 1 ∈ R

d 1 ×d , W 2 ∈ R

d 3 ×d 2 and W 3 ∈ R

Q×d 4 are weight

atrices and the bias vectors are denoted by b 1 , b 2 and b 3 . The

imension of the hidden layers h 1 , h 2 , h 3 and h 4 are denoted by

 1 , d 2 , d 3 and d 4 respectively. One can equivalently re-write (17) as

ollows:

 = W 3 ˆ ϕ 2 (s 1) + b 3 , (18)

here s 1 denotes the output of the two-layer hybrid model intro-

uced in (12) . The optimization problem corresponding to the pro-

osed stacked hybrid model can be formulated as follows:

min

 W i } 3 i =1
, { b i } 3 i =1

J({ W i } 3 i =1 , { b i } 3 i =1) =

γ

2

3 ∑

j=1

T r(W j W

T
j) +

1

n

n ∑

i =1

L (x i , y i) .

(19)

he role of the regularization terms in (19) is to avoid overfitting

y keeping the weights of the model small. The regularization pa-

ameter γ controls the relative importance given to the regulariza-

ion terms. Here L (· , ·) is the cross-entropy loss defined as previ-

usly in (14) .

50 S. Mehrkanoon, J.A.K. Suykens / Neurocomputing 298 (2018) 46–54

Table 1

Dataset statistics.

Dataset # instances # attributes # classes

Australian 690 14 2

Spambase 4597 57 2

Sonar 208 60 2

Titanic 2201 3 2

Monk2 432 6 2

Balance 625 4 3

Madelon 2600 500 2

USPS 9298 256 10

Digit-MultiF1 20 0 0 240 10

Digit-MultiF2 20 0 0 216 10

CNAE-9 1080 856 9

Large scale data

Magic 19,020 10 2

Covertype 581,012 54 3

SUSY 5,0 0 0,0 0 0 18 2

d

i

u

a

o

o

o

e

e

d

t

u

c

t

t

t

p

t

p

t

t

t

s

p

f

t

p

o

m

p

(

p

e

t

e

h

a

m

c

d

s

i

t

a

f

t

o

d

m

n

f

i

B

t

p

n

m
Remark 1. Note that choosing γ properly is important as too low

values result in the effect of the regularizer term to be neglected.

On the other hand, for too high values the optimal model will set

all the weights to zero.

It should be noted that stacking different hybrid layers can po-

tentially bring more flexibility to the model as the new representa-

tion of the data can be learned in multiple levels corresponding to

different scales in terms of feature mapping. However, one also re-

quires more training times and possibly more data to get the most

out of these types of models.

In training the stacked model, we will take advantage of the

previously learned weights in model (13) . More precisely, we trans-

fer the learned weights of model (13) to the new model (17) and

will keep it unchanged. In this way, not only the training computa-

tion times gets reduced as there will be less number of parameters

to be learned but also the stacked model benefits from the previ-

ously learned weights to better optimize and learn the nonlinear

decision boundaries. Alternatively, one could also use the learned

weights of model (13) for the initialization of the first two layers of

the stacked model and fine tune them while learning the weights

of the remaining layers in (17) . Here, we start by first obtaining

the optimal model parameters of the two-layer hybrid neural ker-

nel networks by solving (13) . Then we cut-off the very last fully

connected layer as well the Softmax layer from model (11) and

build the new stacked model, see Fig. 4 . When learning the pa-

rameters of the new model, the first wights of the first two layers

are not trained. This process can in particular be of more interest

when analyzing large scale datasets with the complex underlying

non-linearity.

After obtaining the model parameter { W i } 3 i =1
and { b i } 3 i =1

the

score variable for the test point x test can be computed as follows:

h 3 = W 2 ˜ ϕ 1 (W 1 x test + b 1) + b 2 ,

s test = W 3 ˜ ϕ 2 (h 3) + b 3 . (20)

The final class label for the test point x test is computed as follows:

ˆ y test = arg max
� =1 , ... ,Q

(s test) . (21)

4. Experimental results and discussion

In this section experimental results on several real-life datasets

taken from UCI machine learning repository [34] and KEEL-datasets

[35] are reported. All the experiments are performed on a laptop

computer with Intel Core i7 CPU and 16 GB RAM under Matlab

2014a.

The descriptions of the used datasets can be found in Table 1 .

