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Abstract. In this letter we present an on-line learning version of the Fokker-Planck machine. The
method makes use of a regularized constrained normalized LMS algorithm in order to estimate
the time-derivative of the parameter vector of a radial basis function network. The RBF network
parametrizes a transition density which satisfies a Fokker-Planck equation, associated to continuous
simulated annealing. On-line learning using the constrained normalized LMS method is necessary in
order to make the Fokker-Planck machine applicable to large scale nonlinear optimization problems.

1. Introduction

In (Suykens et al., 1996; Suykens & Vandewalle, 1995; Suykens & Vandewalle,
1996) the Fokker-Planck learning machine has been introduced as a new method
for global optimization of differentiable cost functions. The method is derived from
continuous simulated annealing (Gelfand & Mitter, 1991; Gelfand & Mitter, 1993;
Kushner, 1987) (or recursive stochastic algorithms in a discrete time context) by
considering the associated Fokker-Planck equation in the transition density. The
step from the Fokker-Planck equation to the Fokker-Planck machine is made by
parametrizing the density with a radial basis function network, corresponding to
a Gaussian mixture distribution (Haykin, 1996; Amari, 1995; Streit & Luginbuhl,
1994) or Gaussian sum approximation (Alspach & Sorenson, 1972).

By sampling the search space and evaluating the Fokker-Planck equation in
these points, a set of equations is obtained in the time-derivative of the parameter
vector of the RBF network. Hence the Fokker-Planck machine is a population based
method like genetic algorithms (Goldberg, 1989). However it is not driven by cost
function values (survival of the fittest) but by the local geometry at the sampling
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points, characterized by the gradient and diagonal elements of the Hessian. The
basic Fokker-Planck machine Suykens et al., 1996; Suykens & Vandewalle, 1995)
has been extended with incorporation of local optimization steps and stochastic
approximation smoothing of the cost function (Suykens & VandeWalle, 1996;
Styblinski & Tang, 1990).

In (Suykens et al., 1996; Suykens & Vandewalle, 1995; Suykens & Vandewalle,
1996) an overdetermined set of equations (i.e. more points than the number of
parameters in the RBF network) has been solved in order to track the evolution of
the density. This has been done in batch mode. As a consequence the method is not
directly applicable to high dimensional nonlinear optimization problems. In this
letter we present a constrained normalized LMS (Least-Mean-Square) algorithm
(Goodwin & Sin, 1984; Haykin, 1996; Widrow & Stearns, 1985) for solving the
constrained set of equations. In this way the Fokker-Planck machine is on-line
learning by updating the time-derivative of the RBF parameter vector, each time
after sampling the search space at a certain point. In order to obtain convergence
in the mean of the algorithm, it follows from simulation results that it is needed to
apply regularization.

This letter is organized as follows. In Section 2 the basic principles of the
Fokker-Planck machine are reviewed. In Section 3 the constrained normalized LMS
algorithm is proposed. In Section 4 regularization of this algorithm is discussed.
An example on regularization is presented in Section 5.

2. Fokker-Planck Machine

Consider the optimization problem

min
x2Rn

U(x) (1)

whereU(:) is a twice continuously differentiable cost function defined on then-
dimensional search spaceRn . For global optimization of the cost function, recursive
stochastic algorithms have been studied in (Gelfand & Mitter, 1991; Gelfand &
Mitter, 1993; Kushner, 1987), associated with the following Langevin-type Markov
diffusion

dx(t) = �rU [x(t)] dt+ �(t) dw(t); (2)

with state vectorx 2 R
n , w 2 R

n a Wiener process, noise intensity�(t) and
cooling schedule�2(t) = �0= log(t) (for t large) and�0 a fixed positive constant.
This has been called continuous simulated annealing in (Gelfand & Mitter, 1991;
Gelfand & Mitter, 1993).

In (Suykens et al., 1996; Suykens & Vandewalle, 1995; Suykens & Vandewalle,
1996) it has been interpreted as a special case of the general nonlinear stochastic
differential equation

dx = f(x; t) dt+ �(x; t) dw (3)
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with state vectorx 2 R
n , w 2 R

m a Wiener process andf : Rn � R 7! R
n ,

� : Rn � R 7! R
n�m , the conditional transition densityp(x; tjx0; t0) satisfies the

Fokker-Planck equation (Doob, 1953; Gihman & Skorohod, 1979; van Kampen,
1981; Wong, 1971)
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where�(x; t) = �(x; t)�(x; t)T andp(x; tjx0; t0) denotes the probability density
of being in statex at timet, given the process is in statex0 at timet0. Continuous
simulated annealing is a special case of (3) withf(x; t) = �rU(x), m = n and
�(x; t) the diagonal matrix�(t)In leading to the Fokker-Planck equation
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Then the transition density has been parametrized by the RBF network, yielding
the Gaussian mixture distribution

p̂(x; tjx0; t0) =

nhX
i=1

wi(t)N [x� si(t); Ri(t)];

nhX
i=1

wi(t) = 1; wi � 0 (6)

with N(s;R) = kjRj�1=2 exp(�1
2s

TR�1s), k = (2�)�n=2 (Haykin, 1996; Streit
& Luginbuhl, 1994; Amari, 1995; Alspach & Sorenson, 1972).nh denotes the
number of hidden neurons or centra,wi theith weight of the output layer,si 2 R

n

the center andRi 2 R
n�n the covariance matrix related to theith hidden neuron.

