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Abstract: In order to prevent flooding of a river system the local water administration of the
Demer provided the river system with hyraulical structures and water reservoirs. Though these
actions have reduced the damage and frequency of flooding events, simulations have shown
that a better usage of these structures and reservoirs could further decrease the flooding in
the bassin. Therefore, in this work the main focus will be to ameliorate the usage of structures
and reservoirs by controlling them with model predictive control. In this paper a conceptual
model of the Demer will be derived. Afterwards a model predictive controller will be used to
avoid flooding of the Demer bassin. A comparison will be made between the performances of
the model predictive controller and the currently used three position controller.

1. INTRODUCTION

Flooding of rivers causes worldwide for a lot of trouble.
In Belgium there is a river, the Demer, which caused for
similar flooding problems in its bassin during periods of
heavy rainfall . In order to prevent these flooding events
the local water administration provided the river system
with hydraulical structures (gates) in order to be able to
control the discharges in the river system. Extra storage
capacity for periods of heavy rainfall was provided through
reservoirs. Structures to control the flow from and into
the available reservoirs were also added to the system.
Nowadays, the hydraulical structures are controlled by
a three position controller. The three position controller
determines the control actions of the gates based on some
very simple rules. The main disadvantage of these rules is
that they are only based on the current measurements of
the water levels but don’t take the future rain predictions
into account. This causes the control actions to be far from
optimal. The local water administration has verified that
the damage of past flooding events could have been sig-
nificantly reduced and even completely avoided if different
control decisions would have been applied than the ones
obtained by the three position controller. Therefore, the
main purpose of this work is to come up with a better
control strategy.

1.1 Model Predictive Control

In this work the control strategy to be investigated is
model predictive control (MPC) ([Camacho],[Rossiter]).
MPC is a control technique that in the past decennia
has become more and more popular in the process in-
dustry because of some specific advantages. The biggest
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advantages of MPC are the possibility to take input and
state constraints into account and the prediction horizon
used in order to determine the optimal control input. An
important disadvantage of MPC is the fact that because of
the calculation time it is only applicable to systems with
relatively slow dynamics. Because the dynamics of river
systems are relatively slow, because to prevent flooding
input and state constraints need to be considered and
because future rain predictions need to be taking into
account model predictive control is a suitable control stra-
tegy in order to solve the flooding problem.

In the literature several works can be found in which
automatic control techniques are used in order to control
a river system ([Brian et al.],[Burt et al.],[Litrico et al.]).
A good overview of the different controllers can be found
in [Malaterre(1998)].There are also several works available
in which a MPC is used to control river systems([Rutz
et al.],[Rodellar et al.]). These works however have as
main goal to control the different waterlevels to some
desired target value and not to prevent flooding. In these
applications it is usually sufficient to linearize the system
round the desired steady state value in order to obtain
good results. But this simple linearization doesn’t work
when trying to avoid flooding. The main reason is that
during periods of heavy rainfall the complete nonlinear
dynamics of the system is excitated. So in this application
it is really important to use a MPC that is capable of
taking the nonlinear model behaviour into account. In the
sequel of the paper such a MPC will be discussed.

Also remark that to the authors knowledge there are no
works published in which MPC is used in order to avoid
flooding, with exception from [Thai(2005)]. However, in
[Thai(2005)] the nonlinear behaviour introduced by the
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Fig. 1. The Complete Demer Model

Fig. 2. Model Scheme

presence of the gates is not considered which is a serious
simplification of the actual problem.

1.2 Modelling

MPC is a control paradigm that needs the model of the
system in order to determine the optimal control inputs. So
the first step in any application in which an MPC will be
used, is to determine an appropriate model of the system
to be controlled. In this work a discrete time conceptual
model of the river system is determined rather than a
finite element model. The tuning of the parameters of the
conceptual model is done by taking hystorical data into
account. Results of this model will be shown in the sequel.

