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Robust MPC based on symmetric low-complexity
polytopes

Toni Barjas Blanco, Bart De Moor

Abstract—This paper deals with linear discrete-time sys-
tems with bounded disturbances and polytopic input and
state constraints. The paper discusses a method to deter-
mine an initial disturbance invariant set by using the con-
cept of β-contractiveness. In a second step an optimization
procedure is outlined in order to increase the volume of the
initial set. The proposed optimization scheme scales well
with the state dimension. The resulting set is then used
as a terminal set for a new robust MPC (RMPC) scheme
based on symmetrical tubes. This new RMPC scheme con-
sists of a quadratic program with more degrees of freedom
then the existing tube-based RMPC schemes and therefore
gives raise to a more optimal control strategy.

I. Introduction

Model predictive control (MPC) represents a control
strategy able to handle hard constraints and performance
issues. The predictive control law is obtained by minimiz-
ing a performance index based on the prediction of the
future states of the system taking both input and state
constraints into account. An important issue in MPC is
the stability of the obtained control law. The most pop-
ular way to guarantee stability is the implementation of
MPC as a dual mode controller. In this setting the MPC
controller steers the state of the system into a set for which
it is known that there exists a control policy such that the
state trajectory stays inside the set while satisfying all the
state and input constraints.

In the case of uncertainties, stability and recursive fea-
sibility of the robust control problem are ensured by steer-
ing the final state into a disturbance invariant terminal
set. In this paper the terminal set is chosen to be a sym-
metric low-complexity polytope. Based on the concept of
β-contractiveness an initial feasible disturbance invariant
low-complexity polytope is determined. Afterwards, an
optimization scheme is outlined in order to determine the
feasible disturbance invariant polytope with maximal vol-
ume. The proposed optimization scheme has good scal-
ability properties w.r.t. the state dimension. This set is
then used as terminal set in a robust dual MPC.

The uncertainty in the model can be caused by model
uncertainties or disturbance inputs. In this paper the fo-
cus will go to uncertainties caused by disturbance inputs.
These uncertainties can be tackled in many ways. A possi-
ble approach is to carry out an open-loop MPC optimiza-
tion as outlined in [1]. However, this approach has an
important drawback that it results in conservative control
behavior leading to infeasibility and instability of the con-
trol problem. The reason for this is that the open-loop

controller doesn’t take into account that in the future it
will have knowledge about the disturbance that has taken
place leading to predicted trajectories with a big ’spread’.
In order to tackle this problem closed-loop MPC was intro-

duced. In this approach the input is a policy π which is a
sequence {µ0(.), . . . ,µN−1(.)} of control laws parametrised
as a function of the states of the system. The most popular
control feedback law µi(.) is the one in which it is para-
metrised as µi(xk) = Kxk + vk with k = 0, . . . ,N − 1. This
approach reduces the ’spread’ of the trajectories through
the feedback matrix K leading to less conservative results.

A further improvement was made in [2] in the form
of a tube MPC. A tube MPC consists of a tube X =
{X1, . . . ,XN} with Xi = zi + αiZ a polytope defined by
its center zi, Z = Co{v1, . . . ,vJ} a (random) chosen poly-
tope and αi a scaling factor that permits the size of Xi to
vary. By ensuring all possible trajectories are inside the
tube X and ensuring the tube X lies inside the feasible
region of the state space robust feasibility is ensured. The
benefits of this approach are : (i) its complexity is linear in
N rather than exponential as in the methods proposed in
[3] and [4]; (ii) the policy π is time-varying and piecewise
affine which gives raise to less conservative results than the
ones proposed in [5]. However, one drawback of the tube
MPC as outlined in [2] is that the size of the polytopes
Xi defining the tube X only varies as a scaling αi of the
chosen polytope Z without losing convexity of the control
problem. To overcome this problem in this paper the re-
sults discussed in [2] are modified by increasing the number
of degrees of freedom that influence the shape of the sets
Xi. It will be shown that this can be done without loss of
convexity of the on-line control problem if the sets Xi of
the tube X are assumed to be symmetric low-complexity
polytopes.