The parametrization with
Pnh

i=1wi(t) = 1 andwi � 0 ensures that̂p is a density.
The matricesRi are assumed to be diagonal.

The Fokker-Planck equation in̂p is evaluated then atN points, which yields a
constrained set of equations of the form

A(�) _� = b(�) such that cT _� = 0 (7)

where� 2 R
q denotes the parameter vector of the RBF network andA 2 R

N�q ,
b 2 R

N andc 2 R
q (Suykens et al., 1996; Suykens & Vandewalle, 1995; Suykens

& Vandewalle, 1996). The constraint follows from the property
P

iwi = 1. It has
been assumed thatN > q. Hence the time-derivative of the RBF parameter vector
is estimated from an overdetermined set of equations and is based on the knowledge
of the gradient and diagonal elements of the Hessian at the sampling points.

This leads to the following basic algorithm for the Fokker-Planck machine:

1. First generation: choose initial� of RBF network.
2. GenerateN points according tôp.
3. Calculate@U@xi ,

@2U
@x2

i

at theN points.

4. Estimate_� from the constrained linear least squares problem.
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5. Next generation: compute�(t+ dt) = �(t) + _�dt.
6. Remove centers with negative weights.
7. Update the noise intensity�, according to the cooling scheme.
8. Go to 2, unlessng is exceeded.

Here�0, nh, N , the number of generationsng, the initial � and the step sizedt
serve as input parameters for the algorithm. For a more sophisticated scheme with
incorporation of local optimization steps and stochastic approximation smoothing
of the cost function the reader is referred to (Suykens & Vandewalle, 1996).

3. On-line Learning using Constrained Normalized LMS

In (Suykens et al., 1996; Suykens & Vandewalle, 1995; Suykens & Vandewalle,
1996) a solution in least squares sense (Bolub & Van Loan, 1989) has been con-
sidered to the constrained set of equations (7):

min
u

kAu� bk2
2 such that cTu = 0 (8)

where _� is denoted byu. Taking the Lagrangian with Lagrange multiplier�

L(u; �) = (Au� b)T (Au� b) + � cTu (9)

one obtains the following solution from the conditions for optimality@L
@u = 0,

@L
@� = 0:

8><
>:
u = (ATA)�1(AT b� �c)

� =
cT (ATA)�1AT b
cT (ATA)�1c

:

(10)

Recursive (on-line) algorithms with systolic array implementations have been dis-
cussed e.g. in (Moonen & Vandewalle, 1991; Vanpoucke & Moonen, 1995). How-
ever, for high dimensional optimization problems it is not feasible to estimateu
in this way due to a largeA matrix and the matrix productATA. Therefore we
will work with vector updates by employing LMS (Least-Mean-Square) type algo-
rithms, which are well-known in adaptive filtering (Haykan, 1996; Goodwin & Sin,
1984; Widrow & Stearns, 1985). We apply a normalized LMS algorithm (Goodwin
& Sin, 1984; Haykin, 1996), which shows faster convergence than LMS (Slock,
1993).

Now we derive a normalized LMS algorithm which takes into account the linear
constraint. It corresponds to the minimizing solution to

min
uk+1

�2kuk+1 � ukk
2
2 + (bk � aTk uk+1)

2 s:t: cTuk+1 = 0 (11)

whereaTk ; bk denote thekth row andkth element ofA; b respectively. Each time
the search space has been sampled,ak andbk are calculated, producing an estimate
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uk+1 for this samplek. In this way the Fokker-Planck machine is learning on-line.
We write (11) as

min
uk+1

k

�
�I

aTk

�
uk+1 �

�
�uk
bk

�
k2

2 s:t: cTuk+1 = 0 (12)

which brings the problem in the form (8). From the Matrix Inversion Lemma
(Goodwin & Sin, 1984)(A+ BC)�1 = A�1�A�1B (I + C A�1B)�1CA�1 with
A = �2I, B = uk, C = uTk one derives the expressions

(ATA)�1 = 1
�2 (I �

aka
T

k

�2+aT
k
ak
)

(ATA)�1AT b = uk +
1

�2+aT
k
ak
ak(bk � aTk uk):

(13)

This yields the constrained normalized LMS algorithm:8>>>>>><
>>>>>>:
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:

(14)

The well-known normalized LMS algorithm is a special case for� = 0. As starting
point we takeu0 = 0 (or _� = 0) which means no update of the density.