Here we provide the information concerning some of these
atasets and for the remaining ones, one may refer to the follow-

ng links: http://archive.ics.uci.edu/ml/index.php and http://sci2s.

gr.es/keel/datasets.php . The Multiple Features (i.e., Digit-MultiF1

nd Digit-MultiF2 in Table 1) datasets contains ten classes, (0–9),

f handwritten digits with 200 images per class, thus for a total

f 20 0 0 images. Originally these digits are represented in terms

f six different types of features. The features that are consid-

red here are profile correlations (216 dimensional) and pixel av-

rage (240 dimensional). The USPS dataset is a handwritten digit

ataset that contains 9298, 16 × 16 handwritten digit images in to-

al. The CNAE-9 is a highly sparse dataset containing 1080 doc-

ments of free text business descriptions of Brazilian companies

ategorized into a subset of 9 categories. The supersymmetric par-

icles (SUSY) dataset is a benchmark classification where the task is

o distinguish between a process where new supersymmetric par-

icles (SUSY) are produced, leading to a final state, in which some

articles are detectable and others are invisible to the experimen-

al apparatus, and a background process with the same detectable

articles but fewer invisible particles and distinct kinematic fea-

ures [36] . This benchmark problem is currently of great interest

o the field of high-energy physics, and there is a strong effort in

he literature to build high-level features which can aid in the clas-

ification task.

Almost in all the experiments, the given dataset is randomly

artitioned to 80% training and 20% test sets respectively. The per-

ormance of the proposed deep hybrid model is compared with

hat of the shallow LS-SVM with implicit and explicit feature map-

ing, as well as multilayer perceptron with a comparable number

f layers. In the LS-SVM framework, in the case of implicit feature

apping the problem is solved in the dual whereas when an ex-

licit feature mapping is used one solves the problem in the primal

suitable for large scale data, as the complexity of the optimization

roblem grows linearly with the number of data points). In our

xperiments, in order to have a fair comparison, the dimension of

he explicit random Fourier feature in both deep and shallow mod-

ls are kept the same. The proposed two-layer and stacked layers

ybrid model resemble the neural networks architecture with one

nd two hidden layers respectively. Therefore, we also compare our

odel with the standard feedforward artificial neural networks ar-

hitectures defined as follows:

• One hidden layer (One-layer): Input → Fully Connected →
ReLU activation → Fully Connected → Softmax.

• Two hidden layers (Two-layer): Input → Fully Connected →
ReLU activation → Fully Connected → ReLU activation →
Fully Connected → Softmax.

For the sake of a fair comparison, the dimension of the hid-

en layers in the above-mentioned network structures is kept the

ame as the one used in the proposed deep hybrid model. Compar-

ng Fig. 4 with the classical neural networks architecture, implies

hat the explicit feature mapping in the hybrid model is acting as

 nonlinear activation function as in the neural networks. There-

ore it is interesting to explore its impact on the accuracy and the

raining computation times of the hybrid model compared to those

f the classic non-hybrid neural networks architecture.

The parameters of the proposed deep hybrid model are the

imension of the fully connected layers and the explicit feature

aps. In addition, in the case of the RBF kernel, the variance of the

ormal distribution from which one constructs the random Fourier

eatures. Some of the existing methods for hyper-parameter tun-

ng are for instance standard grid-search, random search [37] and

ayesian Optimization [38] . Following the lines of [37] , we adopted

he random search strategy for tuning the hyper-parameters of the

roposed deep hybrid model as well as the feedforward neural

etworks. As compared to grid search, random search finds better

odels by effectively searching a larger and more promising con-

http://archive.ics.uci.edu/ml/index.php
http://sci2s.ugr.es/keel/datasets.php

S. Mehrkanoon, J.A.K. Suykens / Neurocomputing 298 (2018) 46–54 51

10-3 10-2 10-1 100

V
al

id
at

io
n

A
cc

ur
ac

y

75

80

85

90

95
CNAE-9 dataset

Two-layer hybrid neural-kernel model
Deep hybrid neural-kernel model

10-3 10-2 10-1 100

V
al

id
at

io
n

A
cc

ur
ac

y

74

76

78

80

82

84

86

88

90

92

Spambase dataset

Two-layer hybrid neural-kernel model
Deep hybrid neural-kernel model

a b

Fig. 5. (a) The validation accuracy of the two-layer hybrid neural-kernel model as well as deep hybrid neural-kernel model corresponding to different regularization pa-

rameters for CNAE9 dataset. (b) The validation accuracy of the two-layer hybrid neural-kernel model as well as deep hybrid neural-kernel model corresponding to different

regularization parameters for Spambase dataset.