This paper is organised as follows. Section II explains
the used notation and defines the robust control problem.
In section III the main results of this paper are discussed in
detail. First a method is proposed to determine an initial
disturbance invariant set. Then an optimization scheme is
outlined that increases the volume of this initial set. This
feasible disturbance invariant set is then used as a terminal
set in a new robust MPC scheme based on symmetrical
tubes. In section IV the proposed methods are applied on
a numerical example and the symmetrical tube MPC is
compared with the standard tube defined in [2].

II. Problem formulation and preliminaries

A. Notation

The sets of non-negative integers is defined as N i.e.
N = {0,1,2, . . .}. For n1 ∈ N we denote Nn1

= {1, . . . ,n1}.
The set R

n defines the set of all n-dimensional vec-
tors x with x(i) ∈ R, i = 1, . . . , n, where x(i) corresponds
to the i-th element of the vector x. For two sets X1

and X2 the Minkowski set addition is defined by X1 ⊕
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X2 := {x1 + x2 : x1 ∈ X1,x2 ∈ X2}. The Minkowski set
subtraction is defined by X1 ⊖ X2 := {z : z ⊕X2 ⊆ X1}.
For a set X and n1 ∈ N, Xn1 is defined by Xn1 =
X × . . . × X

︸ ︷︷ ︸

n1

.

B. Robust optimal control problem

The paper addresses a robust MPC scheme for the linear,
time-invariant, discrete-time system

xk+1 = Axk + Buk + dk (1)

with xk ∈ R
n the state of the system and uk ∈ R

m the
control vector at sample time k. The system is subject to
the disturbance input

dk ∈ W = Co {d1, . . . , dnd
} (2)

and to the state and input constraints

xk+1 ∈ X, uk ∈ U, ∀k ≥ 0. (3)

with X and U convex polytopes containing the origin in
their interior. It will be assumed throughout the paper
that the pair (A,B) is stabilisable.

A feasible trajectory t (x0,u
r,dr) is defined as a

sequence of feasible states {x0,x1, . . . ,x∞} ∈ X
∞ re-

sulting from a sequence of feasible inputs ur =
{u0,u1, . . . ,u∞} ∈ U

∞ and a disturbance realization dr =
{d0,d1, . . . ,d∞} ∈ W

∞. The set T (x0) of all feasi-
ble trajectories starting at x0 is defined as T (x0) =
{t(x0,u,d)|t(x0,u,d) ∈ X

∞,u ∈ U
∞,d ∈ W

∞}. The ro-
bust optimal control problem consists of finding an optimal
input sequence u∗ minimizing a cost function J(x0,u,d)
such that ∀d ∈ W : t (x0,u

∗,d) ∈ T (x0). In this paper a
technique based on tubes will be described that efficiently
solves the robust optimal control problem.

C. Dual-mode robust optimal control problem

In this paper the considered model predictive controller
is a dual-mode controller. In a dual-mode controller the
state of the system at the end of the optimization window
is steered into a set Xf that is feasible and disturbance
invariant for a local stabilizing controller uk = Kxk. The
general form of the dual-mode robust optimal control prob-
lem is

min
{x1,...,xN}
{u0,...,uN−1}

J ({x0, . . . , xN} , {u0, . . . , uN−1} , W) (4)

subject to the constraints (1) and ∀k = 0, . . . ,N − 1

uk ∈ U (5)

Axk + Buk + d ∈ X,∀d ∈ W (6)

xN ∈ Xf (7)

In order to ensure stability and recursive feasibility of the
receding horizon strategy it is necessary that the set Xf

lies inside the feasible region of the state space and that it
is disturbance invariant. Disturbance invariance is defined
as follows:

Definition 1: A set Xf is called disturbance invari-
ant for the system (1) under the linear feedback u = Kx

if ∀x ∈ Xf and ∀d ∈ W it follows that (A+ BK)x+d ∈ Xf .

Another important concept that will be used through-
out this paper is the concept of β-contractiveness.

