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Abstract— In Model Predictive Control stability can be gua-
ranteed by the use of an invariant terminal set. In this paper
a numerical method is described concerning the computation
of a low-complexity polytopic-invariant set for linear and
nonlinear continuous time-systems subject to state, input and
rate constraints. The method determines an (sub)optimal linear
feedback gain w.r.t. the volume of the invariant polytope. A
trade-off between optimality of the feedback gain and the
volume of the invariant polytope is made by use of a tuning
parameter.
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I. INTRODUCTION

Any locally stable time-invariant dynamical system admits
some domains in its state space from which any state-vector
trajectory cannot escape. These domains are called positively
invariant sets and are widely used in MPC for designing of
terminal constraint sets, also called target sets, as a toolfor
the guarantee of system closed-loop stability. These target
sets are mainly used in dual mode MPC strategies. The
main idea is to determine a set in the state space invariant
for a certain feedback (usually a linear feedback) with the
property that no constraints violation occurs as long as the
state remains inside this set.

In literature two types of convex sets are essentialy used
as candidate invariant sets, ellipsoidal and polyhedral sets
[2]. In this paper the focus will be on the computation of
(symmetrical) polyhedral sets. Invariant ellipsoidal sets for
the continuous-time case can be found in ([14], [15]). In the
discrete-time case numeruous techniques are available for
the calculation of polytopic invariant sets ([2], [7], [8],[10],
[11], [16]). In the continuous-time case there are also several
contributions concerning this type of sets ([3], [6], [12]),
however this literature is not as elaborated. Furthermore,
the existing techniques suffer from some drawbacks. In [12]
a method is described for the calculation of a polyhedral
invariant set. However, the method only applies to linear
systems and the linearizing feedback gain has to be given
in advance, restricting the size of the invariant polytope.In
[3] the linear continuous-time system is approximated by an
Euler approximating system (EAS). It is shown that for a
sufficiently small sampling time a set that is invariant for
the EAS is also invariant for the continuous-time system.
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But no upperbound for the sampling time is obtained. In [6]
a method is described to determine an invariant set satisfying
input and rate constraints. This method, however, only holds
for linear systems and trial and error is needed to determine
the invariant set. Methods based on nonquadratic Lyapunov
functions, as the ones described in ([1], [5]), yield polytopic
invariant sets. However, these methods do not take input and
state constraints into account.

In this paper a method is described that circumvents most
of these drawbacks. The proposed method can be used to
determine symmetrical polyhedral invariant sets for linear
and nonlinear continuous-time systems subject to state and/or
rate constraints. The obtained linear feedback is optimal,
possibly suboptimal, w.r.t. the size of the invariant set. The
method also allows to make a trade-off between size of the
invariant set and optimality of the linear feedback by use of
a tuning parameter. Furthermore, a new invariance condition
is stated that is only valid for the type of polytopic sets
considered in this paper. This condition differs significantly
from the more commonly used invariance conditions stated
in ([2], [4]) and is the basis for the optimization procedure
elaborated in this work.

The remainder of the paper is organized as follows:
In section II the studied problem is stated. In section III
some preliminary results are stated. An important invariance
condition forms the main result of this section. Section IV is
devoted to state the main results which consist of an iterative
procedure to find an optimal linear feedback gain w.r.t. the
size of the invariant polytope. In section V some examples
show how the proposed algorithm determines invariants sets
for nominal and uncertain continuous-time linear systems.

II. PROBLEM STATEMENT

In this work the following continuous-time linear system,

ẋ(t) = Ax(t) + Bu(t) (1)

and continuous-time nonlinear system are assumed:

ẋ(t) = f(x(t), u(t)). (2)

It is assumed that both systems are subject to the following
constraints:

x(t) ∈ X (3)

u(t) ∈ U (4)
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with x(t) ∈ R
n, u(t) ∈ R

l, f(0, 0) = 0, X and U

symmetrical polyhedral sets. Assume a closed-loop linear
state control law

u(t) = Kx(t) (5)

In the sequel a method will be described to determine a
set

ϕ = {x : ‖V x‖
∞

≤ γ} (6)

invariant under the control law (5) such that∀t ∈ [0,∞]
no violations of the constraints (3), (4) occur. The objective
of the method is to determine the linear feedback (5) in
such a way that the corresponding invariant set is as large
as possible.