10 20 30 40 50 60 70 80
0.75

0.8

0.85

0.9

0.95

1

Epoch

A
cc

ur
ac

y

Training accuracy of a fixed netwo k configuration
Validation accuracy of a fixed netwrok configuration

0 10 20 30 40 50 60 70 80
0.5

1

1.5

2

2.5

3

Epoch

Lo
ss

 fu
nc

tio
n

Training loss for a fixed network configuration
Validation loss for a fixed network configuration

a b

Fig. 6. CNAE9 dataset. (a) The training and validation loss for corresponding to the stacked deep hybrid model with [h 1 , h 2 , h 3 , h 4] = [30 0 , 40 0 , 20 0 , 10 0] and [σ1 , σ2 =

[0 . 7 , 0 . 8]] configuration settings. (b) The training and validation accuracy with the previously mentioned hybrid model configuration.

fi

t

h

l

p

f

l

k

a

f

σ

s

(

s

s

b

t

p

a

i

a

s

m

s

L

u

d

s

m
guration space [37] . In our experiments, the ranges from which

he dimensions of the middle layers are sought are h 1 ∈ [10 0, 50 0],

 2 ∈ [30, 400], h 3 ∈ [100, 200] and h 4 ∈ [100, 300].

The influence of the regularization parameter γ in the formu-

ations (13) and (19) for the CNAE9 and Spambase datasets is dis-

layed in Fig. 5 . Based on these observations, we set γ = 0 . 0 0 01

or all the experiments. In addition, the training and validation

oss as well as the accuracy of the proposed deep hybrid neural-

ernel network model with [h 1 , h 2 , h 3 , h 4] = [30 0 , 40 0 , 20 0 , 10 0]

nd [σ1 , σ2 = [0 . 7 , 0 . 8]] configuration settings is illustrated in Fig. 6

or the CNAE9 dataset.

The parameters of the LS-SVM model are the kernel bandwidth

and regularization parameter γ which are tuned using a two

tep procedure which consists of Coupled Simulated Annealing

CSA) [39] initialized with 5 random sets of parameters for the first

tep and the simplex method [40] for the second step. The coupled
imulated annealing belongs to a class of optimization methods

ased on Simulated Annealing (SA) algorithm, a global optimiza-

ion approach, that can be used to solve unconstrained non-convex

roblems in continuous variables. The CSA class is characterized by

 set of parallel SA processes coupled by their acceptance probabil-

ties. The coupling is performed by a term in the acceptance prob-

bility function that is a function of the energies of the current

tates of all SA processes [39] . After CSA converges to some local

inima we select the parameters that attains the lowest error and

tart the simplex procedure to refine our selection.

The obtained empirical results of the proposed model, shallow

S-SVM model and standard feedforward neural networks are tab-

lated in Table 2 . In most of the cases studied here the proposed

eep hybrid model improves the accuracy over the shallow LS-SVM

tructure model. In addition, in some of the cases, the deep hybrid

odel shows an improvement over the two-layer hybrid model

52 S. Mehrkanoon, J.A.K. Suykens / Neurocomputing 298 (2018) 46–54

Table 2

The average accuracy of the proposed deep models, the shallow LS-SVM with implicit and explicit feature maps and non-hybrid classic feedforward neural networks on

several real-life datasets.

Dataset D train / D test Deep hybrid model Shallow LS-SVM Neural networks

Two-layer Stacked layers Primal Dual One-layer Two-layer

Australian 552/138 0.85 ± 0.01 0.87 ± 0.01 0.81 ± 0.01 0.83 ± 0.01 0.83 ± 0.02 0.85 ± 0.01

Sonar 167/41 0.75 ± 0.04 0.77 ± 0.04 0.69 ± 0.07 0.72 ± 0.03 0.71 ± 0.02 0.73 ± 0.01

Titanic 1761/440 0.78 ± 0.01 0.78 ± 0.02 0.77 ± 0.02 0.78 ± 0.01 0.76 ± 0.01 0.78 ± 0.02