Definition 2: A set Xf is said to be β-contractive
for the system (1) under the linear feedback u = Kx

and 0 ≤ β ≤ 1 if ∀x ∈ Xf and ∀d ∈ W it follows that
(A+ BK)x+ d ∈ βXf .

In this paper the terminal set is assumed to have the
following form

Xf =
{
x| ‖Vfx‖∞ ≤ 1

}
. (8)

These types of sets have the advantage that they can be
described by a relatively low amount of constraints which
speeds up the on-line optimization process. In this paper
a method will be described to determine an initial feasi-
ble disturbance invariant set based on the concept of β-
contractiveness. Afterwards an optimization scheme will
be described to increase the volume of this set in order
to obtain a terminal set Xf with maximal volume. The
proposed optimization scheme scales well with the state
dimension of the system and can therefore be applied to
high dimensional systems. In the final stage of the paper
a new robust MPC scheme is introduced based on tubes
with sets of the form (8).

III. Main results

A. Feasible disturbance invariant set

In this paper it is assumed that the terminal set Xf is
feasible disturbance invariant and has the form (8). This
type of set is symmetric and consists of 2n vertices vi, i ∈
N2n [6]. In the disturbance-free case with the set W = ∅
and a stabilizing feedback law u = Kx invariance of the
set Xf defined by (8) can be obtained by ensuring the
following condition is satisfied:

‖Vfφx‖∞ ≤ ‖Vfx‖∞ (9)

with φ = A + BK. In the disturbance-free case, exis-
tence of such a set satisfying both the input and state
constraints (3) is guaranteed by following theorem:

Theorem 1: Assume the eigenvalues λi of the closed-

loop matrix φ are real and |λi| ≤ 1, W =
[

w1 . . . wn

]

with wi the eigenvectors of φ corresponding to λi and that
Vf = ρW−1, it then follows that there always exists a ρ̄

such that ∀ρ ≥ ρ̄ the set of the form (8) is invariant for the
system (1) while satisfying the input and state constraints
(3).
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Proof: The closed-loop matrix φ can be re-written as
φ = WDW−1 with D the diagonal matrix containing the
eigenvalues λi on the diagonal. Therefore for Vf = W−1

it follows that ‖Vfφx‖∞ ≤ |λmax| ‖Vfx‖∞, with |λmax| =
max

i
|λi|. Because it was assumed that |λi| ≤ 1 this implies

that the invariance condition (9) is satisfied. Now, assume
Vf = ρW−1 with ρ = 1 and the smallest possible scaling
factors ρx, ρu for which Xf ⊆ ρxX and KXf ⊆ ρuU. If
these scaling factors are smaller or equal to 1, the input and
state constraints are satisfied and the obtained invariant
set Xf is feasible. If one or both of the scaling factors is/are
bigger than 1 the constraints are violated. However, by
choosing ρ̄ = max{ρx,ρu} it is ensured that the invariant
set ρXf is also feasible ∀ρ ≥ ρ̄.

Remark 1: The assumption that the eigenvalues λi are
real and |λi| ≤ 1 is not restrictive. Since it is assumed
that the system matrices A and B are stabilisable, it is
always possible to choose a set of real eigenvalues {λi}
and determine a feedback K such that the closed-loop
eigenvalues coincide with the chosen set of real eigenvalues.
This can be achieved by pole placement.

In case of disturbances the invariance condition (9) can
never be satisfied. To see this observe that in the origin
this condition can never hold. Therefore, in order to en-
sure disturbance invariance the new invariance condition
becomes

‖Vf (φvi + dj)‖∞ ≤ ‖Vfvi‖∞ , ∀i ∈ N2n , j = 1, . . . , nd

(10)
with vi the vertices of the set Xf and dj the vertices of

the disturbance set W . Assume the set Xf is invariant in
the disturbance-free case and

‖Vfdj‖∞ ≤ β ‖Vfvi‖∞ = β (11)

with 0 ≤ β ≤ 1, then because ‖Vf (φvi + dj)‖∞ ≤
‖Vfφvi‖∞ + ‖Vfdj‖∞ and imposing ‖Vfφvi‖∞ +
‖Vfdj‖∞ ≤ ‖Vfvi‖∞ the invariance condition (10)
can be re-written as