In case of the nonlinear system (2), letΠ0 denote a low-
complexity polytope:

Π0 =
{

x :
∥

∥V 0x
∥

∥

∞
≤ 1

}

(7)

with full-rank V 0 ∈ R
n×n. Within this region an LDI

{[AiBi] , i = 1, . . . , p} can be defined such that the system
(2) satisfies following condition:

f(x, u) ∈ Co {Aix + Biu} ,∀(x, u) ∈ Π0 × U (8)

with Co denoting the convex hull. If (8) holds, every
trajectory of the nonlineair system (2) is also a trajectory
of the LDI. Techniques for determining an LDI for a given
nonlinear system can be found in [9], [13]. In the sequel this
property will be intensively used for determining invariant
sets for the nonlinear system (2).

III. PRELIMINARY RESULTS

In the following, given a setϕ we denote byδϕ its
boundary. We assume the setϕ is polytopic and denote its
vertices by vert{ϕ}. Assume an arbitrary time-dependent
variable v(t), than we denote by∆v(t) (or v̇(t)) the
derivative ofv(t) in the continuous-time case.

Definition. The setϕ is said positively invariant for the
system (1) under the feedback law (5) if for all x(0)∈ ϕ

the solution x(t)∈ ϕ for t ≥ 0.

This means that each trajectory starting in the setϕ

stays inside the set under the linear feedback. In case of
a polytopic set it is not necessary to check the positive
invariance for all x(0)∈ ϕ. The following theorem provides
an easy way to check the positively invariance of a polytopic
set.

Lemma 1: If the trajectories of all vi ∈ vert{ϕ} stay
inside the setϕ for the system (1) under the feedback law
(5), the setϕ is positively invariant.

Proof: For all x(0)∈ ϕ holds thatx(0) =
∑n

i λivi(0),
with n the number of vertices ofϕ, vi(0) the vertices,λi ≥

0 and
∑n

i λi = 1. This holds becauseϕ is a convex set.
Assuming a linear control feedback law of the form (5) and
system (1), the following holds for each vertexvi:

vi(t) = eφt · vi(0)
with φ = A + BK.
Sincex(0) =

∑n

i λivi(0), the following holds:
x(t) = eφt · x(0) = eφt ·

∑n

i λivi(0) =
∑n

i λie
φtvi(0) =

∑n

i λivi(t). This means that at each time instant t the
trajectory x(t) lies in the convex hull of vi(t). Since the
trajectories of allvi(t) lie inside the setϕ, the trajectory
x(t) also lies insideϕ.

Lemma 1 basically states that in order for a set of the
form (6) to be invariant, only invariance conditions on
the vertices should be considered. The following theorem
provides such invariance conditions.

Theorem 1: A set ϕ of the form (6) is invariant for
system (1) under the linear feedback law (5) if the following
condition holds at each vertexvi of the set:

−sign((V vi)j) · ∆((V vi)j) ≥ 0 (9)

with (V vi)j the jth component of V vi.

Proof: 9 can be rewritten into the following conditions:

• if (V vi)j ≥ 0 ⇒ ∆(V vi)j ≤ 0
• if (V vi)j ≤ 0 ⇒ ∆(V vi)j ≥ 0

Since‖V vi‖∞ = maxj(|(V vi)j |) these conditions assure
the existence of a∆ti > 0 for vi such that∀t ∈ [0,∆ti] :
‖V vi(t)‖∞ ≤ γ ⇒ ∀t ∈ [0,∆ti] : vi(t) ∈ ϕ. Note that if
condition (9) is imposed at each vertex, than there exists a
∆ti for each vertexvi. Remark that each such∆ti can be
different. Now assume∆t = mini(∆ti), than for each point
p ∈ δϕ and∀t ∈ [0,∆t] the following can be deduced:

p ∈ ϕ ⇒ p =
∑n

i λivi with λi ≥ 0 and
∑n

i λi = 1
so
‖V p(t)‖

∞
= ‖V (

∑n

i λivi(t))‖
∞

≤
∑n

i λi ‖V vi(t)‖∞
Since∀t ∈ [0,∆t] and∀i : vi(t) ∈ ϕ ⇒ ‖V vi(t)‖∞ ≤ γ,

it is obvious that∀t ∈ [0,∆t] : ‖V p(t)‖
∞

≤ γ.
This means that each trajectory starting on the boundary

of the setϕ will move on the boundary or will be pushed
inside the set. Each trajectory starting inside the set has to
pass the boundary in order to leave it. But because at the
boundary the system forces the state to follow the boundary
or pushes the state inside the set, the trajectory can’t leave
the set. The set is invariant.

This theorem ensures invariance of the whole set by only
imposing conditions on the vertices of the set. Notice that
this invariance condition differs significantly from the more
commonly used invariance conditions ([1], [4]). However,
the set not only needs to be invariant but it also has to be
feasible, meaning that each point inside the set needs to
satisfy the input and state constraints. The following lemma
provides conditions that need to be imposed in order to
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assure feasibility of the set:

Lemma 2: A set ϕ of the form (6) is feasible for the
constraints (3) and (4) under the linear feedback (5) if the
following conditions hold:

vi ∈ X (10)

Kvi ∈ U (11)

Proof: It is obvious that all the points of the setϕ

satisfy constraint (3) if (10) holds sinceϕ is convex and X
is also convex. To proof that constraint (4) is not violated if
(11) holds, note that a point p lying in the convex setϕ can
be written asp =

∑n

i λivi. In order to satisfy constraint (4),
Kp must lie inside U. We can rewrite Kp as follows:

Kp = K
∑n

i λivi =
∑n

i λiKvi

This means that Kp lies in the polytope with verticesKvi.
Constraint (11) assures that the verticesKvi lie inside the set
U. Because the polytope with verticesKvi and U are both
convex sets, this leads to the following:∀p ∈ ϕ : Kp ∈ U .

IV. MAIN RESULTS

Before stating our main results, some theory concerning
sets of the form (6) will be described. The set (6) contains
2n vertices{vj} defined as follows:

vj = γV −1sj , j = 1, . . . , 2n (12)

with {sj , j = 1, . . . , 2n} the set of all possible n-
dimensional vectors whose elements are±1. By choosing
n linearly independent{s1, . . . , sn}, the complete set of2n

vertices can be parameterized in terms of the first n (primary
vertices) alone as follows:

vj = f(n) =

{

[v1 . . . vn] [s1 . . . sn]
−1

, j = n + 1, . . . , 2n−1,

−vj−2n−1, j=2n−1+1,...,2n .

(13)
Also remark that in case of n linearly independent primary

vertices the following statement can be derived from (12):

V = γ [s1 . . . sn] [v1 . . . vn]
−1 (14)

Taking the results of the previous section into account
and combining this with the results for the discrete-time
case as described in [10], optimization ofϕ, K over the
primary vertices subject to invariance and feasibility fora
continuous-time linear system can be formulated as stated
below.

Theorem 2: The following nonlinear program defines K∈
R

l×n with the property thatϕ is the maximum volume low-
complexity invariant polytope which satisfies the feasibility
conditions (3) and (4) for (1) under linear feedback (5):

min
vi,wi,i=1,...,n

−log det([v1 . . . vn]) (15)

subject to the following constraints invoked fori =
1, . . . , 2n−1, j = 1, . . . , n:

vi ∈ X (16)

−sign((V vi)j) · ∆((V vi)j) ≥ 0 (17)

and

wi ∈ U (18)

The associated linear feedback gain can be recovered from
the solution for{vi, wi, j = 1, . . . , n} via

K = [w1 . . . wn][v1 . . . vn]−1.