In order to derive a condition for convergence in the mean of (14), let us write
it as

uk+1 = (Hk �
Hkcc

THk

cTHkc
)uk + (Hk �

Hkcc
THk

cTHkc
)

1
�2akbk (15)

with

Hk = I �
aka

T
k

�2 + aTk ak
:

Under certain assumptions (Haykin, 1996; Haykin, 1996) one can write

Efuk+1g = F Efukg+ F
1
�2Efakbkg (16)

with

F = E

(
Hk �

Hkcc
THk

cTHkc

)

whereEf:g denotes the expectation operator over the sample indexk. Efakbkg is
the cross-correlation matrix between the input vectorak and the desired response
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bk. The linear system (16) with state vectorEfukg is stable (or in algorithmic sense
convergent) if�(F ) < 1, where�(:) denotes the spectral radius of the matrix. Since
F is symmetric this yields the condition

max
i
j�i(F )j < 1: (17)

Note that for (unconstrained) LMS, convergence in the mean is determined by the
covariance matrixR = faka

T
k g instead of byF . Fast convergence is obtained for

�(F ) small. Furthermore, the matrixF does not depend onbk. As a consequence
it doesn’t depend on the cost function, but only on the parameter vector of the
RBF network itself. As will be demonstrated on an example in Section 5, con-
vergence doesn’t occur for RBFs with multiple centra, which is basically due to
ill-conditioning ofATA. In order to solve this problem we apply regularization.

4. Regularization

We consider the following regularization to the formulation (11):

min
uk+1

�2kuk+1�ukk
2
2+(bk�a

T
k uk+1)

2+uTk+1�uk+1 s:t: cTuk+1 = 0(18)

where� is a diagonal matrix with positive diagonal elements. A different weight
can be given to the adaptations of the output weights, centra and variances in the
RBF network, like has been done in (Suykens & Vandewalle, 1996). By formulating
the Lagrangian and imposing conditions for optimality, the solution is given by

8><
>:
uk+1 = Sk(�

2uk + akbk � �c)

� = cTSk(�
2uk+akbk)

cTSkc

(19)

where

Sk = ��1 �
��1aka

T
k�

�1

1+ aTk�
�1ak

with � = �2I + �. Like (14) this algorithm can be implemented with vector
updates, avoiding the storage of matrices. Convergence in the mean occurs if

�

 
E

(
�2

 
Sk �

Skcc
TSk

cTSkc

!)!
< 1: (20)

The convergence can be influenced by the choice of�. Finally, the values of
Efukg will be used as an estimate for_� at a certain generation in step 4 of the
basic algorithm for the Fokker-Planck machine.
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Figure 1. Illustration of the use of regularization in the constrained normalized LMS algorithm:
(Left) eigenvalues of matrixF with respect tok; (Right) estimation ofEfukg; (Top) no
regularization; (Middle)� = 0:01I; (Bottom)� = 0:1I.

5. Example

We illustrate the constrained normalized LMS method on the cost function (Suykens
& Vandewalle, 1996)

U(x) = 1
2n

Pn
i=1�4n

Qn
i=1 cos(0:2xi)� 4n

Qn
i=1 cos(xi)

�4n
Qn
i=1 cos(2xi)� 4n

Qn
i=1 cos(3xi)

�4n
Qn
i=1 cos(4xi) + 20n

(21)
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with x 2 R
5 (n = 5). When multiple centra are used in the RBF network, reg-

ularization is needed as is demonstrated on Figure 1 for an RBF with 3 centra.
Convergence in the meanEfukg is shown on the Figure. Without regularization
�(F ) is equal to 1, resulting in a non-convergent algorithm. A nonzero� regu-
larization matrix (� = 0:01I and� = 0:1 are shown on the Figure) makes the
algorithm convergent in the mean.� = 0:1 has been chosen in the constrained
LMS algorithm (19). Diagonal covariance matrices have been taken for the RBF,
resulting in a 33 dimensional vectoruk. For the initial parameter vector of the RBF
network, the centra have been randomly distributed in a hypercube[�3;3]n and the
standard deviations of the Gaussians have been taken equal to 3. The population
consists of 500 points. Stochastic approximation smoothing of the cost function
has been applied (Styblinski & Tang, 1990; Suykens & Vandewalle, 1996).

6. Conclusion

In this letter a constrained normalized LMS method has been discussed in order to
track the evolution of an RBF parametrized density in the Fokker-Planck learning
machine. In this way an on-line learning algorithm is obtained. The method works
with vector updates which makes it suitable for solving high dimensional global
optimization problems. This is not the case when the constrained linear least squares
problem is solved in batch mode as has been done in previous work. Regularization
is needed when multiple centra are used in the RBF network in order to obtain
convergence in the mean and to avoid ill-conditioning.
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