‖Vfφvi‖∞ ≤ (1 − β) ‖Vfvi‖∞ . (12)

In other words, the set Xf obtained from theorem 1
needs to be (1−β)-contractive in the disturbance-free case
in order for the set to be disturbance invariant for distur-
bances dj satisfying (11). This is achieved if the eigenval-
ues λi of φ satisfy

max
i

|λi| ≤ (1 − β). (13)

Suppose a set Xf with a certain contraction rate α is
obtained using theorem 1, then this set is disturbance in-
variant for dj ∈ W if ‖Vfdj‖∞ ≤ 1−α. However, if this con-
dition is violated it can be easily shown that by parameter-
izing Vf as Vf = ρW−1, the set Xf =

{
x|

∥
∥ρW−1x

∥
∥
∞

≤ 1
}

is feasible and disturbance invariant for each ρ satisfying
the following condition

ρ̄ ≤ ρ ≤
β

max
j

‖W−1dj‖∞
. (14)

B. Volume maximization

In subsection A a method is described to determine an
initial feasible disturbance invariant set. However, the vol-
ume of the obtained set is not optimal. In [6] methods are
described that allow to find the maximal volume feasible
invariant set for the disturbance-free case. The following
algorithm is an extension of the method described in [6]
and defines the maximal volume feasible disturbance in-
variant set

Algorithm 1: The following nonlinear program defines
Xf and K such that Xf is the maximal volume low-
complexity polytope (8) satisfying the feasibility and in-
variance constraints (3) and (10) for (1) under the distur-
bances defined by (2) and linear feedback u = Kx:

min
vj ,wj ,j=1,...,n

− log det
([

v1 . . . vn

])
(15)

subject to the following constraints invoked for i =
1, . . . ,2n,p = 1, . . . ,nd:

‖Vf (Avi + Bwi + dp)‖∞ ≤ ‖Vfvi‖∞ (16)

wi ∈ U (17)

vi ∈ X (18)

dp ∈ W (19)

with wi = Kvi. The optimal linear feedback K can be
recovered as

K =
[

s1 . . . sn

] [
v1 . . . vn

]−1
. (20)

with s1, . . . ,sn defining n linearly independent vectors in
R

n×1 consisting of values equal to ±1 only.
Similarly as in [6] this nonlinear program can be

solved as a sequence of linear programs. However, the
drawback of this formulation is that there are O (2n)
variables to be determined which makes the method only
applicable to systems with low state dimension. This
observation was already stated in [7] for the case of
uncertain linear systems. A new method was proposed
in [7] to overcome this drawback which resulted in an
algorithm scalable with the state dimension. Basically,
the reduction in optimization variables was obtained by
restating the feasibility and invariance constraints using
the Farkas’ lemma. A similar approach based on the
Farkas’ lemma leads to the following optimization problem:

Theorem 2: The maximum feasible disturbance invari-
ant set for system (1) subject to disturbances (2) and un-
der linear feedback u = Kx is obtained as the solution of
the following nonlinear program:

min
H1,...,6,W,β,λ

j

1,...,2n

− log det(W ) (21)
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subject to the following constraints for j = 1, . . . ,nd

W (H1 −H2) = AW + BQ (22)

H3 −H4 = VxW (23)

H5 −H6 = VuQ (24)

dj = βW

2
n

∑

i=1

λ
j
isi (25)

H1,...,5 ≥ 0 (26)
[

H1 H2

]
1 ≤ 1(1− β) (27)

[
H3 H4

H5 H6

]

1 ≤ 1 (28)

with 1 = [1 . . .1]
T ∈ R

n×1. The linear feedback K can be
recovered as K = QW−1.