With exception of (17) the inequalities of this nonlinear
program are linear. Inequality (17) is clearly nonconvex.
However, this constraint can be formulated as a bilinear
constraint by use of the following theorem:

Theorem 3: The polytopic setϕ (6) with verticesvi is
invariant under the feedback law (5) if the following holds:

v̇i + [v1 . . . vn] · [s1 . . . sn]
−1

· si ∈ ϕ (19)

Proof: Assume(V ·vi)j ≥ 0, with (V ·vi)j the jth entry
of (V ·vi). Than, according to Theorem 1 the following must
hold for eachviin order for the setϕ to be invariant:

(V · v̇i)j ≤ 0
Introducing some conservativeness the following deriva-

tion can be made:

−2γ ≤ (V · v̇i)j ≤ 0 (20)

−γ ≤ (V · v̇i)j + γ ≤ γ

−γ ≤ (V · v̇i)j + (γ · ei)j ≤ γ

−γ ≤ (V · v̇i + γ · ei)j ≤ γ

−γ ≤ (V · (v̇i + V −1 · γ · ei))j ≤ γ

Taking (14) into account this leads to the following
condition:

−γ ≤ (V · (v̇i + [v1 . . . vn][s1 . . . sn]−1 · ei))j ≤ γ (21)

with ei an arbitrary column vector having 1 as its jth entry.
The other elements ofei can be chosen arbitrarely. For(V ·
vi)j ≤ 0 it can be shown that the same condition has to hold
for invariance with exception that the jth entry ofei has to
be equal to -1. Remark that the vectorei is different for each
j. So in order for the vertex to be invariant, (21) has to hold
for n entries with a differentei for each entry. However, it
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is easy to show that chosingei = si for each entry is a
valid choice reducing the amount of conditions and leading
to condition (19).

Remark 4.1 In the proof of the theorem it should be
noticed that a condition for each component ofvi is made.
However, by making a clever choice and assumingei = si it
is not longer necessary to do a component-wise optimization.

Remark 4.2 With a minor modification of the algorithm
it is possible to make a trade-off between optimality of
the linear feedback and the volume of the invariant set. To
see this, note that (20) can be modified into the following
condition:

−(a + 1) · γ ≤ (V · v̇i)j ≤ −(a − 1) · γ, (22)

which can be rewritten into the following:

−γ ≤ (V · v̇i)j + a · γ ≤ γ, (23)

with tuning parametera ≥ 1 determining the trade-off.
This results into the following invariance condition:

v̇i + [v1 v2 . . . vn] · [s1 s2 . . . sn]
−1

· a · si ∈ ϕ (24)

Constraint (19) is a bilinear constraint and can be solved
using an approach similar to the one described in [10]. In
[10] the optimization problem is broken into a sequence
of simpler problems, each of which is concerned with
optimizing only a single vertexvk. In this work a modified
algorithm will be used that also optimizes a single vertex
but compared to the algorithm in [10] reduces the number
of variables to be optimised. Letck denote the vector that is
orthogonal to all exepth thekth primary vertexvk:

cT
k vj = 0, ∀j 6= k, (25)

than the optimization of Theorem (2) can be performed
by solving a sequence of linear problems (LPs) as indicated
below.

Theorem 4: The nonlinear program of Theorem (2) can
be computed by solving the following LP successively for
the individual verticesvk, k = 1, . . . , n:

min
vk, wk, k = 1, . . . , n

cT
k vk (26)

subject to the following linear constraints:

Avi+Bwi+[v1 . . . vn] [s1 . . . sn]
−1

si ∈ ϕ0, ∀i = 1, . . . , n
(27)

sign((sk)j) · (V · vk)j ≥ 1 (28)

vk ∈ X (29)

wk ∈ U (30)

with ϕ0 the invariant set computed by the previously LP.

