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Polytopic invariant sets for continuous-time systems

Toni Barjas Blanco and Bart De Moor

Abstract—In Model Predictive Control stability can be gua-  But no upperbound for the sampling time is obtained. In [6]
ranteed by the use of an invariant terminal set. In this paper a method is described to determine an invariant set satgfyi
a numerical method is described concermning the computation it and rate constraints. This method, however, onlysiold
of a low-complexity polytopic-invariant set for linear and for linear systems and trial and error is needed to determine
nonlinear continuous time-systems subject to state, input and ) , )
rate constraints. The method determines an (sub)optimal linear the invariant set. Methods based on nonquadratic Lyapunov
feedback gain w.r.t. the volume of the invariant polytope. A functions, as the ones described in ([1], [5]), yield popjito
trade-off between optimality of the feedback gain and the jnvariant sets. However, these methods do not take input and
volumetof the invariant polytope is made by use of a tuning state constraints into account.
parameter. In this paper a method is described that circumvents most

Keywords: Polytopic invariant sets, Optimization, of thes_e drawbacks_. The proposed_ met_hod can be u_sed to
Constrained control, Nonlinear systems, Linear systems determine symmetrical polyhedral invariant sets for Imea

and nonlinear continuous-time systems subject to statand
rate constraints. The obtained linear feedback is optimal,
. INTRODUCTION possibly suboptimal, w.r.t. the size of the invariant séie T

Any locally stable time-invariant dynamical system admitgnéthod also allows to make a trade-off between size of the
some domains in its state space from which any state-vectgvariant set and optimality of the linear feedback by use of
trajectory cannot escape. These domains are called mgitiv@ tuning parameter. Furthermore, a new invariance comditio
invariant sets and are widely used in MPC for designing df Stated that is only valid for the type of polytopic sets
terminal constraint sets, also called target sets, as afgool considered in this paper. This condition differs signifttan
the guarantee of system closed-loop stability. These targom the more commonly used invariance conditions stated
sets are mainly used in dual mode MPC strategies. TH@ ([2]: [4]) and is the basis for the optimization procedure
main idea is to determine a set in the state space invarigfigPorated in this work.
for a certain feedback (usually a linear feedback) with the The remainder of the paper is organized as follows:
property that no constraints violation occurs as long as tH8 section Il the studied problem is stated. In section Il
state remains inside this set. some preliminary results are stated. An important invaéan

In literature two types of convex sets are essentialy usé&@ndition forms the main result of this section. SectiongV i
as candidate invariant sets, ellipsoidal and polyhedrtd sdlevoted to state the main results which consist of an iterati
[2]. In this paper the focus will be on the computation Ofp.rocedure tp fin(_j an optimal linear fe.edback gain w.r.t. the
(symmetrical) polyhedral sets. Invariant ellipsoidalsstsr ~ Size of the invariant polytope. In section V some examples
the continuous-time case can be found in ([14], [15]). In th&how how the proposed algorithm determines invariants sets
discrete-time case numeruous techniques are available f8F nominal and uncertain continuous-time linear systems.
the calculation of polytopic invariant sets ([2], [7], [§10],

[11], [16]). In the continuous-time case there are also Isdve Il. PROBLEM STATEMENT

contributions concerning this type of sets ([3], [6], [12]) |n this work the following continuous-time linear system,
however this literature is not as elaborated. Furthermore,
the existing techniques suffer from some drawbacks. In [12]
a method is described for the calculation of a polyhedral
invariant set. However, the method only applies to linear 4ng continuous-time nonlinear system are assumed:
systems and the linearizing feedback gain has to be given

in advance, restricting the size of the invariant polytojpe. .

[3] the linear continuous-time system is approximated by an & (t) = f(x(t), u(t)- )
EuI(.ar. approximating sy'stem' (EAS). Itis sh_OV\{n th‘_"‘t for a It is assumed that both systems are subject to the following
sufficiently small sampling time a set that is invariant for,g i aints:

the EAS is also invariant for the continuous-time system.

i(t) = Ax(t) + Bul(t) @)
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with z(t) € R", u(t) € R, f(0,0) = 0, X andU 0 and ). \; = 1. This holds because is a convex set.
symmetrical polyhedral sets. Assume a closed-loop linedssuming a linear control feedback law of the form (5) and
state control law system (1), the following holds for each vertex
v;(t) = e?t - v;(0)
u(t) = Kx(t) (5) with ¢ = A + BK.