Proof: Assume W = V −1

f , then it is straightforward
to show that the objective function (21) maximizes the
volume of the set Xf =

{
x|‖Vfx‖∞ ≤ 1

}
. In order for

the set Xf to satisfy the state constraints according to
Farkas’ lemma [7] it is necessary there exist positive ma-
trices H2,H3 ∈ R

n×n satisfying (H2 −H3)1 ≤ 1 such that
(H2 − H3)Vf = Vx which coincides with the constraints
(22) and (28). The same reasoning w.r.t. to the in-
put constraints and taking Q = KVf leads to condition
(24). Conditions (22) and (27) can also be derived us-
ing Farkas’ lemma and ensure the set Xf is (1− β)-
contractive in absence of disturbances. Condition (25) en-
sures ‖Vfdj‖∞ ≤ β which combined with the fact that Xf

is (1− β)-contractive ensures the set Xf is disturbance in-
variant.

Note that the optimization outlined in theorem 2 still
scales exponentially w.r.t. the state dimension due to the
introduction of the 2n ×nd variables λ

j
i in condition (25).

Condition (25) is a bilinear constraint needed to ensure
‖Vfdj‖∞ ≤ β. The following theorem replaces constraint
(25) by new constraints leading to a significant reduction
in the number of variables of the optimization problem:

Theorem 3: Assume a random set X0 =
{x|‖V0x‖∞ ≤ 1} such that max

j
‖V0dj‖∞ ≤ β0 ≤ 1

then max
j

‖Vfdj‖∞ ≤ β0 can be enforced by following set

of constraints

W (H7 −H8) = V −1

0 (29)

(H7 −H8)1 ≤ 1 (30)

H7,8 ≥ 0 (31)

with H7,8 ∈ R
n×n and W = V −1

f .

Proof: Conditions (29)-(31) can be derived using
Farkas’ lemma and state X0 ⊆ Xf ; therefore, ∀d ∈ W :
‖Vfd‖∞ ≤ ‖V0d‖∞ ≤ β0, meaning that as long as X0 ⊆ Xf

it follows that max
j

‖Vfdj‖∞ ≤ β0.

Combining theorems 2 and 3 for a random chosen set
X0 = {x|‖V0x‖∞ ≤ 1} with max

j
‖Vfdj‖∞ ≤ β0 ≤ 1 an

approximate solution for the maximal volume feasible
disturbance invariant set can be obtained by following
algorithm:

Algorithm 2:

min
H1,...,8,W

− log det(W ) (32)

subject to the following constraints

W (H1 −H2) = AW + BQ (33)

H3 −H4 = VxW (34)

H5 −H6 = VuQ (35)

W (H7 −H8) = V −1

0 (36)

H1,...,8 ≥ 0 (37)

(H1 −H2)1 ≤ 1− β0 (38)




H3 H4

H5 H6

H7 H8



1 ≤ 1 (39)

Remark 2: A logical choice for V0 is to choose V0 = V 0
f

with V 0
f corresponding to the initial feasible disturbance

invariant set obtained with the method discussed in
subsection A. Note that the number of variables in this
optimization problem is of order O

(
n2

)
.

Remark 3: Algorithm 2 is a nonlinear program due to
the bilinear constraints (33),(36) and the nonlinear cost
function (32). Similar to the approaches in [6] and [7]
it is possible to find convex relaxations for solving this
optimization problem. However, in [7] it was shown that
solving this type of nonlinear problem can be done very
fast due to the specific structure of the cost function and
the constraints. Moreover, in [7] solving the nonlinear
problem gave raise to invariant sets with much bigger vol-
umes than the sets obtained with the convex relaxations.
Therefore, in this paper no convex relaxations are used to
solve this algorithm.