Spambase 3678/919 0.91 ± 0.03 0.93 ± 0.01 0.84 ± 0.05 0.85 ± 0.03 0.90 ± 0.02 0.92 ± 0.02

Monk2 346/86 1.00 ± 0.00 1.00 ± 0.00 0.93 ± 0.05 0.95 ± 0.02 0.94 ± 0.02 0.96 ± 0.01

Balance 500/125 0.96 ± 0.01 0.97 ± 0.02 0.93 ± 0.02 0.94 ± 0.01 0.95 ± 0.01 0.97 ± 0.01

CNAE-9 864/216 0.93 ± 0.01 0.94 ± 0.02 0.90 ± 0.04 0.91 ± 0.03 0.91 ± 0.02 0.92 ± 0.01

Digit-MultiF1 160 0/40 0 0.97 ± 0.01 0.98 ± 0.01 0.95 ± 0.03 0.96 ± 0.02 0.95 ± 0.02 0.96 ± 0.02

Digit-MultiF2 160 0/40 0 0.96 ± 0.02 0.97 ± 0.02 0.95 ± 0.02 0.96 ± 0.01 0.96 ± 0.01 0.97 ± 0.02

Madelon 2080/520 0.59 ± 0.06 0.63 ± 0.05 0.55 ± 0.08 0.57 ± 0.03 0.57 ± 0.01 0.62 ± 0.01

USPS 2789/6509 0.96 ± 0.01 0.97 ± 0.01 0.95 ± 0.02 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01

Magic 15,216/3804 0.86 ± 0.02 0.86 ± 0.02 0.84 ± 0.01 0.84 ± 0.01 0.83 ± 0.01 0.85 ± 0.02

Covertype 464,810/116,202 0.85 ± 0.02 0.86 ± 0.01 0.78 ± 0.01 N.A 0.83 ± 0.02 0.85 ± 0.01

SUSY 4,0 0 0,0 0 0/1,0 0 0,0 0 0 0.80 ± 0.02 0.81 ± 0.03 0.78 ± 0.01 N.A 0.79 ± 0.02 0.80 ± 0.01

Note: “N.A” stands for Not Applicable due the large size of the dataset. In the last two columns, One-layer and Two-layer refer to a neural networks with one hidden layer

and two hidden layers respectively.

−10 −5 0 5 10
−10

−5

0

5

10

t−SNE projection of the first layer h
1

x
1

x 2

−10 −5 0 5 10
−10

−5

0

5

10

t−SNE projection of the second layer h
2

x
1

x 2

−4 −2 0 2 4
−4

−2

0

2

4
Score varibale S

S
1

S
2

−20 −10 0 10 20
−20

−10

0

10

20

30
t−SNE projection of the layer h

1

x
1

x 2

−30 −20 −10 0 10 20
−30

−20

−10

0

10

20

30
t−SNE projection of the layer h

2

x
1

x 2

−40 −20 0 20 40
−15

−10

−5

0

5

10

15

20
t−NSE projection of the score variables

x
1

x 2

a b c

d e f

Fig. 7. Monk2 dataset. (a) and (b) t-SNE projections of the test data in the hidden layers h 1 and h 2 . (c) The obtained score variables s , for the test data. CNAE9 dataset. (d),

(e) and (f) t-SNE projections of the test data in the hidden layers h 1 and h 2 as well the score variables s . The different colors relate to the various classes.

m

p

d

a

b

d

p

o

h

w

a
as well as the feedforwad neural networks architecture. In all the

datasets studied here, the two-layer neural networks outperforms

the one-layer neural networks. As can be seen in Table 2 , the two-

layer hybrid model introduced in (11) , i.e., a linear transforma-

tion of the input x followed by an explicit nonlinear embedding,

can already achieve quite satisfactory results compared to its neu-

ral networks counterpart with one hidden layer (One-layer neural

networks). In fact, although from architectural point of view, the

two-layer hybrid model resembles one-layer neural networks, but

in terms of accuracy its performance is more closer to two-layer

neural networks model. In general, one can expect that when the

underlying non-linearity of the data is complex, the deep hybrid
odel can potentially obtain a better decision boundary in the ex-

ense of more training computation times.