. : . Sincez(0) = Y_." X\iv;(0), the following holds:
In the sequel a method will be described to determine a 2(8) = €% - 2(0) = 9 - S A (0) = S Asetan (0) =

set >or Aivi(t). This means that at each time instant t the
trajectory x(t) lies in the convex hull of ;{t). Since the
={z: )< ' . e .
v =tz Vel <7} ©) trajectories of allv;(¢) lie inside the setp, the trajectory
invariant under the control law (5) such that € [0,c0]  z(t) also lies insidep.
no violations of the constraints (3), (4) occur. The objexti u

of the method is to determine the linear feedback (5) in Lemma 1 basically states that in order for a set of the
such a way that the corresponding invariant set is as larferm (6) to be invariant, only invariance conditions on
as possible. the vertices should be considered. The following theorem
In case of the nonlinear system (2), I denote a low- provides such invariance conditions.
complexity polytope:
Theorem 1. A set ¢ of the form (6) is invariant for
0 = {z:||[Voz|__ <1} (7)  system (1) under the linear feedback law (5) if the following

. ) . i ) condition holds at each vertex of the set:
with full-rank V0 € R™*". Within this region an LDI

{[4;B;],i=1,...,p} can be defined such that the system

(2) satisfies following condition: —sign((Vvi);) - A((Vvi);) 2 0 ©)

with (Vv;); the jth component of Vv;.

f(z,u) € Co{A;x + Bju} ,V(z,u) eI x U (8)
Proof: 9 can be rewritten into the following conditions:
with Co denoting the convex hull. If (8) holds, every

trajectory of the nonlineair system (2) is also a trajectory : :I E“;ZZ;] i 8 z 2%223] §8

of the LDI. Techniques for determining an LDI for a given V= N .

nonlinear system can be found in [9], [13]. In the sequel this Since|[Vvill,, = maz;(|(Vvi);]) these conditions assure
property will be intensively used for determining invatian the existence of a\t; > 0 for v; such thatvt € [0, At;] :

sets for the nonlinear system (2). Vi) < v =Vt € [0,At] - vi(t) € ». Note that if
condition (9) is imposed at each vertex, than there exists a
1. PRELIMINARY RESULTS At; for each vertexv;. Remark that each sucht; can be

In the fo”owing’ given a SeTL,O we denote byésp its different. Now assumé\t = TT’L’LTLZ(Atl), than for each pOint
boundary. We assume the setis polytopic and denote its P € d¢ andVt € [0, At] the following can be deduced:
vertices byvert{y}. Assume an arbitrary time-dependent P € ¢ = p = > Aiv; with A; > 0 and " \; = 1
variable v(t), than we denote byAw(t) (or v(t)) the so
derivative ofu(t) in the continuous-time case. Vo)l = IV i Avs()l o < 328 X [[Vi () o

SinceVt € [0, At] andVi : v;(t) € o = [|[Vui(t)] o <7,

Definition. The sety is said positively invariant for the it is obvious thatvt € [0, At] : [|[Vp(t)]| . < 7.
system (1) under the feedback law (5) if for all x(@) ¢ This means that each trajectory starting on the boundary
the solution x(t)e ¢ fort > 0. of the sety will move on the boundary or will be pushed

inside the set. Each trajectory starting inside the set tas t

This means that each trajectory starting in the get pass the boundary in order to leave it. But because at the
stays inside the set under the linear feedback. In case lmdundary the system forces the state to follow the boundary
a polytopic set it is not necessary to check the positiver pushes the state inside the set, the trajectory can’eleav
invariance for all x(0)e ¢. The following theorem provides the set. The set is invariant.
an easy way to check the positively invariance of a polytopic ]
set. This theorem ensures invariance of the whole set by only

imposing conditions on the vertices of the set. Notice that

Lemma 1: If the trajectories of all y € vert{¢} stay this invariance condition differs significantly from the mo
inside the setp for the system (1) under the feedback lamcommonly used invariance conditions ([1], [4]). However,
(5), the setp is positively invariant. the set not only needs to be invariant but it also has to be