C. Symmetric tube MPC

A tube is defined as a sequence X = {X0,X1, . . . ,XN}
of sets of states and an associated policy π =
{µ0,µ1, . . . ,µN−1} satisfying

Xk ⊆ X, ∀k > 0, (40)

XN ⊆ Xf ⊆ X, (41)

µk(x) ∈ U, ∀x ∈ Xk, k ≥ 0 (42)
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Axk + Buk + dk ∈ Xk+1, ∀dk ∈ W (43)

In the tube controller described in [2] the sets Xi are
defined as

Xi = zi + αiZ (44)

with the sequence {zi} representing the centers of the
polytopes Xi, the sequence {αi} representing scaling fac-
tors allowing the size of the polytopes Xi to vary and Z a
(random) chosen polytope. In this paper the sets Xi are
assumed to have the following form:

Xi = xi + Zi (45)

with Zi =
{
x|

∥
∥G−1

i V 0x
∥
∥
∞

≤ 1
}
, Gi a diagonal matrix

defined by

Gi =






γ1
i . . . 0
...

. . .
...

0 . . . γn
i




 (46)

and γ
j
i ≥ 0,∀j ∈ Nn,∀i ∈ NN . From this it follows that

Xi = {x|‖Vi(x− zi)‖∞ ≤ 1}, with Vi = G−1

i V 0. The re-
sulting tube X is called a symmetric tube. Note that the
size of the sets Xi is determined by n degrees of free-
dom γ

1,...,n
i in contrast with the 1 degree of freedom αi

of the sets Xi defined in (44). Therefore, the tube based
on (45) will lead to a more optimal control strategy. The
set Z defines a symmetric polytope defined by the ver-
tices

{
v1, . . . ,v2

n}
. For each i,Xi = co

{
v1

i , . . . ,v2
n

i

}
with

for each j, v
j
i = zi + αiv

j . With each tube X a control
sequence U = {U0, . . . ,UN−1} is defined with U0 = {x0}
and Ui = co

{
u1

i , . . . ,u
2

n

i

}
for i = 1, . . . ,N ; for each j, con-

trol u
j
i is associated with vertex v

j
i . Each pair (X,U) de-

fines a control policy π = {µ1 (.) , . . . ,µN−1 (.)} with µi (.) =
µXi,Ui

. The control law µX,U : X → U is defined as follows:

for each x ∈ X = Co
{
v1, . . . ,vJ

}
defined as x =

∑J

i=1
λivi

with λi ≥ 0 and
∑J

i=1
λi = 1, the control law µX,U (x) is

defined as

µX,U (x) =

J∑

j=1

λiui, ∀x ∈ X. (47)

The decision variable for the new robust MPC scheme
based on symmetric sets is defined by

ϑ = {g, z,U,V} , (48)

with g =
{

γ
j
i

}

, i = 1, . . . ,N,j = 1, . . . ,n,z = {z1, . . . ,zN},

U = {U0, . . . ,UN−1} and V =
{
v1

i , . . . ,v2
n

i

}
, i = 1, . . . , N

with v
1,...,2n

i the vertices of the set Xi. For each x let
θ(x) denote the set of ϑ

θ (x) = {ϑ|g ≥ 0,Xi ⊂ X,Ui ⊂ U,XN ⊂ Xf ⊂ X,

Av
j
i + Bu

j
i ∈ Xi+1 ⊖W,∀(i,j) ∈ NN−1 ×N2n

}

.
(49)

It can be easily shown that the set θ(x) defines the set
of all robust feasible solutions. The purpose of the optimal
tube control problem is to find ϑ∗ that minimizes the cost
function J0(x,ϑ). In analogy with [2] in this paper the cost
function J0(x,ϑ) is defined as

J(x, ϑ) = l (x, u0) +
N−1∑

i=1

l (Xi, Ui) (50)

with l (Xi,Ui) =
2

n
∑

j=1

l
(

v
j
i ,u

j
i

)

and l (x,u) = |x|2Q + |u|2R.

The following theorem shows that the optimal solution ϑ∗

can be found by solving a quadratic program.

Theorem 4:

PN (x) : min
ϑ

{J(x, ϑ)|ϑ ∈ θ (x)} (51)

with θ(x) defined by (49), is a quadratic program.

Proof:

The vertices v1
i , . . . ,v2

n

i of the set Xi are handled as op-
timization variables of the optimization problem (51). In
order to ensure v1

i , . . . , v2
n

i to be the vertices of the set Xi

the following constraint is necessary for i = 1, . . . ,N−1 and
j = 1, . . . ,n

[
v1

i − zi . . . v2
n

i − zi

]
=

(
V 0

)−1
Gi(γ

j
i )

[
s1 . . . s2n

]
.