2. MODELLING

The first step in this work is to make a model of the river
system to be controlled. In figure 1 a schematic overview
of the complete Demer model is shown. The local water
administration has an accurate finite element model of this
river system generated in the software package Infoworks
[OBM-Demer(2003)]. Because it is not straightforward to
make a software coupling with this software package, it
was necessary to derive an own conceptual model based
on simulation data generated in infoworks. Since this work
is the first step towards the use of MPC for flooding the
focus was limited to control only the part indicated on the
figure by the (red) ellipse. A more detailed view of this
part is depicted in figure 2. The river system considered
in this work consists of 10 states (three water levels,
four discharges and three volumes) and three inputs. The
outputs of the system are the three water levels. The water

Fig. 3. Model Validation

level upstream is hopw , the water level downstream is
hafw. There is one reservoir that can be used during heavy
rainfall and its water level is hs. There are three gates that
need to be controlled by the controller, namely A, D and
K7. There are two disturbance inputs qman en qopw to
model rainfall entering the river system.

The conceptual model derived here is from the reservoir
type. The equations are determined according to the
methodologies described in [Vaes et al.(2002)]. The model
is calibrated based on the data of 1995 generated by
Infoworks. The resulting model is a discrete time model
with a simulation time step of 1 hour. Internally, however,
the model uses a 5 minutes simulation time step. Remark
the equations to describe the discharges over the gates
make the model of the system hybrid. The model was
validated by comparing its simulation results with data
from 1998 and 2002 generated by the infoworks model. In
figure 3 this validation is shown for water level hafw. The
first 600 hours correspond to the year 1998 and the next
hours to the year 2002. It can be seen that the conceptual
model is a relatively good match of the data generated by
infoworks.

3. CONTROLLER DESIGN

In literature a lot of control strategies can be found in order
to control a river system. A good overview of all these
control strategies can be found in [Malaterre(1998)]. In
this work was opted for MPC. MPC has a typical structure
that can cope with all issues related to controlling a river
system. The main issues justifying the use for MPC in
order to prevent flooding, are the following:

(1) The calculation time of a MPC controller limits its
use to control systems with relatively slow dynamics.
Because river systems have slow dynamics MPC can
be applied to them.

(2) The gates in the water system have some important
physical limitations that have to be taken into ac-
count. The gates have upper and lower limits that can
never be violated in reality. There is also a restriction
on the speed of the gate movement as the gates can’t
move infinitely fast in real time. MPC is perfectly
capable of taking both constraints easily into account.
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(3) In order to prevent flooding it is necessary to be able
to impose upper limits on the different water levels.
In an MPC framework it is possible to impose them
as hard constraints. In order the rainfall is to big to
avoid flooding of some water levels, MPC can also
impose them as soft constraints (see further).

(4) Taking the rainfall predictions into account is a very
important issue when trying to prevent flooding.
MPC is capable of taking this into account by mo-
delling the rainfall as a known disturbance input into
the system.

(5) The model of a river system is highly nonlinear.
Because during flooding periods the complete nonli-
near dynamics of this system is excitated, the control
problem turns into a higly nonlinear problem. Most
control strategies are based on linear models and
therefore can’t cope with this nonlinear behaviour.
On the contrary, MPC is well suited to tackle this.

(6) A river system is a coupled system in which affecting
the gate in one river channel also affects the other
river channels in the river system. Traditional local
control techniques do not work very well on such
kind of systems. MPC, however, can cope with this
coupling. Even more, if one of the system inputs,
in this case one of the gates, doesn’t work during
operation, MPC is capable of use this coupling to still
achieve a reasonable control action despite the failure
of one input. Local control techniques are not capable
to work properly when an input fails.

In the remainder of this section the principles of MPC will
be explained as well as the implementation issues of it.

3.1 Principles of MPC

MPC is a control strategy that uses the model of the
system in order to make future predictions on which an
optimal input sequence is determined in order to minimize
an objective function. The three basic components of MPC
are the following:

(1) A process model is used to determine the future
outputs within a time window with length N, the
prediction horizon. In this step the relation between
the unknown control inputs and the future ouputs
is determined. This prediction strategy is shown in
figure 4.