In Table (3), the training computation times of the proposed

eep hybrid model and non-hybrid feedforward neural networks

re given. From Table (3), one can observe that in general the hy-

rid model requires slightly more training times compared to stan-

ard neural networks, but on the other hand the accuracy is im-

roved. It should also be noted that, in Table (3), the training times

f the deep hybrid model is also slightly less than that of two-layer

ybrid model. This is due the fact that in the deep hybrid model

e utilize the learned weights of the two-layer hybrid model and

lso the dimension of the h 3 and h 4 hidden layers are chosen to be

S. Mehrkanoon, J.A.K. Suykens / Neurocomputing 298 (2018) 46–54 53

Table 3

The training computation times (seconds) of the proposed deep hybrid model and

non-hybrid classic feedforward neural networks.

Dataset Deep hybrid model neural networks

Two-layer Stacked layers One-layer Two-layer

Australian 3.82 2.50 2.45 2.57

Sonar 1.17 1.15 1.11 1.03

Titanic 8.23 6.54 6.72 7.21

Spambase 16.02 14.04 15.03 15.47

Monk2 1.98 1.84 1.83 1.94

Balance 2.44 2.38 2.24 2.33

CNAE-9 4.60 4.34 3.79 3.42

Digit-MultiF1 7.63 6.02 6.09 6.26

Digit-MultiF2 6.75 6.37 6.19 7.04

Madelon 8.76 8.39 7.74 8.98

USPS 10.35 8.22 7.66 8.45

Magic 32.94 31.86 28.13 30.33

Covertype 483.10 464.05 439.70 445.32

SUSY 4100.06 40 0 0.23 3767.08 3950.12

Note: In the last two columns, One-layer and Two-layer refer to a neural networks

with one hidden layer and two hidden layers respectively.

l

h

fi

a

e

c

fl

t

t

l

t

r

d

o

5

i

fi

c

m

l

w

i

w

f

s

A

o

C

m

i

w

f

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[
ess than that of h 1 and h 2 (refer to Eq. (17). Therefore the model

as less parameters to learn in total.

The t-SNE visualization [41] of the obtained projections in the

rst and second layers as well as the score variables for the Monk2

nd CNAE9 datasets are also depicted in Fig. 7 which shows the

volution of the features in the hybrid network. From Fig. 7 , one

an observe that the representation of the data is changing as it

ows through the network. In particular, thanks to the deep struc-

ure of the network, there is an indication that the distribution of

he classes has been better separated in the deeper representation

ayer, i.e., the learned representation right before the last layer has

he best separability power. Ideally, one would expect that the new

epresentation of the data can form clear clusters of classes. But

ue to the complex non-linear data manifold, one may encounter

verlapping regions between new representation of each class.

. Conclusions and future works

In this paper a new hybrid deep neural kernel network model

s introduced. The similarities and differences between single arti-

cial neural networks module and its kernel counterpart are dis-

ussed in detail. We showed how hybridization of kernel based

odels with explicit feature mapping and neural networks can

ead to a new deep architecture, taking advantage of the two

orlds. The proposed model is also considered as the first build-

ng block for deeper models using a stacking strategy. Our future

ork is devoted to studying several choices of misclassification loss

unctions as well as the extension of the proposed framework to

emi-supervised learning with deep architecture.

cknowledgments

This work was supported by • The Postdoctoral Fellowship

f the Research Foundation-Flanders (FWO: 12Z1318N), • Reseach

ouncil KUL: CoE PFV/10/002 (OPTEC), PhD grants Flemish Govern-

ent; FWO: projects: G0A4917N, G.088114N. Siamak Mehrkanoon

s a postdoctoral fellow of the Research Foundation-Flanders (FWO)

orking at the KU Leuven in Belgium. Johan Suykens is a full pro-

essor at the KU Leuven, Belgium.

eferences

[1] Y. Bengio , A. Courville , P. Vincent , Representation learning: review and new

perspectives, IEEE Trans. Pattern Anal. Mach. Intell. 35 (8) (2013) 1798–1828 .
[2] Y. Bengio , Learning deep architectures for AI, Found. Trends® Mach. Learn. 2

(1) (2009) 1–127 .
[3] P. Vincent , H. Larochelle , I. Lajoie , Y. Bengio , P.-A. Manzagol , Stacked denoising
autoencoders: learning useful representations in a deep network with a local

denoising criterion, J. Mach. Learn. Res. 11 (Dec) (2010) 3371–3408 .
[4] G.E. Hinton , R.R. Salakhutdinov , Reducing the dimensionality of data with neu-

ral networks, Science 313 (5786) (2006) 504–507 .
[5] R. Salakhutdinov , G.E. Hinton , Deep Boltzmann Machines., in: Proceedings of

the AISTATS, vol. 1, 2009, p. 3 .
[6] G. Hinton , A practical guide to training restricted Boltzmann machines, Mo-

mentum 9 (1) (2010) 926 .