feasible, meaning that each point inside the set needs to
Proof: For all x(0) € ¢ holds thatz(0) = "7 \;v;(0), satisfy the input and state constraints. The following lemm
with n the number of vertices ap, v;(0) the vertices)\; >  provides conditions that need to be imposed in order to
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assure feasibility of the set: subject to the following constraints invoked far =
1,...,2n  j=1,...,m
Lemma 2. A set ¢ of the form (6) is feasible for the
constraints (3) and (4) under the linear feedback (5) if the

following conditions hold: vi € X (16)
—sign((Vv);) - A((Vv;);) > 0 @7
v, € X (10) and
Kv;, € U (11)
Proof: It is obvious that all the points of the set The associated linear feedback gain can be recovered from
satisfy constraint (3) if (10) holds singe is convex and X the solution for{v;,w;, j =1,...,n} via
is also convex. To proof that constraint (4) is not violated i K = [wy ... wy][vy ...v,]7 L.

(11) holds, note that a point p lying in the convex getan
be written agp = >_7" A;v;. In order to satisfy constraint (4), ~ With exception of (17) the inequalities of this nonlinear
Kp must lie inside U. We can rewrite Kp as follows: program are linear. Inequality (17) is clearly nonconvex.
Kp=KY ! v =>" NKv; However, this constraint can be formulated as a bilinear
This means that Kp lies in the polytope with vertid€s;.  constraint by use of the following theorem:
Constraint (11) assures that the vertiéés; lie inside the set
U. Because the polytope with verticdSv; and U are both  Theorem 3: The polytopic setp (6) with verticeswv; is
convex sets, this leads to the followingp € ¢ : Kp € U. invariant under the feedback law (5) if the following holds:
[ ]

. 1
IV. MAIN RESULTS Ui+ oo vp][s1 o8] rSsi €@ (29)

Before stating our main results, some theory concerning
sets of the form (6) will be described. The set (6) contains

2" vertices{v;} defined as follows: Proof: Assume(V-v;); > 0, with (V'-v;); the jth entry
of (V-v;). Than, according to Theorem 1 the following must
v = 7V‘1sj, j=1,...,2" (12) hold for eachv;in order for the setp to be invariant:
. ) . (V-1i); <0
‘with {s;, j=1,...,2"} the set of all possible n- |nyoducing some conservativeness the following deriva-
dimensional vectors whose elements are. By choosing iion can be made:
n linearly independerds, ..., s,}, the complete set df”
vert!ces can be parameter.lzed in terms of the first n (primary 2y < (V-1;); <0 (20)
vertices) alone as follows:
-1 n—1 < (V-vy); +y <~
sy TN j=n41,.., 20 :
v = f(n) _ {[Ul Un] [Sl S z,] J=n+
*”Uj,gn—% j=2n—141,.. 27" )
(13) =y < (V-di)j + (v-e); <

Also remark that in case of n linearly independent primary
vertices the following statement can be derived from (12): .
g (12) < (V-dit+y-e) <7
V=rls1...50][1... 00" (14)

Taking the results of the previous section into account Y S (V- (Bt VTye)); <9
and Combining this with the results for the discrete-time Tak|ng (14) into account this leads to the fo”owing
case as described in [10], optimization ¢f K over the ¢ondition:
primary vertices subject to invariance and feasibility &or
continuous-time linear system can be formulated as stated
below. Y S (V- (0 +or ooonlfsy s T )y < (21)

with e; an arbitrary column vector having 1 as its jth entry.
The other elements of; can be chosen arbitrarely. FOv -
v;); < 0 it can be shown that the same condition has to hold
for invariance with exception that the jth entry ef has to
be equal to -1. Remark that the vectgiis different for each
. j- So in order for the vertex to be invariant, (21) has to hold
1,i7,,,i1,r,;1ir{7.__7,,,_109 det([vr ... va]) (%) for n entries with a different; for each entry. However, it

Theorem 2: The following nonlinear program defines&
R!*™ with the property thatp is the maximum volume low-
complexity invariant polytope which satisfies the feasil
conditions (3) and (4) for (1) under linear feedback (5):
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is easy to show that chosing = s; for each entry is a
valid choice reducing the amount of conditions and leading v €X (29)
to condition (19).
|

Remark 4.1 In the proof of the theorem it should be wy, € U (30)
noticed that a condition for each componentvpfis made.
However, by making a clever choice and assuming s; it
is not longer necessary to do a component-wise optimization

with 0 the invariant set computed by the previously LP.