(2) An objective function is minimized. The objective
function is typically a quadratic function that tries
to minimize the water level errors and the gate
movement by adjusting the unknown control inputs.
Typically the objective function is also subject to
constraints. There are always some constraints to take
physical or desired limitations into account. When all
the constraints are linear and the objective function
is quadratic the optimization problem to be solved
is called a quadratic program, which can be solved
efficiently in practice.

Fig. 4. MPC Strategy

(3) Once the sequence of future control actions that mi-
nimizes the desired objective function is determined,
only the first set of control actions is implemented on
the system. The system is then updated by measuring
(estimating) the new state of the system and the
process is repeated. The updating of the system and
the repetition of the optimization can be seen as a
feedback to compensate for measurement errors and
model uncertainties.

3.2 Implementation of MPC

The best known MPC is the linear MPC in which the
process model is a linear time (in)variant system. This may
seem restrictive but since in most control applications the
goal is to steer the output to some predefinied reference
output and keep it there, linear MPC seems to work
very well in practice. Furthermore, most nonlinear MPC
strategies for nonlinear process models are based on linear
MPC. Therefore, in the following a further outline of the
linear MPC will be given and afterwards will be discussed
how to extent this to come to the nonlinear MPC used in
this work.

The linear time variant state space system of interest in
this work has the following form:

x(k + 1) = Akx(k) + Bku(k) + Dkd(k), (1)

y(k + 1) = Cx(k + 1). (2)

with x(k) the state vector of the system at time k, u(k)
the input vector (gates) at time k, d(k) the disturbance
vector (rainfall) at time k, y(k) the output vector (water
levels) of the system at time k, Ak, Bk and Dk time variant
system matrices and C a time invariant system matrix.
With this process model it is possible to determine the
output predictions as a function of the unknown control
inputs. The output at the next time step can be written
as follows:

y(k + 1) = CAkx(k) + CBku(k) + CDkd(k) (3)

In a similar way the next predicted output can be written
as:

y(k + 2) = CAk+1x(k + 1) + CBk+1u(k + 1) + CDk+1d(k + 1)
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y(k + 2) = CAk+1Akx(k) + CAk+1Bku(k) + CAk+1Dkd(k) +

CBk+1u(k + 1) + CDk+1d(k + 1)

(4)

Remark that the predicted outputs only depend on the
current state x(k), the disturbance inputs d(k + i) which
are known in this work and the current and future control
inputs u(k + i) that have to be determined. Doing this for
all the other outputs, the predicted outputs can be written
as follows: 

yk+1

yk+2

yk+3

. . .
yk+N

 =


CP0

CP1

CP2

. . .
CPN−1

xk+


CB0 0 0 . . . 0

CP0B0 CB1 0 . . . 0
CP1B0 CP0B1 CB2 . . . 0

. . . . . . . . . . . . . . .
CPN−1B0 CPN−2B1 CPN−3B2 . . . CBN−1




uk

uk+1

uk+2

. . .
uk+N−1

+


CD0 0 0 . . . 0

CP0D0 CD1 0 . . . 0
CP1D0 CP0D1 CD2 . . . 0

. . . . . . . . . . . . . . .
CPN−1D0 CPN−2D1 CPN−3D2 . . . CDN−1




dk

dk+1

dk+2

. . .
dk+N−1


with Pi =

∏i
n=0 Ak+i−n, Bi = Bk+i and Di = Dk+i.

This can be rewritten into the following shortened vector
notation:

Yp = Gxk + Hu + Jd (5)

The second component of MPC is the objective function
to be minimized. The objective function typically has the
following form:

min
u
‖Yp(u)− Yr‖Q + ‖u− ur‖R

with

‖x‖Q = x′Qx

, Yr the desired output references, ur the desired input
references and Q and R positive definite symmetrical cost
matrices.