(52)

Note that this constraint is linear in the decision variables.
The state feasibility constraint Xi ⊆ X can be imposed by
the linear constraint

v
j
i ∈ X, i = 1, . . . , N, j = 1, . . . , 2n. (53)

It is straightforward to show that the constraints g ≥
0,Ui ⊆ U and XN ⊆ Xf are linear with respect to the de-
cision variables. In order to show that the constraint

Av
j
i + Bu

j
i ∈ Xi+1 ⊖ W (54)

can be expressed as a linear combination of the decision
variables, note that it is sufficient the following constraint
is satisfied for p = 1, . . . ,nd

Av
j
i + Bu

j
i + dp ∈ Xi+1. (55)

Taking this into consideration (55) can be re-written as
∥
∥
∥Vi

(

Av
j
i + Bu

j
i + dp − zi

)∥
∥
∥
∞

6 1 (56)

for p = 1, . . . ,nd. Because Vi = G−1

i V 0 and Gi is a diag-
onal matrix with strictly positive elements on the diagonal
this can be re-written into the following linear constraint

Gi






−1
...
−1




 ≤ V 0

(

Av
j
i + Bu

j
i + dp − zi

)

≤ Gi






1
...
1




 .

(57)
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Fig. 1. Robust feasible invariant set

The fact that all the constraints can be expressed as
linear combinations of the decision variables and the cost
function (50) is quadratic, the tube optimal control prob-
lem (51) is a quadratic program.

IV. Numerical example

We consider the following system

A =

[
0.9347 0.5194
0.3835 0.8310

]

, B =

[
- 1.4462
- 0.7012

]

(58)

subject to disturbances d ∈ W = {x|‖x‖∞ ≤ 0.12} and the
input constraint −1 ≤ ū ≤ 1. Using the method outlined
in subsection A a contraction rate 1−β = 0.7 is chosen for
the disturbance-free case. In order to achieve this contrac-
tion rate, the eigenvalues of the closed-loop system should
be real and satisfy max

i
|λi| ≤ 0.7. By choosing the set of

eigenvalues to be
[

0.7 −0.2
]

the corresponding feed-
back K is

K =
[

- 0.63 - 0.51
]

(59)

leading to the following 0.7-contractive set

X0
f =

{

x|

∥
∥
∥
∥
ρ

[
- 1.13 0.51
0.26 - 1.21

]

x

∥
∥
∥
∥
∞

≤ 1

}

. (60)

Setting ρ = 2 leads to the feasible disturbance invariant
set displayed in figure 1. Applying algorithm 2 on the set
X0

f increases the volume of the set and leads to the set Xf ,
also depicted in figure 1. The different trajectories of the
vertices are depicted in dashed lines and show the set is
disturbance invariant.

Applying the symmetric tube MPC on the system (58)

with a horizon N = 3, initial state x0 =
[
−9 4

]T
, ter-

minal set Xf and V 0 = Vf , this leads to the tube displayed
in figure (2). The crosses in the figure correspond to the
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Fig. 2. Symmetric tube MPC

next state of each vertex v
j
i of the set Xi for each distur-

bance realization dl ∈ {d1, . . . ,dnd
}. It can be seen from

the picture that each vertex of the set Xi in the next time
step lies in the set Xi+1. Therefore, because all the sets
Xi lie inside the feasible state space and satisfy the input
constraints and the vertices of the set XN−1 in the next
time step lie inside Xf , the system is robustly stabilized
and recursive feasibility is guaranteed. The value of the
cost function J (x,ϑ) associated with this symmetric tube
MPC is 78248; the cost function associated with the tube
MPC of [2] with the sets Xi a scaled version of the set
Xf is 98460. This shows the performance of the symmet-
ric tube MPC is better than the performance of the tube
MPC of [2]. Note that a short horizon is chosen to avoid
overloading figure 2.
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