Proof: As already stated in [10], (26) is proportional
to the volume of the sep. Conditions (27) and (28) ensure
o%'nvariance condition (19). To see this remark that conditio
T%ZS) corresponds to the violation of the constraints active
rimary vertexvy. Therefore this condition limits the feasible
pace in such a way that the s€te Co{v1,...,v,}, since

Remark 4.2 With a minor modification of the algorithm
it is possible to make a trade-off between optimality
the linear feedback and the volume of the invariant set.
see this, note that (20) can be modified into the foIIowin§

condition: it ensureg(V - vi);| > 1. Combining this with (27) ensures
. (19). (29) and (30) ensure the state and input constraiets ar
—(at+1) -y <(V-di); < —(a=1) -7, (22)  satisfied. Also note that condition (27) is a linear conatzai
which can be rewritten into the following: Since ([s1 ... sn] " s;) 15 @ columnvector, it has the fol-
lowing formia; ... a,] . Using some elementary matrix
< (Vi) +ay <, (23) algebra, condition (27) can be rewritten as follows:
with tuning parameter. > 1 determining the trade-off. Av; + Bw; + a1v1 + ... + apv, € o, (31)

This results into the following invariance condition: o ] )
which is a linear constraint.

[ |

Ui+ [v1 va .o vn) - [s1 82 .80 cars;i €0 (24) Remark 4.3 Condition (27) can be imposed as follows:
1<vlor<i (32)
Constraint (19) is a bilinear constraint and can be solved it  — Avy, + Buwy, + [v1 ... va][s1 ... sn]’l Sk,
using an approach similar to the one described in [10]. 1§ _ ... ”T and V0 the matrix determinings?. This

[10] _the optimization problem is b_roke_n into a Sequencgan pe done because® is known at the start of each
of simpler problems, each of which is concerned withyptimization procedure. So in contrary to the technique
optimizing only a single vertex;. In this work a modified  applied in [10], this method avoids the need of additional
algorithm will be used that also optimizes a single verteXariables in order to expressas a convex combination of
but compared to the algorithm in [10] reduces the numbghe primary vertices of".

of variables to be optimised. Le}, denote the vector that is

orthogonal to all exepth thith primary vertexvy: Remark 4.4 In case of a nonlinear system (2) invariance
condition (27) should hold for ead; B;] of the LDI (8).
civj =0, Vj # k, (25)
than the optimization of Theorem (2) can be performe% E:tr;arrllt(sll:r? EgZeaI?hoemPr?;;Sr ?;%S;’Li toaquz Vﬁ':; re:]tgn
by solving a sequence of linear problems (LPs) as indicatet : ' . y ga IS _Khown
below. advance. To see this notice that the rate constraint, <
1 < Uma, for a linear feedback gain K can be formulated

Theorem 4: The nonlinear program of Theorem (2) can®® follows:

be computed by solving the following LP successively for

the individual verticesy,, k =1,...,n: tmin < K(A+BK)x < timas (33)
. . If K is known in advance, (33) reduces to a linear
min Ck Uk (26)  constraint in the state variable.
Vg, W, k=1,...,n
subject to the following linear constraints: In order for the algorithm of Theorem 4 to ensure it

returns a feasible invariant set it is necessary to find an
initial feasible set satisfying invariance condition (1%pr
Avi+Bwi+[vr ... va][s1 ... s5] s €¢% Vi=1,...,n a nonlinear system it is very difficult to determine such
(27) a set. However, for a linear system an initial set can be
determined by the procedure as indicated below.

sign((sx);) - (V- o) > 1 (28)
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Theorem 5: In order for an initial set to satisfy the con- 3
ditions (10), (18) and (19), the feedback K amdmust be
chosen in such a way that following condition holds for eac! |
eigenvalue); of A+BK:

—2< A <0 (34)

The primary vertices of the initial set can than be founc
as the eigenvectors of the matiix + BK) multiplied with o
some scalingfactod in order to fullfill the state and input
constraints.