Proof: As already stated in [10], (26) is proportional
to the volume of the setϕ. Conditions (27) and (28) ensure
invariance condition (19). To see this remark that condition
(28) corresponds to the violation of the constraints activeat
primary vertexvk. Therefore this condition limits the feasible
space in such a way that the setϕ0 ∈ Co {v1, . . . , vn}, since
it ensures|(V · vk)j | ≥ 1. Combining this with (27) ensures
(19). (29) and (30) ensure the state and input constraints are
satisfied. Also note that condition (27) is a linear constraint.
Since ([s1 . . . sn]

−1
si) is a columnvector, it has the fol-

lowing form:[a1 . . . an]
T . Using some elementary matrix

algebra, condition (27) can be rewritten as follows:

Avi + Bwi + a1v1 + . . . + anvn ∈ ϕ, (31)

which is a linear constraint.

Remark 4.3 Condition (27) can be imposed as follows:

-1 ≤ V 0 · x ≤ 1 (32)

with x = Avk + Bwk + [v1 . . . vn] [s1 . . . sn]
−1

sk,
1 = [1 . . . 1]

T and V 0 the matrix determiningϕ0. This
can be done becauseV 0 is known at the start of each
optimization procedure. So in contrary to the technique
applied in [10], this method avoids the need of additional
variables in order to expressx as a convex combination of
the primary vertices ofϕ0.

Remark 4.4 In case of a nonlinear system (2) invariance
condition (27) should hold for each[Ai Bi] of the LDI (8).

Remark 4.5 The algorithm is also able to cope with rate
constraints in case the linear feedback gain is known in
advance. To see this notice that the rate constraintu̇min ≤
u̇ ≤ u̇max for a linear feedback gain K can be formulated
as follows:

u̇min ≤ K(A + BK)x ≤ u̇max (33)

If K is known in advance, (33) reduces to a linear
constraint in the state variable.

In order for the algorithm of Theorem 4 to ensure it
returns a feasible invariant set it is necessary to find an
initial feasible set satisfying invariance condition (19). For
a nonlinear system it is very difficult to determine such
a set. However, for a linear system an initial set can be
determined by the procedure as indicated below.
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Theorem 5: In order for an initial set to satisfy the con-
ditions (10), (18) and (19), the feedback K andγ must be
chosen in such a way that following condition holds for each
eigenvalueλi of A+BK:

−2 ≤ λi ≤ 0 (34)

The primary vertices of the initial set can than be found
as the eigenvectors of the matrix(A + BK) multiplied with
some scalingfactorδ in order to fullfill the state and input
constraints.

Proof: Assume K is chosen in such a way thatφ(= A+
BK) has real negative eigenvalues and let the eigenvectors of
φ coincide with primary vertices ofϕ. SinceV ·φvi = λi·V vi

andλi ≤ 0 this means that the verticesvi form an invariant
set, becausesign(V v̇i) = −sign(V vi). In order for the set
to also satisfy constraint (19) the following deduction canbe
made:

−γ1 ≤ V (φvi + [v1 . . . vn][s1 . . . sn]−1si) ≤ γ1

−γ1 ≤ λi · V vi + γsi ≤ γ1

−γ1 ≤ (λi + 1) · γsi ≤ γ1

−1 ≤ (λi + 1) · si ≤ 1

Since−1 ≤ si ≤ 1, this leads to|λi + 1| ≤ 1, which is
equivalent to condition (34). However, imposing condition
(34) is not always sufficient. In order to satisfy the state and
input constraints it can be necessary to scale the obtained
primary vectors with some constantδ smaller than 1. Remark
that the eigenvalues don’t change by scaling the primary
vectors, so condition (34) can’t get violated by the scaling.

Remark 4.6 In order to use this theorem to obtain an
initial feasible invariant set a suitable K can be found by
the use of pole placement after the determination of suitable
poles.

Remark 4.7 In case of introducing the tuning parameter
a a similar approach results into following condition:

−1 − a ≤ λi ≤ 1 − a (35)

Notice thatλ ≤ 0 since a ≥ 1. A high value for the
tuning parametera results in very negative eigenvalues
which results in a smaller invariant set but a more optimal
linear feedback.