By taking (5) into account the cost function can be written
as only a function of the unknown input vector u, this
leads to a quadratic objective function which together
with the constraints imposed to the system leads to the
following (constrained) quadratic program (QP) that has
to be solved at each time instant:

min
u

u′(H′QH + R)u + 2(x′kG′QH + d′J ′QH − Y ′rQH − u′rR)u

Fu ≤ b

(6)

In this work the process model is not a linear time variant
but a highly nonlinear one. However, the results of the
linear time variant system can be used in order to solve

the control problem with the nonlinear process model by
means of the following steps:

(1) Simulation of the nonlinear model within the predic-
tion horizon N with the inputs obtained by solving
the QP in the previous time instant. This leads to
a trajectory of future states. At initialization of the
MPC there are no inputs from a previous time instant
available so an arbitrary input sequence is chosen in
order to do the simulation.

(2) At each time instant within the prediction horizon
a linearization around the simulated future states is
done. The linearization in this work was done itera-
tively by use of forward differences. The linearization
gives rise to different linear systems at each sampling
time which are the characteristics of a linear time
variant systems.

(3) The QP (6) related to this linear time variant system
is solved and a sequence of optimal inputs is obtained.

(4) The previous steps are repeated with the recently
computed optimal input sequence untill convergence
or untill time runs out. After convergence the first
input is applied to the system, the systems gets an
update and the MPC strategy is repeated.

In literature [Allgöwer et al.] it has been shown that this
procedure converges to a local minimum of the nonlinear
control problem. In this work this procedure was used in
order to obtain the results presented in section 4.

3.3 Constraint and Cost Function Strategy

In order to obtain a satisfying control strategy it is im-
portant the constraints and the cost functions are chosen
in a ’good’ way. During normal periods there are some
specific desires from the water administration that should
be achieved as close as possible. But during heavy rainfalls
some of those desires lose importance because the main
desire is to avoid flooding. This means that it is not
possible to keep the objective function constant during
operation.

In this work the constraints and control goals change
according to some predefined strategy based on the ex-
perience of the local water administration. The main idea
behind the strategy is to avoid as long as possible to fill
the reservoirs of the system. If some water levels reach a
critical level the constraints and cost function are adjusted
in order to be able to store the excessive water volume
in the reservoirs. The critical levels are determined by
experience of the water administration and are chosen in
such a way that there is still enough time to avoid flooding
of the water levels by starting to fill the reservoirs.

Another important issue is the fact some water levels are
more important than others. At some point when the
rainfall is extremely big it is impossible to keep all water
levels under their flood level. A possible strategy could
be to introduce slack variables to the violated constraints
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and minimize the value of those variables. A disadvan-
tage of this, however, is that the number of optimization
variables increases which leads to a bigger computation
time. Instead of introducing slack variables in this work
was opted to classify the constraints into sets of diffe-
rent importance. If it is impossible to ensure feasibility
of all the constraints, the constraints belonging to the
least important set are removed from the optimization
problem. In the cost function the weight of the water levels
corresponding to the removed constraints is increased and
the optimization is redone. If the problem is still infeasible
the least important constraint set of the remaining sets
is removed. This is repeated untill a feasible solution is
obtained. This strategy ensures the biggest effort goes to
ensure the most important water levels stay beneath their
flood level.

4. EXPERIMENT

The main objective of this experiment is to compare the
current three position controller with a MPC controller.
A three position controller is a controller that consists of
some very simple logical rules based on the current water
levels of the system in order to decide the control action to
be implemented. A MPC is the controller that is described
in more detail in section 3. In this section both controllers
are compared by a simulation based on the rainfall data
of 1998. In the following some important details of the
simulation are discussed:

(1) In practice the gates of the river system change each
15 minutes. This is a very important issue because
this is an upper limit to the computation time of the
QP optimization.

(2) Another very important remark is the fact that in
this experiment it is assumed the nonlinear model
is perfectly known, the rain predictions are perfectly
known and the current state of the system is exactly
known at each time step. In practice this is never
the case. But as pointed out in section 5 future work
will focus in taking these uncertainties into account
during the experiments.

(3) The flood levels of the 3 water levels are:

• hopw ≤ 23.2 m
• hs ≤ 23.2 m
• hafw ≤ 22.75 m

(4) Two hard constraints to take into account are related
to the gates and are the consequence of physical
limitations. The first gate constraint limits the speed
of all the gate movements to 0.1 m/hour. The second
gate constraint defines the physical upper and lower
limits of the gates. The three valves k7, A and D (see
figure 2) have 20 m as lower limit and 23 m as upper
limit.