Proof: Assume K is chosen in such a way tlgd= A+
BK) has real negative eigenvalues and let the eigenvectors_,|
¢ coincide with primary vertices a@b. SinceV -¢v; = \;-Vv;
and )\; < 0 this means that the vertices form an invariant
set, becauseign(Vv;) = —sign(Vv;). In order for the set -3
to also satisfy constraint (19) the following deduction &e&n

3 -2 -1 0 1 2 3

made: Fig. 1. Simulation Results: Invariant Set
—YL <V (gvi + [v1 ... vp][s1... 85 Ts) <A1 examples.
1< A Vo 98 <91 V. EXAMPLE
Our illustrative example concerns the following linear
1< (A+1) 98 <A1 continuous-time system:
“1<(\+1)-5<1 . 0 1 0 1
Lo o]0
Since—1 < s; < 1, this leads tg\; + 1| < 1, which is

equivalent to condition (34). However, imposing condition with state constraint3 < z < 3.

(34) is not always sufficient. In order to satisfy the statd an

input constraints it can be necessary to scale the obtainedin this case, 2 eigenvalues betweer2 and 0 must be
primary vectors with some constansmaller than 1. Remark chosen in order to determine the initial feasible invariant
that the eigenvalues don’t change by scaling the primaret. We choose\; = —1.5 and A\, = —1. Remark both
vectors, so condition (34) can't get violated by the scalingeigenvalues satisfy condition (34). Using pole placemket t

B following value for the linear feedback gain is obtained:
Remark 4.6 In order to use this theorem to obtain an

initial feasible invariant set a suitable K can be found by K- 0 -1
the use of pole placement after the determination of sutabl -15 -1 |’
poles.
6= { -15 0 }
Remark 4.7 In case of introducing the tuning parameter 0o 1]

a a similar approach results into following condition: ) T
The eigenvectors ofp arev; = [ 1 0] andv, =

1-—a<M<l-a 35 [0 1 ]T. Both primary vertices satisfy the input con-
) ) ) straints so there is no need to scale the vertices. Theiregult
Notice thatA < 0 sincea > 1. A high value for the get s depicted in figure 1 as the set with the dashed contours.
tuning parametera results in very negative eigenvalues,a\pmying the algorithm of Theorem 4 gives the set with
v_vhich results in a smaller invariant set but a more optimahe solid contours in figure 1. Also note that the path of
linear feedback. the primary vertices under the optimal linear feedbacksstay
inside the solid set, which means that the set is invarigm. T

Remark 4.8 For the nonlinear system it is not gptimal linear feedback corresponding with the solid set is
straightforward to find a feasible initial invariant set. Sone following:

for a nonlinear system the algorithm starts the optimigatio
procedure from a random set. However, in practice this Kot _ —0.1430 —0.6316
doesn’t pose many problems, as will be demonstrated in the ~ | —=0.5101 -0.6175
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-25 L L L 1 1
-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

Fig. 2. Simulation Results: Uncertainty and Invariance Fig. 3. Simulation Results: Invariant Set Uncertain System

Now, lets assume some uncertainty on the matrix B of theonstraints on the input, rate and the state. In the case

system: of a nonlinear system the method was able to determine
an invariant set by using an LDI representation of the
Be COH (1) é } , [ 0%5 (1) }} nonl?near sy_stem. Several simulations on linear and uaicert
: continuous-time systems showed the method was capable of

Figure 2 shows that the invariant set for the nominal lineg@btaining invariant feasible sets. In case of the lineatesys
system isn’t invariant for the uncertain system. Howevgr, bthe algorithm first determined an initial invariant feasibl
taking the uncertainty into account in the algorithm a set caset satisfying all necessary constraints. As a result &l th
be found invariant for the uncertain system (see figure 3§uture determined sets satisfied those same constraints. In

The values corresponding to this optimal feasible invariarihe nonlinear case the initial set was not feasible. However
set are the following: this didn’t prevent the algorithm to determine an (sub)ojpdi
feasible invariant set.

B. Future Works

Future work can be done by extending the algorithm in
yort — { 0.3333  0.8170 } order to deal with input disturbances. Furthermore, the set
0.3333  —0.0738 used in this work have a limitation due to their symmetry.

Remark that the initial feasible set used to determine ore general sets without symmetry could significantly
feasible invariant set for the uncertain system is the sanfacrease the volume of the invariant set, especially when as
as the initial feasible set for the nominal system withou$ymmetric constraints are considered. Future work is rieede
uncertainty. Though not shown on the figure this set i§ this area.
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