Remark 4.8 For the nonlinear system it is not
straightforward to find a feasible initial invariant set. So
for a nonlinear system the algorithm starts the optimisation
procedure from a random set. However, in practice this
doesn’t pose many problems, as will be demonstrated in the

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Fig. 1. Simulation Results: Invariant Set

examples.

V. EXAMPLE

Our illustrative example concerns the following linear
continuous-time system:

ẋ =

[

0 1
0 0

]

x +

[

0 1
1 0

]

u

with state constraint-3 ≤ x ≤ 3.

In this case, 2 eigenvalues between−2 and 0 must be
chosen in order to determine the initial feasible invariant
set. We chooseλ1 = −1.5 and λ2 = −1. Remark both
eigenvalues satisfy condition (34). Using pole placement the
following value for the linear feedback gain is obtained:

K =

[

0 −1
−1.5 −1

]

,

φ =

[

−1.5 0
0 −1

]

.

The eigenvectors ofφ are v1 =
[

1 0
]T

and v2 =
[

0 1
]T

. Both primary vertices satisfy the input con-
straints so there is no need to scale the vertices. The resulting
set is depicted in figure 1 as the set with the dashed contours.
Applying the algorithm of Theorem 4 gives the set with
the solid contours in figure 1. Also note that the path of
the primary vertices under the optimal linear feedback stays
inside the solid set, which means that the set is invariant. The
optimal linear feedback corresponding with the solid set is
the following:

Kopt =

[

−0.1430 −0.6316
−0.5101 −0.6175

]

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to European Control Conference 2007.
Received October 18, 2006.



−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Fig. 2. Simulation Results: Uncertainty and Invariance

Now, lets assume some uncertainty on the matrix B of the
system:

B ∈ Co

{[

0 1
1 0

]

,

[

0 1
0.05 0

]}

Figure 2 shows that the invariant set for the nominal linear
system isn’t invariant for the uncertain system. However, by
taking the uncertainty into account in the algorithm a set can
be found invariant for the uncertain system (see figure 3).
The values corresponding to this optimal feasible invariant
set are the following:

Kopt =

[

0.1797 1.0911
0.5565 1.5112

]

V opt =

[

0.3333 0.8170
0.3333 −0.0738

]

Remark that the initial feasible set used to determine a
feasible invariant set for the uncertain system is the same
as the initial feasible set for the nominal system without
uncertainty. Though not shown on the figure this set is
not invariant for the uncertain system. This means that the
algorithm of Theorem 4 started the optimization from an
infeasible starting point. However, as depicted in figure 3,
the algorithm is still capable of determining a invariant set
satisfying the given state constraints.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper a method was proposed to determine fea-
sible invariant sets for continuous-time linear and nonlinear
systems. The method determined an optimal linear feedback
gain maximizing the invariant feasible set by solving a
sequence of linear programs. A trade-off between optimality
and volume of the invariant set was obtained by introducing
a tuning parametera. The method was able to deal with

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Fig. 3. Simulation Results: Invariant Set Uncertain System

constraints on the input, rate and the state. In the case
of a nonlinear system the method was able to determine
an invariant set by using an LDI representation of the
nonlinear system. Several simulations on linear and uncertain
continuous-time systems showed the method was capable of
obtaining invariant feasible sets. In case of the linear system
the algorithm first determined an initial invariant feasible
set satisfying all necessary constraints. As a result all the
future determined sets satisfied those same constraints. In
the nonlinear case the initial set was not feasible. However,
this didn’t prevent the algorithm to determine an (sub)optimal
feasible invariant set.

B. Future Works

Future work can be done by extending the algorithm in
order to deal with input disturbances. Furthermore, the sets
used in this work have a limitation due to their symmetry.
More general sets without symmetry could significantly
increase the volume of the invariant set, especially when as-
symmetric constraints are considered. Future work is needed
in this area.
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