[7] V. Nair , G.E. Hinton , Rectified linear units improve restricted Boltzmann ma-
chines, in: Proceedings of the Twenty-Seventh International Conference on

Machine Learning (ICML-10), 2010, pp. 807–814 .
[8] S. Lawrence , C.L. Giles , A.C. Tsoi , A.D. Back , Face recognition: a convolutional

neural-network approach, IEEE Trans. Neural Netw. 8 (1) (1997) 98–113 .
[9] A. Krizhevsky , I. Sutskever , G.E. Hinton , Imagenet classification with deep con-

volutional neural networks, in: Proceedings of the Advances in Neural Infor-

mation Processing Systems, 2012, pp. 1097–1105 .
[10] S. Hochreiter , J. Schmidhuber , Long short-term memory, Neural Comput. 9 (8)

(1997) 1735–1780 .
[11] Y. LeCun , Y. Bengio , G. Hinton , Deep learning, Nature 521 (7553) (2015)

436–4 4 4 .
[12] V. Vapnik , Statistical Learning Theory, Wiley, 1998 .

[13] J. Shawe-Taylor , N. Cristianini , Kernel Methods for Pattern Analysis, Cambridge

University Press, 2004 .
[14] C.M. Bishop , N.M. Nasrabadi , Pattern Recognition and Machine Learning, vol. 1,

Springer New York, 2006 .
[15] Y. Cho , L.K. Saul , Kernel methods for deep learning, in: Proceedings of the Ad-

vances in Neural Information Processing Systems, 2009, pp. 342–350 .
[16] J. Mairal , P. Koniusz , Z. Harchaoui , C. Schmid , Convolutional kernel networks,

in: Proceedings of the Advances in Neural Information Processing Systems,

2014, pp. 2627–2635 .
[17] A. Damianou , N. Lawrence , Deep gaussian processes, in: Proceedings of the

Artificial Intelligence and Statistics, 2013, pp. 207–215 .
[18] K. Cutajar , E.V. Bonilla , P. Michiardi , M. Filippone , Random feature expansions

for deep gaussian processes, in: Proceedings of the International Conference
on Machine Learning, 2017, pp. 884–893 .

[19] Ö. Aslan , X. Zhang , D. Schuurmans , Convex deep learning via normalized ker-

nels, in: Proceedings of the Advances in Neural Information Processing Sys-
tems, 2014, pp. 3275–3283 .

20] I. Steinwart, P. Thomann, N. Schmid, Learning with hierarchical gaussian ker-
nels, arXiv: 1612.00824 (2016), 1–16.

[21] L. Belanche , M. Costa-jussa , Bridging deep and kernel methods, in: Proceedings
of the Twenty-Fifth European Symposium on Artificial Neural Networks, Com-

putational Intelligence and Machine Learning (ESANN), 2017, pp. 1–10., 2017,

pp. 1–10 .
22] S. Mehrkanoon , A. Zell , J.A.K. Suykens , Scalable hybrid deep neural kernel net-

works, in: Proceedings of the Twenty-Fifth European Symposium on Artificial
Neural Networks, Computational Intelligence and machine Learning (ESANN),

2017, pp. 17–22., 2017, pp. 17–22 .
23] J.A.K. Suykens , T. Van Gestel , J. De Brabanter , B. De Moor , J. Vandewalle , Least

Squares Support Vector Machines, World Scientific Pub. Co., Singapore, 2002 .
24] J.A.K. Suykens , J. Vandewalle , Training multilayer perceptron classifiers based

on a modified support vector method, IEEE Trans. Neural Netw. 10 (4) (1999)

907–911 .
25] A.J. Smola , B. Schölkopf , Sparse greedy matrix approximation for machine

learning, in: Proceedings of the Seventeenth ICML, Stanford, 20 0 0, pp. 911–918 .
26] F.R. Bach , M.I. Jordan , Predictive low-rank decomposition for kernel methods,

in: Proceedings of the Twenty-Second ICML, ACM, 2005, pp. 33–40 .
[27] S. Kumar , M. Mohri , A. Talwalkar , Sampling methods for the Nyström method,