(5) The control objectives in this experiment are as fol-
lows:

• During normal operation the objectives are to
steer hopw to 21.5 m and to avoid hs increases.

• When hopw reaches the critical water level of 23
m or hafw reaches the critical water level of 22.55
m, it is allowed to fill the reservoir in order to
avoid both water levels reach their flood level.

• Under normal circumstances it is desired to steer
the water level hs of the reservoir to 20.4 m.

• Another important objective is to always try to
empty the reservoir as fast as possible. This is
important in order to handle 2 successive extreme
rainfall events.

• Concerning the water level of the reservoir it is
preferred to avoid its water level to exceed 23
m. Though exceeding 23 m doesn’t mean the
reservoir is flooded (flood level hs is 23.2 m), in
practice the local water administration tries to
avoid to exceed this water level because from that
point on part of the reservoir consists of farm
land. When this land is used in order to avoid
flooding, the water administration is obliged to
give the farmers a financial recompensation for
it.

(6) The rainfall data used in this experiment is based on
data of the Demer bassin from 1998, a year where
a serious flooding event caused for a lot of damage
in the bassin. In order to be able to have a better
assessment of the advantages of MPC the rainfall
data was modified. In the original rainfall data of
1998 only one extreme rainfall peak was present. In
this experiment the original data was modified by
extending it with a second peak. At the end of the
second peak a period with very little rainfall was
assumed.

The results of the experiment are depicted in figu-
res 5 and 6. In figure 5 the three position controller
was used to control the system and in figure 6 the
MPC was used. Comparing both results it is obvious
the MPC outperforms the three position controller.
During the first 250 hours and the last 800 hours
the MPC steers hopw much closer to the desired 21.5
m. During the two extreme rainfall peaks the MPC
almost completely avoids flooding. During the second
peak only hafw violates its flood level for a short time.
The three position controller, however, is not capable
to avoid flooding during the two peaks. Especially
during the second peak the flooding is dramatic. The
main reason for this extreme flooding is the fact that
the three position controller isn’t capable of emptying
the reservoir sufficiently between the two rain peaks,
while the MPC almost completely empties the reser-
voir. A closer look to the results during the period
between the two peaks reveals the MPC steers hopw
to his critical water level without exceeding it. By
doing this hafw will be lower which on his turn offers
the possibility to empty the reservoir sufficiently fast
without making hopw flood. The MPC is capable of
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Fig. 5. Result Three Position Controller

Fig. 6. Result MPC

reaching this limit because it uses a process model and
the future rain predictions in order to determine the
optimal control actions, which makes the controller
less conservative than the three position controller.

5. CONCLUSION AND FUTURE WORKS

In this work a conceptual model of the Demer was de-
termined. The resulting model was of the reservoir type.
It was calibrated by historical data of 1995 generated
by a finite element model of the Demer made with the
Infoworks software package. This model was used in order
to compare the current three position controller with a
model predictive controller. In order to make the compa-
rison the rainfall data of 1998 was extended with a second
peak of extreme rainfall. The simulations with this rainfall
data showed the MPC outperformed the three position
controller. With MPC flooding was almost completely
avoided despite two successive peaks of extreme rainfall.
With the three position controller the experiment showed
drastic flooding was inevitable during the second peak.
Also during normal rainfall periods it was shown MPC
steered the water levels much closer to the desired levels.

Future works will focus on controlling the complete model
of the Demer instead of a small part of it. The complete
model has much more states and is more nonlinear which
will raise challenges concerning computational speed as
well as stability of the QP’s to be solved. As stated before
in this work the assumptions were made that the model

contains no model uncertainties, the rain predictions are
exactly known and the states are completely known. In
practice however, much of these assumptions are not the
case. So a next step will be to take those uncertainties into
account during the experiments and add a state estimator
(e.g. Kalman filter) into the system. In a further step a
robust MPC scheme could be designed to take all the
uncertainties explicitly into account.
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