J. Mach. Learn. Res. 13 (1) (2012) 981–1006 .

28] C. Williams , M. Seeger , Using the Nyström method to speed up kernel ma-
chines, in: Proceedings of the Fourteenth Annual Conference on Neural Infor-

mation Processing Systems, 2001, pp. 6 82–6 88 . EPFL-CONF-161322
29] S. Mehrkanoon , J.A.K. Suykens , Large scale semi-supervised learning using KSC

based model, in: Proceedings of the International Joint Conference on Neural
Networks (IJCNN), 2014, pp. 4152–4159 .

30] S. Mehrkanoon , J.A.K. Suykens , Scalable semi-supervised kernel spectral learn-

ing using random fourier features, in: Proceedings of the IEEE Symposium Se-
ries on Computational Intelligence (SSCI), IEEE, 2016, pp. 1–8 .

[31] A. Rahimi , B. Recht , Random features for large-scale kernel machines, in: Pro-
ceedings of the Advances in neural information processing systems, 2007,

pp. 1177–1184 .
32] B. Sriperumbudur , Z. Szabó, Optimal rates for random fourier features, in:

Proceedings of the Advances in Neural Information Processing Systems, 2015,

pp. 1144–1152 .
33] C. Szegedy , W. Liu , Y. Jia , P. Sermanet , S. Reed , D. Anguelov , D. Erhan , V. Van-

houcke , A. Rabinovich , Going deeper with convolutions, in: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9 .

34] A. Asuncion, D.J. Newman, UCI machine learning repository, 2007, http://www.
ics.uci.edu/ ∼mlearn/MLRepository.html .

35] J. Alcalá-Fdez , A. Fernández , J. Luengo , J. Derrac , S. García , L. Sánchez , F. Her-

rera , Keel data-mining software tool: data set repository, integration of algo-
rithms and experimental analysis framework., J. Mult. Valued Logic Soft Com-

put. 17 (2011) .
36] P. Baldi , P. Sadowski , D. Whiteson , Searching for exotic particles in high-energy

physics with deep learning, Nat. Commun. 5 (2014) .

http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0001
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0001
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0001
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0001
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0002
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0002
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0004
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0004
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0004
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0005
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0005
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0005
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0006
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0006
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0007
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0007
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0007
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0008
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0008
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0008
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0008
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0008
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0009
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0009
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0009
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0009
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0010
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0010
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0010
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0011
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0011
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0011
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0011
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0012
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0012
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0013
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0013
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0013
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0014
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0014
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0014
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0015
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0015
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0015
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0016
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0016
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0016
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0016
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0016
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0017
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0017
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0017
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0018
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0018
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0018
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0018
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0018
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0019
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0019
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0019
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0019
http://arxiv.org/abs/1612.00824
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0020
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0020
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0020
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0021
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0021
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0021
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0021
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0023
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0023
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0023
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0024
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0024
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0024
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0025
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0025
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0025
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0026
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0026
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0026
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0026
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0027
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0027
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0027
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0027
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0028
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0028
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0028
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0029
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0029
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0029
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0030
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0030
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0030
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0031
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0031
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0031
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0032
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0032
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0032
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0032
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0032
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0032
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0032
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0032
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0032
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0032
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0033
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0033
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0033
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0033
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0033
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0033
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0033
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0033
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0034
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0034
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0034
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0034

54 S. Mehrkanoon, J.A.K. Suykens / Neurocomputing 298 (2018) 46–54

C

a

(

a

N

m

a

N

P

H

I

H

o

I

c

H

F

[37] J. Bergstra , Y. Bengio , Random search for hyper-parameter optimization, J.
Mach. Learn. Res. 13 (Feb) (2012) 281–305 .

[38] J. Snoek , H. Larochelle , R.P. Adams , Practical Bayesian optimization of machine
learning algorithms, in: Proceedings of the Advances in Neural Information

Processing Systems, 2012, pp. 2951–2959 .
[39] S. Xavier-De-Souza , J.A.K. Suykens , J. Vandewalle , D. Bollé, Coupled simulated

annealing, IEEE Trans. Sys. Man Cyber. Part B 40 (2) (2010) 320–335 .
[40] J.A. Nelder , R. Mead , A simplex method for function minimization, Comput. J.

7 (4) (1965) 308–313 .

[41] L. Van der Maaten , G. Hinton , Visualizing data using t-SNE, J. Mach. Learn. Res.
9 (Nov) (2008) 2579–2605 .

Siamak Mehrkanoon received the B.Sc. degree in pure

mathematics and the M.Sc. degree in applied mathemat-

ics from the Iran University of Science and Technology,
Tehran, Iran, in 2005 and 2007, respectively, and the Ph.D.

degrees in numerical analysis and machine learning from
Universiti Putra Malaysia, Seri Kembangan, Malaysia, and

Katholieke Universiteit Leuven (KU Leuven), Leuven, Bel-
gium, in 2011 and 2015, respectively. He was a Visit-

ing Researcher with the Department of Automation, Ts-

inghua University, Beijing, China, in 2014, a Post-Doctoral
Research Fellow with the University of Waterloo, Water-

loo, ON, Canada, from 2015 to 2016, and a Visiting Post-
Doctoral Researcher with the Cognitive Systems Labora-

tory, University of Tübingen, Tübingen, Germany, in 2016. He is currently an FWO
Post-Doctoral Research Fellow with the Stadius Center for Dynamical Systems, Sig-

nal Processing and Data Analytics, KU Leuven. His current research interests include

deep learning, neural networks, kernel-based models, unsupervised and semisu-
pervised learning, pattern recognition, numerical algorithms, and optimization.

Dr. Mehrkanoon received several fellowships for supporting his scientific studies,
including post-Doctoral Mandate Fellowship from KU Leuven and Fund for Scien-

tific Research FWO Flanders.
Johan A. K. Suykens (SM’05) was born in Willebroek

Belgium, on May 18 1966. He received the M.S. degree in
Electro-Mechanical Engineering and the Ph.D. Degree in

Applied Sciences from the Katholieke Universiteit Leuven,

in 1989 and 1995, respectively. In 1996 he has been a
Visiting Postdoctoral Researcher at the University of Cal-

ifornia, Berkeley. He has been a Postdoctoral Researcher
with the Fund for Scientific Research FWO Flanders and

is currently a Professor (Hoogleraar) with KU Leuven.
He is author of the books Artificial Neural Networks for

Modelling and Control of Non-linear Systems (Kluwer

Academic Publishers) and Least Squares Support Vector
Machines (World Scientific), co-author of the book

ellular Neural Networks, Multi-Scroll Chaos and Synchronization (World Scientific)
nd editor of the books Nonlinear Modeling: Advanced Black-Box Techniques

Kluwer Academic Publishers) and Advances in Learning Theory: Methods, Models
nd Applications (IOS Press). In 1998 he organized an International Workshop on

onlinear Modeling with Time-series Prediction Competition. He is a Senior IEEE

ember and has served as associate editor for the IEEE Transactions on Circuits
nd Systems (1997–1999 and 20 04–20 07) and for the IEEE Transactions on Neural

etworks (1998–2009). He received an IEEE Signal Processing Society 1999 Best
aper (Senior) Award and several Best Paper Awards at International Conferences.

e is a recipient of the International Neural Networks Society INNS 20 0 0 Young
nvestigator Award for significant contributions in the field of neural networks.

e has served as a Director and Organizer of the NATO Advanced Study Institute

n Learning Theory and Practice (Leuven 2002), as a program co-chair for the
nternational Joint Conference on Neural Networks 2004 and the International

Symposium on Nonlinear Theory and its Applications 2005, as an organizer of the
International Symposium on Synchronization in Complex Networks 2007 and a

o-organizer of the NIPS 2010 workshop on Tensors, Kernels and Machine Learning.
e has been awarded an ERC Advanced Grant 2011 and has been elevated IEEE

ellow 2015 for developing least squares support vector machines.

http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0035
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0035
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0035
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0036
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0036
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0036
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0036
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0037
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0037
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0037
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0037
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0037
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0038
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0038
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0038
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0039
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0039
http://refhub.elsevier.com/S0925-2312(18)30210-8/sbref0039

	Deep hybrid neural-kernel networks using random Fourier features
	1 Introduction
	2 ANNs vs. kernel architecture
	3 Proposed deep hybrid model
	3.1 Two-layer model
	3.2 Deep hybrid model

	4 Experimental results and discussion
	5 Conclusions and future works
	 Acknowledgments
	 References

